(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Semester-VI

Artificial Intelligence Code: PCC-DS 601 Contacts: 3L

Name of the Course:	Artificial Intelligence		
Course Code: PCC-DS 601	Semester: VI	Semester: VI	
Duration: 6 months	Maximum Marks:1	00	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance : 5 marks	
Practical: NIL		End Semester Exam :70 Marks	
Credit Points:	3		

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Introduction [2]	6	
1	Overview of Artificial intelligence- Problems of AI, AI technique, Tic		
	- Tac - Toe problem.		
	Intelligent Agents [2]		
	Agents & environment, nature of environment, structure of agents,		
	goal based agents, utility based agents, learning agents.		
	Problem Solving [2]		
	Problems, Problem Space & search: Defining the problem as state		
	space search, production system, problem characteristics,		
	issues in the design of search programs.		
2.	Search techniques [5]	13	
	Solving problems by searching :problem solving agents, searching for		
	solutions; uniform search strategies: breadth first		
	search, depth first search, depth limited search,		
	bidirectional search, comparing uniform search strategies.		
	Heuristic search strategies [5]		
	Greedy best-first search, A* search, memory bounded heuristic search:		
	local search algorithms & optimization problems:		
	Hill climbing search, simulated annealing search, local beam search,		
	genetic algorithms; constraint satisfaction problems,		
	local search for constraint satisfaction problems.		
	Adversarial search [3]		
	Games, optimal decisions & strategies in games, the minimax search		
	procedure, alpha-beta pruning, additional refinements,		
	iterative deepening.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

3	Knowledge & reasoning [3]	3	
	Knowledge representation issues, representation & mapping,		
	approaches to knowledge representation, issues in knowledge		
	representation.		
4	Using predicate logic [2]	6	
	Representing simple fact in logic, representing instant & ISA		
	relationship, computable functions & predicates, resolution,		
	natural deduction.		
	Probabilistic reasoning [4]		
	Representing knowledge in an uncertain domain, the semantics of		
	Bayesian networks, Dempster-Shafer theory, Fuzzy sets &		
	fuzzy logics.		
5	Natural Language processing [2]	6	
	Introduction, Syntactic processing, semantic analysis, discourse &		
	pragmatic processing.		
	Learning [2]		
	Forms of learning, inductive learning, learning decision trees,		
	explanation based learning, learning using relevance		
	information, neural net learning & genetic learning.		
	Expert Systems [2]		
	Representing and using domain knowledge, expert system shells,		
	knowledge acquisition.		

- 1. Artificial Intelligence, Ritch & Knight, TMH
- 2. Artificial Intelligence A Modern Approach, Stuart Russel Peter Norvig Pearson
- 3. Introduction to Artificial Intelligence & Expert Systems, Patterson, PHI
- 4. Poole, Computational Intelligence, OUP
- 5. Logic & Prolog Programming, Saroj Kaushik, New Age International
- 6. Expert Systems, Giarranto, VIKAS
- 7. M.C. Trivedi, Artificial Intelligence, Khanna Publishing House, New Delhi (AICTE Recommended Textbook 2018)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Data Communication and Computer Networks

Code:PCC- DS602 Contact: 3L

Name of the Course:	Data Communication and Computer Networks	
Course Code: PCC-	Semester: VI	
DS602		
Duration:6 months	Maximum Marks:	:100
Teaching Scheme	·	Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: hrs./week		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Data communication Components:		
1	Representation of data and its flow	9	
	Networks, Various Connection		
	Topology, Protocols and Standards,		
	OSI model, Transmission Media,		
	LAN: Wired LAN, Wireless LANs,		
	Connecting LAN and Virtual LAN,		
	Techniques for Bandwidth utilization:		
	Multiplexing - Frequency division,		
	Time division and Wave division,		
	Concepts on spread spectrum.		
	Data Link Layer and Medium Access	8	
2	Sub Layer: Error Detection and Error		
	Correction - Fundamentals, Block		
	coding, Hamming Distance, CRC;		
	Flow Control and Error control		
	protocols - Stop and Wait, Go back -		
	N ARQ, Selective Repeat ARQ,		
	Sliding Window, Piggybacking,		
	Random Access, Multiple access		
	protocols -Pure ALOHA, Slotted		
	ALOHA,CSMA/CD,CDMA/CA		
	Network Layer: Switching, Logical	14	
3	addressing - IPV4, IPV6; Address		
	mapping - ARP, RARP, BOOTP and		
	DHCP-Delivery, Forwarding and		
	Unicast Routing protocols.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

	Transport Layer: Process to Process	8	
4.	Communication, User Datagram		
	Protocol (UDP), Transmission Control		
	Protocol (TCP), SCTP Congestion		
	Control; Quality of Service, QoS		
	improving techniques:		
	Leaky Bucket and Token Bucket		
	algorithm.		
5	Application Layer: Domain Name	8	
	Space (DNS), DDNS, TELNET,		
	EMAIL, File Transfer Protocol (FTP),		
	WWW, HTTP, SNMP, Bluetooth,		
	Firewalls, Basic concepts of		
	Cryptography.		

- 1. Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos.
- 4. Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House, New Delhi

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Name of the Course:	Big Data Technology	
Course Code: PCC- DS603	Semester: VI	
Duration:6 months	Maximum M	arks:100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: hrs./week		End Semester Exam:70 Marks
Credit Points:	3	

Big data definition, structured and unstructured data. Need for analytics, Big data programming (Hadoop, Map-Reduce), Application Data store (NoSQL), OLAP.

Optimization Techniques, Data flow framework.

Programming Map-Reduce, Best practices.

Text Books: 1. Handbook of big data technology by Zomaya and Sakr.

- 2. Real time Big Data Analytics Book by Sumit Gupta
- 3. Big Data and Hadoop, V.K. Jain, Khanna Publishing House

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Advanced Algorithms Code: PEC-DS601 A Contact: 3L

Name of the Course:	Advanced Algorithms	
Course Code: PEC-DS601 A	Semester: VI	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Sorting: Review of various sorting algorithms,		
1	topological sorting	6	
	Graph: Definitions and Elementary Algorithms:		
	Shortest path by BFS, shortest path in edge-weighted		
	case (Dijkasra's), depth-first search and computation		
	of strongly connected components, emphasis on		
	correctness proof of the algorithm and time/space		
	analysis, example of amortized analysis.		
	Matroids: Introduction to greedy paradigm,	8	
2	algorithm to compute a maximum		
	weight maximal independent set. Application to		
	MST.		
	Graph Matching: Algorithm to compute maximum		
	matching. Characterization of		
	maximum matching by augmenting paths, Edmond's		
	Blossom algorithm to compute augmenting path.		
	Flow-Networks: Maxflow-mincut theorem, Ford-	9	
	Fulkerson Method to compute		
	maximum flow, Edmond-Karp maximum-flow		
	algorithm.		
	Matrix Computations: Strassen's algorithm and		
	introduction to divide and		
	conquer paradigm, inverse of a triangular matrix,		
	relation between the time		
	complexities of basic matrix operations,		
ı	LUP-decomposition.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

	Shortest Path in Graphs: Floyd-Warshall	10	
3	algorithm and introduction to dynamic		
	programming paradigm. More examples of dynamic		
	programming.		
	Modulo Representation of integers/polynomials:		
	Chinese Remainder Theorem,		
	Conversion between base-representation and		
	modulo-representation. Extension to		
	polynomials. Application: Interpolation problem.		
	Discrete Fourier Transform (DFT): In complex		
	field, DFT in modulo ring. Fast		
	Fourier Transform algorithm. Schonhage-Strassen		
	Integer Multiplication algorithm		
	Linear Programming: Geometry of the feasibility	10	
4.	region and Simplex algorithm		
	NP-completeness: Examples, proof of NP-hardness		
	and NP-completeness.		
	One or more of the following topics based on time		
	and interest		
	Approximation algorithms, Randomized Algorithms,		
	Interior Point Method,		
	Advanced Number Theoretic Algorithm		
5	Recent Trands in problem solving paradigms using	5	
	recent searching and sorting techniques by applying		
	recently proposed data structures.		

Text book and Reference books:

- 1. "Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos.
- 4. Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House, New Delhi

Distributed Systems

Code: PEC-DS601B Contact: 3L

Name of the Course:	Distributed Systems	
Course Code: PEC-DS601B	Semester: VI	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	INTRODUCTION	THE CHIL	TVIMINS/ CITIE
1	Distributed data processing; What is a DDBS;	8	
1	Advantages and disadvantages of DDBS; Problem	O	
	areas; Overview of database and computer network		
	concepts DISTRIBUTED DATABASE		
	MANAGEMENT SYSTEM ARCHITECTURE		
	Transparencies in a distributed DBMS; Distributed		
	DBMS architecture; Global directory issues		
	DISTRIBUTED DATABASE	11	
2	DESIGN		
	Alternative design strategies;		
	Distributed design issues;		
	Fragmentation; Data allocation		
	SEMANTICS DATA CONTROL		
	View management; Data security;		
	Semantic Integrity Control QUERY PROCESSING ISSUES		
	Objectives of query processing; Characterization of query processors;		
	Layers of query processing; Query		
	decomposition; Localization of		
	distributed data		
	DISTRIBUTED QUERY OPTIMIZATION	11	
3	Factors governing query optimization; Centralized		
	query optimization; Ordering of fragment queries;		
	Distributed query optimization algorithms		
	TRANSACTION MANAGEMENT		
	The transaction concept; Goals of transaction		
	management; Characteristics of transactions;		
	Taxonomy of transaction models		
	CONCURRENCY CONTROL		
	Concurrency control in centralized database systems;		
	Concurrency control in DDBSs; Distributed concurrency control algorithms; Deadlock		
	management		
	Reliability issues in DDBSs; Types of failures;	8	
4.	Reliability techniques; Commit protocols; Recovery	J	
	protocols Algorithm		
5	PARALLEL DATABASE SYSTEMS	6	
	Parallel architectures; parallel query		
	processing and		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

6	ADVANCED TOPICS Mobile	4	
	Databases, Distributed Object		
	Management, Multi-databases		

Text book and Reference books:

- 1. Principles of Distributed Database Systems, M.T. Ozsu and PValduriez, Prentice-Hall, 1991.
- 2. Distributed Database Systems, D. Bell and J. Grimson, Addison-Wesley, 1992.

Image Processing Code:PEC-IT601 D Contact: 3L

Name of the Course:	Image Processing	
Course Code: PEC-IT601D	Semester: VI	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction [3L]	9	
	Background, Digital Image		
	Representation, Fundamental steps in		
	Image Processing, Elements of Digital Image Processing - Image Acquisition,		
	Storage, Processing, Communication,		
	Display. Digital Image Formation [4L]	4	
	A Simple Image Model, Geometric Model- Basic	4	
2	Transformation (Translation, Scaling, Rotation),		
	Perspective Projection, Sampling & Quantization -		
	Uniform & Non uniform.		
	Mathematical Preliminaries[9L]	9	
3	Neighbour of pixels, Connectivity, Relations,		
	Equivalence & Transitive Closure; Distance		
	Measures, Arithmetic/Logic Operations, Fourier		
	Transformation, Properties of The Two		
	Dimensional Fourier Transform, Discrete Fourier		
	Transform, Discrete Cosine & SineTransform.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

	Image Enhancement [8L]	8	
4.	Spatial Domain Method, Frequency Domain		
	Method, Contrast Enhancement -Linear &		
	Nonlinear Stretching, Histogram Processing;		
	Smoothing - Image Averaging, Mean Filter,		
	Low-pass Filtering; Image Sharpening. High-		
	pass Filtering, High- boost Filtering,		
	Derivative Filtering, Homomorphic Filtering;		
	Enhancement in the frequency domain - Low		
	pass filtering, High pass filtering.		
5	Image Restoration [7L]	7	
	Degradation Model, Discrete Formulation,	,	
	Algebraic Approach to Restoration -		
	Unconstrained & Constrained; Constrained		
	Least Square Restoration, Restoration by		
	Homomorphic Filtering, Geometric		
	Transformation - Spatial Transformation,		
	Gray Level Interpolation.		
6	Image Segmentation [7L]	7	
	Point Detection, Line Detection, Edge		
	detection, Combined detection, Edge		
	Linking & Boundary Detection - Local		
	Processing, Global Processing via The		
	Hough Transform; Thresholding -		
	Foundation, Simple Global Thresholding,		
	Optimal Thresholding; Region Oriented		
	Growing by Pixel Aggregation, Region		
	Foundation, Simple Global Thresholding, Optimal Thresholding; Region Oriented Segmentation - Basic Formulation, Region		

- 1. Hearn, Baker "Computer Graphics (C version 2nd Ed.)" Pearson education
- 2. Z. Xiang, R. Plastock "Schaum's outlines Computer Graphics (2nd Ed.)" TMH
- 3. D. F. Rogers, J. A. Adams "Mathematical Elements for Computer Graphics (2nd Ed.)" TMH

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Machine Learning Code: PEC-DS601 E

Contact: 3L

Name of the Course:	Machine Learning	
Course Code: PEC-DS601E	Semester: VI	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	3	

Supervised Learning, Decision Tree, Linear Discriminant Functions (SVM)

Neural Network, Deep belief network, Density elimination Methods

Bayes Decision Theory

Expectation and Minimization

Ensemble Methods

Feature Engineering

Association Rule Mining

Clustering Techniques

Text Books:

- 1. Machine Learning and Knowledge Discovery edited by Walter Daelemans, Katharina Morik
- 2. Pattern Recognition and Machine Learning by Christopher Bishop
- 3. Introduction to Machine learning with python by Andreas C. Müller and Sarah Guido
- 4. Machine Learning by Rajiv Chopra, Khanna Publishing House
- 5. Machine Learning using Python, Jeeva Jose, Khanna Publishing House

Parallel and Distributed Algorithms

Code: PEC-DS602A Contacts: 3L

Name of the Course:	Parallel and Distributed Algorithms	
Course Code PEC-DS602A	Semester: VI	
Duration: 6 months	Maximum Mark	s: 100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points: 3		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Unit	Content	Hrs/Unit	Marks/Unit
	UNIT-I :Basic Techniques, Parallel Computers for		
1	increase Computation speed, Parallel & Cluster	8	
	Computing		
	UNIT-II: Message Passing Technique- Evaluating		
2	Parallel programs and debugging, Portioning and	8	
	Divide and Conquer strategies examples		
	UNIT-III :Pipelining- Techniques computing platform,		
3	pipeline programs examples	8	
	UNIT-IV:Synchronous Computations, load balancing,		
4.	distributed termination examples, programming with	11	
	shared memory, shared memory multiprocessor		
	constructs for specifying parallelist sharing data parallel		
	programming languages and constructs, open MP		
5	UNIT-V: Distributed shared memory systems and	9	
	programming achieving constant memory distributed		
	shared memory programming primitives, algorithms –		
	sorting and numerical algorithms.		

Text book and Reference books:

- 1. Parallel Programming, Barry Wilkinson, Michael Allen, Pearson Education, 2nd Edition.
- 2. Introduction to Parallel algorithms by Jaja from Pearson, 1992.

Data Warehousing and Data Mining

Code: PEC-DS602B

Contacts: 3L

Name of the Course:	Data Warehousing and Data Mining	
Course Code PEC-DS602B	Semester: VI	
Duration: 6 months	Maximum Mark	s: 100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points: 3		

Unit	Content	Hrs/Unit	Marks/Unit
	Unit 1:		
1	Introduction to Data Warehousing; Data Mining:	8	
	Mining frequent patterns,		
	association and correlations; Sequential Pattern Mining		
	concepts, primitives,		
	scalable methods;		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

2	Unit 2: Classification and prediction; Cluster Analysis – Types of Data in Cluster Analysis, Partitioning methods, Hierarchical Methods; Transactional Patterns and other temporal based frequent patterns,	8	
3	Unit 3: Mining Time series Data, Periodicity Analysis for time related sequence data, Trend analysis, Similarity search in Time-series analysis;	8	
4.	Unit 4: Mining Data Streams, Methodologies for stream data processing and stream data systems, Frequent pattern mining in stream data, Sequential Pattern Mining in Data Streams, Classification of dynamic data streams, Class Imbalance Problem; Graph Mining; Social Network Analysis; modulation for communication, filtering, feedback control systems.	11	
	Unit 5: Web Mining, Mining the web page layout structure, mining web link structure, mining multimedia data on the web, Automatic classification of web documents and web usage mining; Distributed Data Mining.	9	
	Unit 6: Recent trends in Distributed Warehousing and Data Mining, Class Imbalance Problem; Graph Mining; Social Network Analysis	5	

- 1. Data Warehousing Fundamentals for IT Professionals, Second Edition by Paulraj Ponniah, Wiley India.
- 2. Data Warehousing, Data Mining, & OLAP Second Edition by Alex Berson and Stephen J. Smith, Tata McGraw Hill Education
- 3. Data warehouse Toolkit by Ralph Kimball, Wiley India
- 4. Data Mining & Warehousing by Ikvinderpal Singh, Khanna Publishing House
- **5.** Jiawei Han and M Kamber, Data Mining Concepts and Techniques,, Second Edition, Elsevier Publication, 2011.
- **6.** Vipin Kumar, Introduction to Data Mining Pang-Ning Tan, Michael Steinbach, Addison Wesley, 2006.
- 7. G Dong and J Pei, Sequence Data Mining, Springer, 2007.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Human Computer Interaction

Code:PEC-DS602C

Contact: 3L

Name of the Course:	Human Computer Interaction		
Course Code: PEC-DS602C	Semester: VI		
Duration: 6 months	Maximum Marks:100		
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance : 5 marks	
Practical: NIL		End Semester Exam :70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Human: I/O channels – Memory – Reasoning and problem solving; The computer: Devices – Memory – processing and networks; Interaction: Models – frameworks – Ergonomics – styles – elements	9	
2	-interactivity- Paradigms. Interactive Design basics – process – scenarios – navigation – screen design – Iteration and prototyping. HCI in software process – software life cycle	11	
	usability engineering – Prototyping in practice – design rationale. Design rules – principles, standards, guidelines, rules. Evaluation Techniques – Universal Design.		
3.	Cognitive models –Socio-Organizational issues and stake holder requirements —Communication and collaboration models-Hypertext, Multimedia and WWW.	8	
4.	Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.	8	
5.	Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Case Studies.	8	
6.	Recent Trends: Speech Recognition and Translation, Multimodal System	3	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Text book and Reference books:

- 1. Theodor Richardson, Charles N Thies, Secure Software Design, Jones & Bartlett
- 2. Kenneth R. van Wyk, Mark G. Graff, Dan S. Peters, Diana L. Burley, Enterprise Software Security,

Addison Wesley.

Data Analysis and Modeling Technique

Code: PEC-DS602D

Contact: 3L

Name of the Course:	Data Analysis and Modeling Technique			
Course Code: PEC-DS602D	Semester: VI	Semester: VI		
Duration:6 months	Maximum Marks:1	00		
Teaching Scheme		Examination Scheme		
Theory:3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance: 5 marks		
Practical: NIL		End Semester Exam:70 Marks		
Credit Points:	3			

Unit	Content	Hrs/Unit	Marks/Unit
1	Basic probability:	6	
	Discrete and continuous random variables,		
	independence, covariance, central limit theorem,		
	Chebyshev inequality, diverse continuous and		
	discrete distributions.		
	Statistics, Parameter Estimation, and Fitting a	9	
2	Distribution:		
	Descriptive statistics, graphical statistics, method of		
	moments, maximum likelihood estimation		
	Random Numbers and Simulation:	7	
3	Sampling of continuous		
	distributions, Monte Carlo methods		
	Hypothesis Testing:	9	
4.	Type I and II errors, rejection regions; Z-		
	test, T-test, F-test, Chi-Square test, Bayesian		
	test		
5	Stochastic Processes and Data Modeling:	9	
	Markov process, Hidden Markov Models, Poisson		
	Process, Bayesian Network, Regression, Queuing		
	systems		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Numerical Methods Code: OEC-DS601A Contact: 3L

Name of the Course:	Numerical Methods	
Course Code: OEC-DS601A	Semester: VI	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Approximation in numerical computation: Truncation and rounding errors, Fixed and floating- point arithmetic, Propagation of errors.	2	
2	Interpolation: Newton forward/backward interpolation, Lagrange's and Newton's divided difference Interpolation.	8	
3	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for corresponding error terms.	3	
4.	Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU Factorization method, Gauss-Seidel iterative method.	8	
5	Numerical solution of Algebraic equation: Bisection method, Regula-Falsi method, Newton-Raphson method.	3	
6	Numerical solution of ordinary differential equation: Euler's method, Runge-Kutta methods, Predictor- Corrector methods and Finite Difference method.	2	

- 1. R.S. Salaria: Computer Oriented Numerical Methods, Khanna Publishing House
- 2. C.Xavier: C Language and Numerical Methods.
- 3. Dutta & Jana: Introductory Numerical Analysis.
- 4. J.B.Scarborough: Numerical Mathematical Analysis.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

- 5. Jain, Iyengar, & Jain: Numerical Methods (Problems and Solution).
- 6. Balagurusamy: Numerical Methods, Scitech.
- 7. Baburam: Numerical Methods, Pearson Education.
- 8. N. Dutta: Computer Programming & Numerical Analysis, Universities Press.

Human Resource Development and Organizational Behaviour Code: OEC-DS601 B

Contact: 3L

Name of the Course:	Human Resource Development and Organizational Behaviour		
Course Code: OEC-DS601 B	Semester: VI		
Duration:6 months	Maximum Marks:100		
Teaching Scheme	Exam	ination Scheme	
Theory:3 hrs./week	Mid S	emester exam: 15	
Tutorial: NIL	Assign	nment and Quiz: 10 marks	
	Attend	lance: 5 marks	
Practical: NIL End Semester Exam: 70 Marks		emester Exam:70 Marks	
Credit Points:	3		
** .		TT 77	

Unit Hrs/Unit Marks/Unit Content Organizational Behaviour: Definition, Importance, Historical Background, Fundamental Concepts of 1 4 OB, Challenges and Opportunities for OB. [2] Personality and Attitudes: Meaning of personality, Personality Determinants and Traits, Development Personality, Types of Attitudes, Job Satisfaction. Perception: Definition, Nature and Importance, 8 Factors influencing Perception, Perceptual 2 Selectivity, Link between Perception and Decision Making. [2] 4. Motivation: Definition, Theories of Motivation -Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Y, Herzberg's Motivation-Hygiene Theory, Alderfer's ERG Theory, McClelland's Theory of Needs, Vroom's Expectancy Theory. Group Behaviour: Characteristics of Group, Types 4 of Groups, Stages of Group Development, Group 3 Decision

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

	Making. [2] Communication: Communication Process, Direction of Communication, Barriers to Effective Communication. [2] Leadership: Definition, Importance, Theories of Leadership Styles.		
4.	Organizational Politics: Definition, Factors contributing to Political Behaviour. [2] Conflict Management: Traditional vis-a-vis Modern View of Conflict, Functional and Dysfunctional Conflict, Conflict Process, Negotiation – Bargaining Strategies, Negotiation Process. [2] Organizational Design: Various Organizational Structures and their Effects on Human Behaviour, Concepts of Organizational Climate and Organizational Culture.	8	

Text book and Reference books:

- 1. Robbins, S. P. & Judge, T.A.: Organizational Behavior, Pearson Education, 15th Edn.
- 2. Luthans, Fred: Organizational Behavior, McGraw Hill, 12th Edn.
- 3. Shukla, Madhukar: Understanding Organizations Organizational Theory & Practice in India, PHI
- 4. Fincham, R. & Rhodes, P.: Principles of Organizational Behaviour, OUP, 4th Edn.
- 5. Hersey, P., Blanchard, K.H., Johnson, D.E.- Management of Organizational Behavior Leading Human Resources, PHI, 10th Edn.

Research Methodology Code: PROJ- DS601

Contact: 3L

Name of the Course:	Research Methodology		
Course Code: PROJ- CS601	Semester: VI		
Duration:6 months	Maximum Marks:1	00	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

	RESEARCH FORMULATION AND DESIGN	12020 2021)
1	Motivation and objectives – Research methods vs.	9
_	Methodology. Types of research – Descriptive vs.	
	Analytical, Applied vs. Fundamental, Quantitative vs.	
	Qualitative, Conceptual vs. Empirical, concept of applied	
	and basic research process, criteria of good research.	
	Defining and formulating the research problem, selecting the problem, necessity of defining the problem,	
	importance of literature review in defining a problem,	
	literature review-primary and secondary sources, reviews,	
	monograph, patents, research databases, web as a source,	
	searching the web, critical literature review, identifying	
	gap areas from literature and research database,	
	development of working hypothesis. DATA COLLECTION AND ANALYSIS	9
2	Accepts of method validation, observation and	
	collection of data, methods of data collection, sampling	
	methods, data processing and analysis strategies and	
	tools,data analysis with statically package (Sigma	
	STAT,SPSS for student t-test, ANOVA, etc.),	
	hypothesis testing.	
	RESEARCH ETHICS, IPR AND SCHOLARY	9
3	PUBLISHING	
	Ethics-ethical issues, ethical committees (human &	
	animal); IPR- intellectual property rights and patent	
	law, commercialization, copy right, royalty, trade	
	related aspects of intellectual property rights (TRIPS);	
	scholarly publishing- IMRAD concept and design of	
	research paper, citation and acknowledgement,	
	plagiarism, reproducibility and accountability.	
	INTERPRETATION AND REPORT WRITING	9
4.	Meaning of Interpretation, Technique of Interpretation,	
	Precaution in Interpretation, Significance of Report	
	Writing, Different Steps in Writing Project Report,	
	Layout of the Project/Research Report, Types of	
	Reports, Oral Presentation, Mechanics of Writing a	
	Project/Research Report, Precautions for Writing	
	Research Reports, Conclusions.	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Text book and Reference books:

- 1. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An introduction to Research Methodology, RBSA Publishers.
- 2. Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International. 418p.
- 3. Sinha, S.C. and Dhiman, A.K., 2002. Research Methodology, Ess Ess Publications. 2 volumes.
- 4. Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing. 270p.
- 5. Wadehra, B.L. 2000. Law relating to patents, trade marks, copyright designs and geographical indications. Universal Law Publishing.

Additional reading

- 1. Anthony, M., Graziano, A.M. and Raulin, M.L., 2009. Research Methods: A Process of Inquiry, Allyn and Bacon.
- 2. Carlos, C.M., 2000. Intellectual propertyrights, the WTO and developing countries: the TRIPS agreement and policy options. Zed Books, New York.
- 3. Coley, S.M. and Scheinberg, C. A., 1990, "Proposal Writing", Sage Publications.
- 4. Day, R.A., 1992. How to Write and Publish a Scientific Paper, Cambridge University Press.
- 5. Fink, A., 2009. Conducting Research Literature Reviews: From the Internet to Paper. Sage Publications
- 6. Leedy, P.D. and Ormrod, J.E., 2004 Practical Research: Planning and Design, Prentice Hall.
- 7. Satarkar, S.V., 2000. Intellectual property rights and Copy right. Ess Ess Publications.

Course code	Course Title	L	T	P	Credits
PEC-DS 601C	Information Security	3	0	0	3
Pre- requisite	NIL	Syllabus version		ersion	
		v. 1.0		0	

Course Objectives:

Module:2

- 1. To study and practice fundamental techniques in developing secure applications
- 2. To understand the policy, procedures and guidelines to protect the computing resources

Expected Course Outcome:

- 1. To understand security parameters and access control methods.
- 2. To understand the fundamental policies and design principle of computing resources
- 3. To recognize system design, logic-based system
- 4. To study the security architecture of database, operating system and associated vulnerabilities

Module:1		4 hours
Overview of Securi	ty Parameters: Confidentiality, integrity and availability; Sec	urity violation and
threats; Security pol	icy and procedure; Assumptions and Trust; Security Assurance, 1	Implementation and
Operational Issues;		•

3 hours

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Access Control Models: Discretionary, mandatory, roll-based and task-based models, unified models, access control algebra, temporal and spatio-temporal models. Module:3 5 hours Security Policies: Confidentiality policies, integrity policies, hybrid policies, non-interferenceand policy composition, international standards. Module:4 5 hours Systems Design: Design principles, representing identity, control of access and information flow, confinement problem. Assurance: Building systems with assurance, formal methods, evaluating systems. Module:5 6 hours Logic-based System: Malicious logic, vulnerability analysis, auditing, intrusion detection. Applications: Network security, operating system security, user security, program security. Special Topics: Data privacy, introduction to digital forensics, enterprise security specification. Module:6 3 hours Operating Systems Security: Security Architecture, Analysis of Security in Linux/Windows. Module:7 2 hours Database Security: Security Architecture, Enterprise security, Database auditing. **Module:8 Contemporary issues** 2 hours **Total Lecture hours:** 30 hours Text Book(s) Anderson, R. Security engineering. John Wiley & Sons, 2008. 2. Bishop, M. Computer Security: Art and Science. Pearson Education, Boston, US, 2003. Stamp, M. Information security: principles and practice. John Wiley & Sons, 2014. Reference Book(s) Pfleeger, C. P., Pfleeger, S. L., and Margulies, J. Security in Computing, ProQuest Safari Tech Books Online, 2017. 2. Wheeler, D. A. Secure programming HOWTO, 2017. Zalewski, M. Google browser security handbook, 2009. 3. Gertz, M., & Jajodia, S. (Eds.). Handbook of database security: applications andtrends. Springer 4. Science & Business Media, 2007.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Data Communication and Computer Networks Lab

Code: PCC-DS692 Contacts: 4P

Name of the Course:	Data Communication and Computer Networks Lab
Course Code: PCC-DS692	Semester:VI
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

Laboratory Experiments:

- 1) NIC Installation & Configuration (Windows/Linux)
- 2) Understanding IP address, subnet etc

Familiarization with

- Networking cables (CAT5, UTP)
- Connectors (RJ45, T-connector)
- Hubs, Switches
- 3) TCP/UDP Socket Programming
 - Simple, TCP based, UDP based
 - Multicast & Broadcast Sockets
 - Implementation of a Prototype Multithreaded Server
- 4) Implementation of
- □ □ Data Link Layer Flow Control Mechanism (Stop & Wait, Sliding Window)
- □ □ Data Link Layer Error Detection Mechanism (Cyclic Redundancy Check)
- □ □ Data Link Layer Error Control Mechanism (Selective Repeat, Go Back N)
- 5) Server Setup/Configuration
- FTP, TelNet, NFS, DNS, Firewall

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Data Science)

(Applicable from the academic session 2020-2021)

Big DataTechnology & OLAP Lab

Code: PCC-DS693 Contacts: 4P

Name of the Course:	Big Data Technology and OLAP Lab
Course Code: PCC-DS693	Semester:VI
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

A. NoSQL Lab using (MongoDB/Redis/Cassandra/CouchDB/Hbase using HDFs etc): Introduction to Nosql, Difference between RDBMS to NOSQL,JSON and BSON

documents, Introduction to MongoDB/.. and its Features, Database, Collection and

Documents, Various Data Types in MongoDB/.., Introduction to mongo/.. shell, CRUD

Operations, Database Operations, Read and Write Operations, Aggregation, Data

Modeling Introduction, Data Modeling Concept, Storage Engine, Indexing, Replication

Concept, Failover & Recovery

B. Multidimensional Data Modeling using OLAP:

Introduction of Data Warehousing and OLAP, example of a Data Warehouse and Data mart, Data Cleaning

Artificial Intelligence Lab

Code: PCC- DS691

Contacts: 4P

LIST OF EXPERIMENTS:

- 1. Study of Prolog.
- 2. Write simple fact for the statements using PROLOG.
- 3. Write predicates One converts centigrade temperatures to Fahrenheit, the other checks if a temperature is below freezing.
- 4. Write a program to solve the Monkey Banana problem.
- 5. WAP in turbo prolog for medical diagnosis and show the advantage and disadvantage of green and red cuts.
- 6. WAP to implement factorial, fibonacci of a given number.
- 7. Write a program to solve 4-Queen problem.
- 8. Write a program to solve traveling salesman problem.
- 9. Write a program to solve water jug problem using LISP Any experiment specially designed by the college.

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)