Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Semester-VI

Name	of the course	POWER SYSTEM-II			
Cours	se Code: PC-EE-601	Semester: 6 th			
Durat	tion: 6 months	Maximum Marks: 100			
Teach	ning Scheme	Examination Scheme			
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks		
Tutori	al: 0hr/week	Assignment & Quiz:	0 Marks		
Credit	Credit Points: 3 Attendance:				
		End Semester Exam:	70 Marks		
Objec	:tive:				
1.	To understand the method of representation of	f power system compo	nents		
2.	To know about loacation and components of a	a distribution substation.			
3.	To understand different methods of load flow	v studies.			
4.	To determine faults in Electrical systems.				
5.	To understand the principle of power system s	stability.			
6.	To understand the principle of relays and met	thods of protection of po	wer system		
7.	To solve numerical problems on the topics stu	ıdied.	•		
Pre-R	lequisite				
1.	Electric Circuit Theory (PC-EE-301)				
2.	Electromagnetic field theory (PC-EE-303)				
3.	Power system-I (PC-EE-502)				
Unit	Content		Hrs	Marks	
1	Representation of Power system com	ponents: Single-phase			
	representation of balanced three phase r	networks, the one-line			
	diagram and the impedance or reactance	diagram, per unit (PU)	02		
	system.	•			
	Distribution substation: Types of sub-	stations. location of			
	substations, substation equipments and	accessories. earthling	05		
2	(system & equipment), feeder and distrib	utors, radial and loop			
	systems				
	Load flow studies: Network model formulat	ion formation of Yhus			
	load flow problem Gauss-Siedel meth	nod Newton-Ranhson	05		
	method Decoupled load flow studies cor	marison of load flow			
3	methods				
	Faults in Electrical systems: Transient on a t	transmission line, short			
4	circuit of a synchronous machine under no lo	ad & loaded condition.	08		
	Symmetrical component transformation, see	puence impedance and			
	sequence network of power system	synchronous machine			
	transmission lines and transformers Sv	mmetrical component			
	analysis of unsymmetrical faults single line-t	a _ground fault lineto_			
	line fault double line-to- ground fault				
	Dower system stability Steady state stabi	lity transignt stability			
1	FOWER SYSTEM STADIMLY: STEADY STATE STADI	incy, transient Stability,			

5	equal area criteria, swing equation, multi machine stability concept	04	
6	Power system protection: Protective zones, Relaying elements and quantities. Protective relays, basic requirements and type of protection, phase and amplitude comparator, grading (time & current), classification of Electromagnetic relays, Directional relay, Distant relay, Differential relay, basic aspects of static and digital relays, relay protection scheme for transformer, feeder, generators and motors. Circuit breakers, circuit breaking transients, transient recovery voltage, current chopping and resistance switching, circuit breaker rating, arc and arc extinction, circuit breaker types, oil circuit breaker, server and operating mechanism, advantages and disadvantages of different types	12	

Text book:

1. Modern Power System Analysis, D.P. Kothari & I.J. Nagrath, 4th Edition, Tata McGraw Hill.

- 2. Electrical Power Systems, Subir Ray, PHI
- 3. Switchgear protection and power systems, Sunil S Rao, Khanna Publications.
- 4. A text book on Power System Engineering, M.L.Soni, P.V.Gupta, U.S. Bhatnagar & A. Chakrabarti, Dhanpat Rai & CO.

Reference Books:

- 1. Protection & Switchgear, B. Bhalja, R.P. Maheshwari, N.G.Chothani, Oxford.
- 2. Power system protection & switchgear, B.Ram & D.N. Vishwakarma, Tata McGraw Hill.
- 3. Handbook of Electrical Power Distribution, G. Ramamurthy, University Press
- 4. Electric Power Transmission and Distribution, S. Sivanagaraju, S.Satyanarayana, Pearson Education.
- 5. Power Systems Stability, Vol. I,II & II, E.W. Kimbark, Wiley.
- 6. Power Engineering, D.P Kothari & I.J. Nagrath, Tata McGraw Hill.
- 7. Power Systems Analysis, A. R. Bergen & V. Vittal, Pearson Education. 8. Computer Aided Power systems analysis, Dr. G. Kusic, CEC press.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Represent power system components in line diagrams.
- 2. Determine the location of distribution substation.
- 3. Determine the performance of power system with the help of load flowv studies.
- 4. Analyse faults in Electrical systems.
- 5. Determine the stabilty of Power system.
- 6. Explain principle of operation of different power system protection equipments.
- 7. Solve numerical problems related to representation, load flow, faults, stabilty and protection of power system.

Special Remarks (if any)

Name	e of the course	MICROPROCESSOR & MICRO CONTROLLER		
Cour	se Code: PC-EE-602	Semester: 6th		
Dura	tion: 6 months	Maximum Marks: 100)	
Teacl	ning Scheme	Examination Scheme		
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks	
Credi	t Points: 3	Attendance: (05 Marks	
]	End Semester Exam: 7	70 Marks	
Obje				
1.	To understand the architecture of 8086 micropro	rocessor.	•,	
2.	To understand the design aspects of I/O and M	lemory Interfacing circu	uts.	
3.	To interface microprocessors with supporting c	enips.		
4.	To understand the architecture of 8051 microco	ontroller.		
J. Dro E	aquisite			
1	Analog Electronics (PC EE 302)			
2	Digital Electronics (PC-EE-302)			
Unit	Content		Hrs	Marks
1	The 8086 Microprocessor: Introduction to 808	6- Microprocessor	1115	WILLING
1	architecture – Addressing modes – Instruction	on set and assembler		
	directives – Assembly language progra	mming – Modular	08	
	Programming – Linking and Relocation – St	acks – Procedures –		
	Macros – Interrupts and interrupt service rout	ines – Byte and String		
	Manipulation.			
	8086 System bus structure: 8086 signals – E	Basic configurations –		
	System bus timing –System design using 8086	– I/O programming –		
2	Introduction to Multiprogramming – Syste	em Bus Structure –	08	
	Multiprocessor configurations – Coprocessor,	, Closely coupled and		
	loosely Coupled configurations – Introdu	uction to advanced		
	processors.			
	I/O INTERFACING: Memory Interfacing and I/C	D interfacing – Parallel		
	communication interface – Serial communica	ation interface – D/A		
	and A/D Interface – Timer – Keyboard /	/display controller –	08	
3	Interrupt controller –DMA controller –	Programming and		
	applications Case studies: Traffic Light control	ol, LED display , LCD		
	display, Keyboard display interface and Alarm (Controller.		
	Microcontroller: Architecture of 8051 -	 Special Function 		
4	Registers(SFRs) – I/O Pins Ports and Circuits	s – Instruction set –	08	
	Addressing modes – Assembly language progra	amming.		
	Interfacing Microcontroller: Programming 8	3051 Timers – Serial		
	Port Programming – Interrupts Programming	g – LCD & Keyboard	06	
5	Interfacing – ADC, DAC & Sensor Interfacing	g – External Memory		
	Interface- Stepper Motor and Waveform gene	eration – Comparison		

of Microprocessor, Microcontroller, PIC and ARM processors	

Text books:

- 1. Advanced Microprocessors and Peripheral, Koshor M Bhurchandi, Ajay Kumar Ray, 3rd Edition, MC Graw hill education.
- 2. Microprocessor & Interfacing, D.V. Hall, Mc Graw Hill.
- 3. The 8051 microcontroller, Ayala, Thomson.

Ref erence books:

- 1. Advanced Microprocessors, Y. Rajasree, New Age international Publishers.
- 2. An introduction to the Intel family of Microprocessors, James L. Antonakos, Pearson Education,
- 3. The 8051 Microcontroller and Embedded systems, Muhammad Ali Mazidi & J. G. Mazidi, Pearson Education.
- 4. The 8086 Microprocessors: Programming & Interfacing the PC, K.J.Ayala, Thomson.
- 5. Microprocessor & Peripherals, S.P. Chowdhury & S. Chowdhury, Scitech.
- 6. Microchip technology data sheet, www.microchip.comerence books

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the architecture of 8086 and 8051.
- 2. do assembly language programming of 8086, 8051
- 3. interface different peripheral with 8086 and 8051
- 4. develop micro processor/ microcontroller based systems.
- 5. compare microprocessor, microcontroller, PIC and ARM processors

Special Remarks (if any)

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name of the course DIC		DIGITAL CONTROL SYSTEM		
Cours	se Code: PE-EE-601A So	Semester: 6th		
Dura	tion: 6 months M	Maximum Marks: 100		
Teach	ning Scheme E	Examination Scheme		
Theor	ry: 3 hrs/week M	Iid Semester Exam: 1	5 Marks	
Tutor	ial: 0hr/week A	Assignment & Quiz: 1	0 Marks	
Credi	t Points: 3 A	Attendance: 0)5 Marks	
	E	and Semester Exam: 7	70 Marks	
Obje	ctive:			
1.	To understand the principle of sampling and reco	onstruction of signals.		
2.	To find Z-tranaform and inverse Z-transform of s	systems.		
3.	To carry out the analysis and design of digital co	ontrol systems		
4.	To design compensators for digital control syster	m to achieve desired s	pecifications.	
5.	To represent digital control systems using state s	space models.		
6.	To analyze the effect sampling on stability, contr	rollability and observa	bility.	
7.	To design digital controllers for industrial application	ations.		
8.	To solve numerical problems on the topics studie	ed.		
Pre-R	Requisite			
1.	Control system (PC-EE-503)			
Unit	Content		Hrs	Marks
1	Sampling and reconstruction: Introduction, Examples of Data			
	control systems – Digital to Analog conversion a	03		
	conversion, sample and hold operations.			
	Z-transform: Introduction, Linear difference	e equations, pulse		
	response, Z – transforms, Theorems of	Z – Transforms,	05	
2	the inverse Z – transforms, Modified Z- Transform	ms		
	Z- Plane analysis of discrete-time control sy	vstem: Z-Transform		
	method for solving difference equations; Pulse	transforms function,	05	
	block diagram analysis of sampled – data	systems, mapping		
3	between s-plane and z-plane.			
	State space analysis: State Space Representation	ion of discrete time		
4	systems, Pulse Transfer Function Matrix sol	lving discrete time		
	state space equations, State transition matrix	and it's Properties,	0.6	
	Methods for Computation	of State	06	
	Transition Matrix, Discretization of continuous	s time state – space		
	equations.			
	Controllability and observability: Concepts of			
	Observability, Tests for controllability and O	bservability. Duality	04	
5	between Controllability and Observability,	Controllability and		
	Observability conditions for Pulse Transfer Funct	tion		
6	Stabilty analysis: Mapping between the S-Plan	ie and the Z-Plane $-$	05	
	Primary strips and Complementary St	trips – Constant		
	frequency loci, Constant damping ratio loci, 2	Stability Analysis of		

	closed	loop	systems	in	th	e	Z-P	lane.	Jury		
	stablility	test –	Stability	Analysis	by	use	of	the	Bilinear		
	Transforn	nation and	d Routh Sta	ability crite	erion						
7.	Design of	discrete	time cont	rol syster	n by	conv	entic	onal n	nethods:		
	Transient	and stea	dy – State	response	Ana	lysis ·	– De	sign k	ased on		
	the	freque	ncy	respons	e		met	hod	-	06	
	Bilinear T	ransforma	ation and I	Design pro	cedu	re in	the v	w-plai	ne, Lead,		
	Lag	and	ł	Lead-L	ag			comp	ensators		
	and digita	I PID cont	rollers.								
8.	State fee	dback cor	ntrollers a	nd observ	ers: [Desigr	n of s	state f	eedback		
	controller	through	i pole pla	acement	– Ne	ecessa	ary a	and s	ufficient	05	
	condition	s,		Ackermar	ı's				formula.		
	State Obs	ervers – F	ull order a	nd Reduce	ed or	der o	bserv	vers.			

Text book:

- 1. Digital Control and State Variable Methods , M. Gopal, TMH Publishers
- 2. Discrete-time Control Systems, K. Ogata, Pearson Education,
- 3. Digital Control Systems, B.C. Kuo, Wiley Publications.
- 4. Control System Engineering, I.J. Nagrath, M. Gopal, New age International.

Reference books

- 1. Digital control of dynamic systems, Gene F. Franklin, J. David Powell, and Michael Workman 3rd ed, 1998, Addison-Wesley.
- 2. Digital Control Systems, design, identification and implementation, Landau, Ioan Doré, Zito, Gianluca, Springer-Verlag London.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of sampling and reconstrction of analog signal.
- 2. perform Z-transformation and inverse Z-tranaformation of systems.
- 3. analyse and design digital control systems.
- 4. design compensators for digital control system to achieve desired specifications.
- 5. represent digital control systems using state space models.
- 6. analyze the effect sampling on stability, controllability and observability.

Special Remarks (if any)

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name of the course HVDC TRANSMISSION					
Cours	se Code: PE-EE-601B S	Semester: 6th			
Dura	tion: 6 months	Maximum Marks: 100)		
Teach	ning Scheme I	Examination Scheme			
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks		
Tutor	ial: 0hr/week	Assignment & Quiz: 1	0 Marks		
Practi	cal: hrs/week /	Attendance: 0)5 Marks		
Credit	Credit Points: 3 End Semester Exam: 70 Marks				
Objec	ctive:				
1.	To understand the basics of DC power transmss	sion system			
2.	To analyse HVDC converters.				
3.	To understand methods of control of HVDC sy	vstem			
4.	To understand causes of fault and protection aga	ainst fault of converters	5.		
5.	To understand function of smooting reactor and	l transient over voltage	of DC line		
6.	To understand methods of reactive power contr	rol.			
7.	To solve numerical problems on the topics studi	ied.			
Pre-R	lequisite				
1.	Electric Circuit Theory (PC-EE-301)				
2.	Power system-1 (PC-EE-502)				
3.	Control system (PC-EE-503)				
4.	Power Electronics (PC-EE-504)				
Unit	Content		Hrs	Marks	
1	DC power transmission technology: Introduc	ction, Comparison of			
	HVAC and HVDC transmission system, A	Applications of DC	0.4		
	transmission, Description of DC tra	insmission system,	04		
	Configurations, Modern trends in DC transmissi	ion.			
	Analysis of HVDC converters: Pulse number,	Choice of converter	07		
2	configuration, Simplified analysis of Graetz circ	cuit, Converter bridge	06		
2	characteristics, Characteristics of a twelve-puls	se converter, Detailed			
	analysis of converters with and without overlap	0			
	Converter and HVDC system control: General,	, Principles of DC link	0.6		
	control, Converter control characteristics, Syste	em control hierarchy,	06		
2	Firing angle control, Current and extinction a	ngle control, Starting			
3	and stopping of DC link, Power control, Higher I	level controllers.			
	Converter faults and protection: Converte	er faults, Protection			
4	against over-currents, Overvoltages in a conv	verter station, Surge	05		
	arresters, Protection against over-voltages.				
	Smoothing reactor and DC line: Introduction, Smoothing reactors,				
	DC line, Transient over voltages in DC line, Prot	tection of DC line, DC	06		
5	breakers, Monopolar operation, Effects of pro	oximity of AC and DC			
	transmission lines.				
6	Reactive power control: Reactive power req	quirements in steady			
	state, Sources of reactive power, Static VA	AR systems, Reactive	06		

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	power control during transients, Harmonics and filters, Generation of harmonics, Design of AC filters and DC filters.		
7.	Component models for the analysis of ac/dc systems: General,		
	Converter model, Converter control, Modelling of DC network,		
	Modelling of AC networks.	06	
	Power flow analysis in AC/DC systems: General, Modelling of DC		
	links, Solution of DC load flow, Discussion, Per unit system for DC		
	quantities.		

Text book:

1. HVDC Power transmission systems , K.R. Padiyar , Third Edition, New Age International Publishers

Reference books

- 1. Power Transmission by Direct Current, Erich Uhlmann, Fourth Indian Reprint, Springer International Edition, 2012.
- 2. HVDC Transmission, S Kamakshaiah, V Kamaraju, 2nd Edition, Mcgraw Hill Education, 2020.
- 3. Direct Current Transmission, E.W.Kimbark, Wiley–Blackwell; Volume 1 edition (1 January 1971)
- H.V.D.C Transmission , J Arrillaga , 1st Edition, The Institution of Engineering and Technology, 1998

Course Outcome:

After completion of this course, the learners will be able to

- 1. choose intelligently AC and DC transmission systems for the dedicated application(s).
- 2. identify the suitable two-level/multilevel configuration for high power converters.
- 3. select the suitable protection method for various converter faults.
- 4. identify suitable reactive power compensation method.
- 5. decide the configuration for harmonic mitigation on both AC and DC sides.
- 6. solve numerical problems related to converters, power flow analysis, reactive power control.

Special Remarks (if any)

Name	e of the course	ELECTRICAL MACHINE DESIGN		
Cours	se Code: PE-EE-601C	Semester: 6th		
Dura	tion: 6 months	Maximum Marks: 100		
Teach	ning Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	al: 0 hr/week	Assignment & Quiz: 1	0 Marks	
Credi	Points: 3	Attendance: ()5 Marks	
		End Semester Exam:	70 Marks	
Obje	ctive:			
1.	To understand the baisc principle of design of I	Electric machines.		
2.	To understand basics of design of Transformer	, Induction machine and	l Synchronous r	nachines.
3.	To understand different factors that influence d	lesign of Electric machi	nes.	
4.	To undertand the need and use software tools	for design of Electric m	nachines	
5.	To solve numerical problems on the topics stud	died		
Pre-R	lequisite			
1.	Electric Machine-I (PC-EE-401)			
2.	Electric Machine-II (PC-EE-501)			
Unit	Content		Hrs	Marks
1	Introduction: Major considerations in Electr	rical Machine Design -		
	Electrical Engineering Materials – Space facto	or – Choice of Specific		
	Electrical and Magnetic loadings - Thermal	considerations - Heat	04	
	flow – Temperature rise and Insulating N	Materials - Rating of		
	machines – Standard specifications.	0		
	Transformer: Output Equations – Main Dimen	nsions - kVA output for		
	single and three phase transformers – Wir	ndow space factor –	10	
	Design of core and winding – Overall dim	nensions – Operating		
2	characteristics – No load current – T	Temperature rise in		
	Transformers – Design of Tank - Met	hods of cooling of		
	Transformers.			
	Induction motors: Output equation of Ind	uction motor – Main		
3	dimensions – Choice of Average flux density	/ - Length of air gan-	10	
_	Rules for selecting rotor slots of squirrel cage	machines – Design of	-	
	rotor hars & slots – Design of end rings – De	sign of wound rotor -		
	Magnetic leakage calculations - Leakage re	actance of nolynhase		
	machines Magnetizing surrent Short sircuit	it current Operating		
	characteristics Lessos and Efficiency	it current – Operating		
	Cital accensus- Losses and Efficiency.	hains of Flootwicel and		
	Synchronous machines: Output equations – C	choice of Electrical and	10	
1	Iviagnetic Loading – Design of salient pole machines – Short circuit 10			
-	ratio – snape of pole face – Armature	aesign – Armature		
	parameters – Estimation of air gap length – D	esign of rotor –Design		
	of damper winding – Determination of full lo	ad tield mmt – Design		
	of field winding – Design of turbo alternators –	- Rotor design.		
	Computer aided Design (CAD): Limitation	ns (assumptions) of		
	traditional designs, need for CAD analysis,	synthesis and hybrid	05	

methods, design optimization methods, variables, constraints and	
objective function, problem formulation.	

Text book:

- 1. A Course in Electrical Machine Design, A.K. Sawhney, Dhanpat rai and sons.
- 2. Electrical machine design, V. rajini, V.S. Nagarajan, Pearson India education services Pvt. Ltd.
- 3. Computer Aided Design of Electrical Machine, K. M. V. Murthy, B.S. Publications.

Reference books

- 1. Design and Testing of Electrical Machines, M.V.Deshpande, PHI
- 2. Principles of Electrical Machine Design, 3rd Edition, S.K. sen, Oxf-Ibh
- 3. Computer Aided Design of Electrical Equipment, M. Ramamoorthy, East-West Press.

Course Outcome:

After completion of this course, the learners will be able to

- 1. specify the rating of electrical machines with standard specifications.
- 2. explain the principles of electrical machine design and carry out basic design of an ac machine
- 3. determine the various factors which influence the design of electrical, magnetic and thermal loading of electrical machines
- 4. explain the construction and performance characteristics of electrical machines.
- 5. use software tools to do design calculations.

Special Remarks (if any)

Name	e of the course	ELECTRICAL AND HYBRID VEHICLE		
Cour	se Code: PE-EE-602A	Semester: 6th		
Dura	tion: 6 months	Maximum Marks: 100		
Teacl	ning Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	al: 0 hr/week	Assignment & Quiz:	10 Marks	
Credi	t Points: 3	Attendance:	05 Marks	
		End Semester Exam:	70 Marks	
Obje	ctive:			
1.	To understand the basic difference between co	nventional and Hybrid	vehicles.	
2.	To understand different configuration and cont	trol of Electric drives.		
3.	To understand energy storage system in Hybrid	d vehicles.		
4.	To understand different energy management st	trategies of Hybrid vehic	cles.	
5.	To solve numerical problems on the topics stud	died		
Pre-F	Requisite			
1.	Electric Machine-I (PC-EE-401)			
2.	Electric Machine-II (PC-EE-501)			
Unit	Content		Hrs	Marks
	Introduction: Conventional Vehicles: Basics o	f vehicle performance,		
	vehicle power source characterization, transr	mission characteristics,		
	mathematical models to describe vehicle perf	ormance.		
	Introduction to Hybrid Electric Vehicles: F	History of hybrid and		
1	electric vehicles, social and environmental	importance of hybrid	09	
	and electric vehicles, impact of modern d	Irive-trains on energy		
	supplies.			
	Hybrid Electric Drive-trains: Basic concept	t of hybrid traction,		
	introduction to various hybrid drive-train to	opologies, power flow		
	control in hybrid drive-train topologies, fuel et	fficiency analysis.		
	Electric Trains: Electric Drive-trains: Basic	c concept of electric		
	traction. introduction to various electric	drivetrain topologies.		
	power flow control in electric drive-train top	ologies, fuel efficiency		
2	analysis		10	
	Electric Propulsion unit: Introduction to elec	tric components used		
	in hybrid and electric vehicles. Configuration	on and control of DC		
	Motor drives Configuration and control of Ir	duction Motor drives		
	configuration and control of Dormanont N	Agenct Motor drives,		
	Configuration and control of Switch Polyetan	viagnet inotor unves,		
	custom officional	ice wotor unves, unve		
	System enclency.	on to Frager Ctara		
	Energy Storage: Energy Storage: Introduction	Dettory based areas		
	Requirements in Hypria and Electric Vehicles,	, Battery based energy	00	
3	storage and its analysis, Fuel Cell based ei	nergy storage and its	07	
	analysis, Super Capacitor based energy sto	rage and its analysis,		
	Flywheel based energy storage and its ana	llysis, Hybridization of		
	different energy storage devices. Sizing the d	Irive system: Matching		

	the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems		
4	Energy Management Strategies: Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.	06	
5	Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).	05	

Text book:

- 1. Electric and Hybrid Vehicles: Design Fundamentals, Iqbal Hussein, CRC Press.
- 2. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, C. Mi, M. A. Masrur and D. W. Gao, John Wiley & Sons.
- 3. Electric and Hybrid Vehicles: Khanna Publishing House.
- 4. Hybrid Electric Vehicles: Energy Management Strategies, Onori Simona, Serrao Lorenzo and Rizzoni Giorgio, Springer.
- 5. Electric and Hybrid Vehicles, T. Denton, Routledge.

Reference books

- 1. Electric Vehicle Technology Explained, James Larminie, John Lowry, Wiley.
- 2. Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi CRC Press, 2004.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of Electric traction.
- 2. choose a suitable drive scheme for developing an electric hybrid vehicle depending on resources.
- 3. design and develop basic schemes of electric vehicles and hybrid electric vehicles.
- 4. choose proper energy storage systems for vehicle applications
- 5. implement different energy management strategies for hybrid vehicle.

Special Remarks (if any)

Name of the course		POWER QUALITY AND FACTS		
Cours	se Code: PE-EE-602B	Semester: 6th		
Dura	tion: 6 months	Maximum Marks: 10	0	
Teach	ning Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	al: 0 hr/week	Assignment & Quiz: 1	10 Marks	
Credit	t Points: 3	Attendance: (05 Marks	
		End Semester Exam:	70 Marks	
Obje	ctive:			
1.	To understand the characteristics of ac transm compensation.	ission and the effect of s	hunt and series	reactive
2.	To understand the working principles of FAC	TS devices and their ope	rating character	istics.
3.	To understand the basic concepts of power qu	ality.		
4.	To understand the working principles of devic	es to improve power qua	ality.	
5.	To solve numerical problems on the topics stu	Idied		
Pre-R	Requisite			
1.	Power system-I (PC-EE-502)			
2.	Control system (PC-EE-503)			
3.	Power Electronics (PC-EE-504)			
Unit	Content		Hrs	Marks
	Transmission Lines and Series/Shun	t Reactive Power		
	Compensation: Basics of AC Transm	nission. Analysis of		
	uncompensated AC transmission lines. Pa	ssive Reactive Power	04	
	Compensation. Shunt and series compensation	ion at the mid-point of		
1	an AC line. Comparison of Series and Shunt Co	ompensation.		
	Thyristor-based Flexible AC Transmission	Controllers (FACTS):		
	Description and Characteristics of Thyristor	-based FACTS devices:		
	Static VAR Compensator (SVC), Thyrist	or Controlled Series		
2	Capacitor (TCSC), Thyristor Controlled Braki	ng Resistor and Single	06	
	Pole Single Throw (SPST) Switch. Con	figurations/Modes of		
	Operation, Harmonics and control of SVC a	nd TCSC. Fault Current		
	Limiter.			
	Voltage Source Converter based (FACTS)	controllers: Voltage		
	Source Converters (VSC): Six Pulse VSC. Mul	ti-pulse and Multi-level		
	Converters, Pulse-Width Modulation for VS	Cs. Selective Harmonic		
3	Elimination Sinusoidal PWM and Space	Vector Modulation		
	STATCOM: Principle of Operation Reactive	Power Control: Type I	08	
	and Type II controllers Static Synchronou	s Series Compensator		
	(SSSC) and Unified Power Flow Controlle	r (LIPEC). Principle of		
	Operation and Control Working principle of	Internhase Power Flow		
	Controller Other Devices: GTO Controlled	Sarias Companyator		
	Fault Current Limiter	i Jenes compensator.		
	(SSSC) and Unified Power Flow Controlle Operation and Control. Working principle of Controller. Other Devices: GTO Controlled	r (UPFC): Principle of Interphase Power Flow Series Compensator.		
	Fault Current Limiter.			

4	Application of FACTS : Application of FACTS devices for power-flow control and stability improvement. Simulation example of power swing damping in a single-machine infinite bus system using a TCSC. Simulation example of voltage regulation of transmission mid-point voltage using a STATCOM.	04
5	Power Quality Problems in Distribution Systems : Power Quality problems in distribution systems: Transient and Steady state variations in voltage and frequency. Unbalance, Sags, Swells, Interruptions, Wave-form Distortions: harmonics, noise, notching, dc-offsets, fluctuations. Flicker and its measurement. Tolerance of Equipment: CBEMA curve.	04
6.	DSTATCOM : Reactive Power Compensation, Harmonics and Unbalance mitigation in Distribution Systems using DSTATCOM and Shunt Active Filters. Synchronous Reference Frame Extraction of Reference Currents. Current Control Techniques for DSTATCOM.	06
7.	Dynamic Voltage Restorer and Unified Power Quality Conditioner: Voltage Sag/Swell mitigation: Dynamic Voltage Restorer – Working Principle and Control Strategies. Series Active Filtering. Unified Power Quality Conditioner (UPQC): Working Principle. Capabilities and Control Strategies.	06

Text book:

1. FACTS Controllers in Power Transmission and Distribution, N K. R. Padiyar, New Age International (P) Ltd. 2007.

Reference books

- 1. Understanding FACTS: Concepts and Technology of FACTS Systems, N. G. Hingorani and L. Gyugyi Wiley-IEEE Press, 1999.
- 2. Reactive Power Control in Electric Systems, T. J. E. Miller, John Wiley and Sons, New York, 1983.
- 3. Electrical Power Systems Quality", R. C. Dugan, McGraw Hill Education, 2012.
- 4. Electric Power Quality, G. T. Heydt, Stars in a Circle Publications, 1991

Course Outcome:

After completion of this course, the learners will be able to

- 1. analyse uncompensated AC transmission line.
- 2. explain the working principles of FACTS devices and their operating characteristics.
- 3. apply FACTS devices for power flow control and stabilty.
- 4. identify different issues of power quality in distribution system.
- 5. apply different compensation and control techniques for DSTATCOM
- 6. explain working principle of dynamic voltage restorer and UPQC

Special Remarks (if any)

Name	e of the course	INDUSTRIAL ELEC	TRICAL SYST	TEMS
Cour	se Code: PE-EE-602C	Semester: 6th		
Dura	tion: 6 months	Maximum Marks: 100		
Teacl	ning Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0 hr/week	Assignment & Quiz:	10 Marks	
Credi	t Points: 3	Attendance:	05 Marks	
		End Semester Exam:	70 Marks	
Obje	ctive:			
1.	To understand the electrical wiring systems w	with standard symbols,	drawings and SI	LD for
	residential, commercial and industrial consum	ers		
2.	To understand various components of industri	al electrical systems		
3.	To analyze and selec the proper size of variou	us electrical system com	ponents	
4.	To understand methods of automation of Indu	ustrial Electrical Systems	5	
5.	To solve numerical problems on the topics stu	Idied		
Pre-F	Requisite			
1.	Power system-I (PC-EE-502)			
2.	Control system (PC-EE-503)			
3.	Power Electronics (PC-EE-504)		1	1
Unit	Content		Hrs	Marks
	Electrical System Components: LT system	n wiring components,		
	selection of cables, wires, switches, distri	ibution box, metering		
	system, Tariff structure, protection compone	nts- Fuse, MCB, MCCB,	06	
1	ELCB, inverse current characteristics, symbol	ols, single line diagram		
1	(SLD) of a wiring system, Contactor, Isolator,	Relays, MPCB, Electric		
	shock and Electrical safety practices			
	Residential and Commercial Electrical Syster	ms :Types of residential		
	and commercial wiring systems, general ru	lles and guidelines for		
	installation, load calculation and sizing of	wire, rating of main		
2	switch, distribution board and protection de	evices, earthing system	08	
	calculations, requirements of commercial	installation, deciding		
	lighting scheme and number of lamps, ea	arthing of commercial		
	installation, selection and sizing of componen	its.		
	Illumination Systems : Understanding various	s terms regarding light,		
	lumen, intensity, candle power, lamp	efficiency, specific		
	consumption, glare, space to height ratio	o, waste light factor,		
3	depreciation factor, various illumination s	chemes, Incandescent		
	lamps and modern luminaries like CFL, LEE	D and their operation,	06	
	energy saving in illumination systems, desig	n of a lighting scheme		
	for a residential and commercial premises. flo	ood lighting.		
	Industrial Electrical Systems I: HT of	connection, industrial		
	substation, Transformer selection, Industrial	loads, motors, starting		

4	of motors, SLD, Cable and Switchgear selection, Lightning	06	
	Protection, Earthing design, Power factor correction – kVAR		
	calculations, type of compensation, Introduction to PCC, MCC		
	panels. Specifications of LT Breakers, MCB and other LT panel		
	components.		
	Industrial Electrical Systems II: DG Systems, UPS System, Electrical		
5	Systems for the elevators, Battery banks, Sizing the DG, UPS and	06	
	Battery Banks, Selection of UPS and Battery Banks.		
6.	Industrial Electrical System Automation: Study of basic PLC, Role of		
	in automation, advantages of process automation, PLC based		
	control system design, Panel Metering and Introduction to SCADA	06	
	system for distribution automation.		

Text book:

- 1. Electrical Wiring, Estimating & Costing, S. L. Uppal and G. C. Garg, Khanna publishers, 2008.
- 2. Electrical Design, Estimating & Costing, K. B. Raina, New age International, 2007.

Reference books

- 1. Electrical estimating and costing, S. Singh and R. D. Singh, Dhanpat Rai and Co., 1997.
- 2. Web site for IS Standards.
- 3. Residential Commercial and Industrial Systems, H. Joshi, McGraw Hill Education, 2008.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Represent electrical wiring system for residential, commercial and industrial consumers.
- 2. Determine the rating of components of residential and commercial electrical systems.
- 3. Design lighting scheme for a residential and commercial premises.
- 4. Select transformer, switchgear, protection equipments for industrial electrical systems.
- 5. explain methods of automation of Industrial Electrical Systems
- 6. Solve numerical problems related to earthing system, lighting scheme, power factor correction.

Special Remarks (if any)

Name of the course		DIGITAL SIGNAL PROCESSING		
Course Code: OE-EE-601A		Semester: 6th		
Dura	tion: 6 months	Maximum Marks: 100		
Teach	ning Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	al: 0 hr/week	Assignment & Quiz:	10 Marks	
Credit	Points: 3	Attendance:	05 Marks	
		End Semester Exam:	70 Marks	
Objec	tive:			
1.	To understand sampling and reconstruction of	of signal		
2.	To understand the method of Z-transform and	inverse Z- transform of	signal and its p	roperties
3.	To understand Discrete Fourier Transform			
4.	To understand methods of design of Digital	filters		
5.	To understand applications of Digital signal p	rocessing		
6.	To solve numerical problems on the topics stu	ıdied		
Pre-R	lequisite			
1.	Electric circuit theory (PC-EE-301)			
2.	Control system (PC-EE-503)			1
Unit	Content		Hrs	Marks
	Discrete-time signals and systems: Discrete time signals and			
	systems: Sequences; representation of signals on orthogonal			
	basis; Representation of discrete syste	s; Representation of discrete systems using difference 06		
	equations, Sampling and reconstruction	of signals - aliasing;		
1	Sampling theorem and Nyquist rate.	0		
	Z-transform: z-Transform, Region of c	onvergence, Analysis		
	of Linear Shift Invariant systems using z-	-transform. Properties	06	
	of z-transform for causal signals. Interpr	etation of stability in		
2	z-domain. Inverse z- transforms.	J		
	Discrete Fourier Transform : Frequence	cy Domain Analysis.		
	Discrete Fourier Transform (DFT).	Properties of DFT.		
	Convolution of signals East Fourier T	ransform Algorithm	08	
3	Parseval's Identity Implementation of Dis	screte Time Systems		
	Tarsevar s identity, implementation of Dis	service Thile Systems.		
	Design of Digital filters: Design of	FIR Digital filters:		
	Window method, Park-McClellan's met	thod. Design of IIR		
	Digital Filters: Butterworth. Cheby	shev and Elliptic		
4	Approximations: Low-pass. Band-pass.	Bandstop and High-		
	pass filters. Effect of finite register length	in FIR filter design	12	
	Parametric and non-parametric s	nectral estimation		
	Introduction to multi-rate signal processin	σ		
	Applications of Digital Signal Processin	5 ng: Correlation		
	Applications of Digital Signal Processi	ig: Correlation		

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

5	Functions and Power Spectra, Stationary Processes, Optimal		
	filtering using ARMA Model, Linear Mean-Square Estimation,	06	
	Wiener Filter.		

Text book:

- 1. Digital Signal Processing-A computer based approach, S. Mitra, TMH
- 2. Digital Signal Processing: Principles, Algorithms & Application, J.C. Proakis & M.G. Manslakis, PHI
- 3. Fundamental of Digital Signal Processing using MATLAB, Robert J. Schilling, S.L. Harris, Cengage Learning.

Reference books

- 1. Digital Signal Processing-implementation using DSP microprocessors with examples from TMS320C54XX, Avtar Singh & S. Srinivasan, Cengage Learning
- 2. Digital Signal Processing, Chen, OUP
- 3. Digital Signal Processing, Johnson, PHI
- 4. Digital Signal Processing using MATLAB, Ingle, Vikas.
- 5. Digital Signal Processing, Ifeachor, Pearson Education.
- 6. Digital Signal Processing, A.V. Oppenhein & R.W. Shaffer, PHI
- 7. Theory and application of Digital Signal Processing, L.R. Rabiner & B. Gold, PHI
- 8. Digital Signal Processing, Ashok Ambarder, Cengage Learning.
- 9. Digital Signal Processing, S. Salivahanan, A. Vallavaris & C. Gnanpruja, TMH.
- 10. Xilinx FPGA user manual and application notes.

Course Outcome:

After completion of this course, the learners will be able to

- 1. represent signals mathematically in continuous and discrete-time and in the frequency domain.
- 2. analyse discrete-time systems using z-transform.
- 3. explain the Discrete-Fourier Transform (DFT) and the FFT algorithms.
- 4. design digital filters for various applications.
- 5. apply digital signal processing for the analysis of real-life signals.

Special Remarks (if any)

Name of the course COMMUNICATIO			ENGINEERI	NG
Cours	se Code: OE-EE-601B	Semester: 6th		
Durat	tion: 6 months	Maximum Marks: 10	0	
Teach	ning Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	al: 0 hr/week	Assignment & Quiz: 1	10 Marks	
Credit	t Points: 3	Attendance: (05 Marks	
		End Semester Exam: 7	70 Marks	
Objec	ctive:			
1.	To understand the AM, FM and PM schemes	with reference to SNR		
2.	To understand the performance of ASK, FSK, system	, PSK, BPSK, QPSK in a	a digital commu	nication
3.	To understand the source coding and channel	coding schemes for a gi	ven communica	tion link
4.	To understand the band width requirement a systems	and probability of error i	n various digita	l modulation
5.	To understand various digital modulation met	hods		
6.	To solve numerical problems on the topics stu	ıdied		
Pre-R	lequisite			
1.	Analog Electronics (PC-EE 302)			
2.	Digital Electronics (PC-EE 402)			
Unit	Content		Hrs	Marks
	Elements of communication system:	The elements of a		
	communication system, origin of noise and it	ts effect, importance of		
	SNR in system design. Basic principle of lir	near (AM) modulation,		
	Generation of AM waves, Demodulation	of AM wave. Basic		
1	principle of nonlinear (FM, PM) modulation	on. Generation of FM		
	waves. Demodulation of FM waves. Sampl	ing theorem, sampling	12	
	rate, impulse sampling, reconstruction from	om samples, Aliasing.		
	Analog pulse modulation-PAM (natural &	flat topped sampling).		
	PWM, PPM, Basic concept of Pulse code mo	dulation. Block diagram		
	of PCM. Multiplexing-TDM. FDM.			
	Digital transmission: Concept of Quantization	n & Quantization error		
	Uniform quantizer Non-uniform quantizer	r A-law and u -law		
	Encoding coding efficiency Line coding &	properties NR7 & R7		
2	AMI Manchester coding DCM DDCM	Properties, NRZ & RZ,		
-	Aivii, Mainchester Couling, PCIVI, DPCIVI	a to point ICL Doint	08	
	transmission, Matched filter, error rate du	e to noise, isi, kaised		
	cosine function, Nyquist criterion for dist	ortion-less base band		
	binary transmission, Eye pattern, Signal p	ower in binary digital		
	signal.			
	Digital carrier modulation & demodulatio	n technique: Bit rate,		
	Baud rate, Information capacity, Shanon's	limit, M-ary encoding,		
	Introduction to the different digital m	odulation techniques-	10	
3	ASK.FSK, PSK, BPSK, QPSK, mention of	8 BPSK, 16 BPSK.		

	Introduction to QAM, basic of 8 QAM, 16 QAM. Basic concept of Delta modulating, Adaptive delta modulation. Introduction to the concept DPCM. Basic concept of spread spectrum modulation.		
4	Introduction to coding theory: Introduction, News value & Information content, Entropy, Mutual information, Information rate, Shanon-Fano algorithm for encoding, Shanon's theorem-source coding theorem, Channel coding theorem, Information capacity theorem. Basic principle of Error control & coding.	08	

Text book:

- 1. An Introduction to Analog and Digital communication, Simon Haykin, Wiely India.
- 2. Analog communication system, P. Chakrabarti, Dhanpat Rai & Co.
- 3. Principle of digital communication, P. Chakrabarti, Dhanpat Rai & Co.
- 4. Modern Digital and Analog Communication systems, B.P. Lathi, Oxford university press

Reference books

- 1. Digital and Analog communication Systems, Leon W Couch II, Pearson Education Asia.
- 2. Communication Systems, A.B. Calson, Mc Graw Hill.
- 3. Communication Systems, R. Anand, Khanna Publications.

Course Outcome:

After completion of this course, the learners will be able to

- 1. compare the performance of AM, FM and PM schemes with reference to SNR
- 2. explain noise as a random process and its effect on communication receivers
- 3. evaluate the performance of ASK, FSK, PSK, BPSK, QPSK in a digital communication system
- 4. identify source coding and channel coding schemes for a given communication link
- 5. analyze various digital modulation methods
- 6. compute band width requirement and probability of error in various digital modulation systems

Special Remarks (if any)

Name	of the course	VLSI AND MICRO F	LECTRONIC	S
Cours	se Code: OE-EE-603C	Semester: 6th		
Duration: 6 months		Maximum Marks: 10	0	
Teach	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	al: 0 hr/week	Assignment & Quiz:	10 Marks	
Credit	Points: 3	Attendance:	05 Marks	
		End Semester Exam:	70 Marks	
Objec	tive:			
1.	To understand the concept of VLSI design			
2.	To understand the basics of MOS structure			
3.	To understand the process of VLSI fabricatio	n		
4.	To understand the principle of logic circuit de	esign with hardware desc	cription languag	e
Pre-R	equisite			
1.	Analog Electronics (PC-EE 302)			
2.	Digital Electronics (PC-EE 402)			
Unit	Content		Hrs	Marks
	Introduction to VLSI Design: VLSI Design Concepts, Moor's Law,			
	Scale of Integration (SSI, MSI, LSI, VLSI, ULSI – basic idea only),			
	Types of VLSI Chips (Analog & Digital VLSI chips, General purpose,		08	
	ASIC, PLA, FPGA), Design principles (Digit	al VLSI – Concept of		
1	Regularity, Granularity etc), Design Domains (Behavioral, Structural,			
	Physical), Y-Chart, Digital VLSI Design Steps.			
	MOS structure: E-MOS & D-MOS, Charge	e inversion in E-MOS,		
	Threshold voltage, Flat band voltage, Poter	ntial balance & Charge		
	balance, Inversion, MOS capacitances.			
2	Three Terminal MOS Structure: Body effect			
	Four Terminal MOS Transistor: Drain curre	ent, I-V characteristics.	12	
	Current-voltage equations (simple derivation)		
	Scaling in MOSFET: Short Channel Eff	ects, General scaling,		
	Constant Voltage & Field scaling			
	CMOS: CMOS inverter, Simple Combination	nal Gates - NAND gate		
	and NOR Gate using CMOS.	0		
	Micro-electronic Processes for VLSI	Fabrication: Silicon		
	Semiconductor Technology- An Overview	w. Wafer processing.		
	Oxidation, Epitaxial deposition, Ion-implantat	tion & Diffusion.	10	
3	Cleaning, Etching, Photo-lithography – Posit	tive & Negative photo-		
	resist			
	Basic CMOS Technology – (Steps in fabrication	g CMOS), Basic n-well		
	CMOS process, p-well CMOS process. Twin tu	ib process. Silicon on		
	insulator			
	Lavout Design Rule: Stick diagram with exam	ples. Lavout rules		

4	Hardware Description Language - VHDL or Verilog, Combinational	08	
т	nardware Description Language – VHDL of Verling Combinational	00	
	& Sequential Logic circuit Design.		

Text book:

- 1. Digital Integrated Circuit, J.M.Rabaey, Chandrasan, Nicolic, Pearson Education.
- 2. CMOS Digital Integrated Circuit, S.M.Kang & Y.Leblebici, TMH.
- 3. Modern VLSI Design, Wayne Wolf, Pearson Education.
- 4. VHDL, Bhaskar, PHI.
- 5. Advance Digital Design Using Verilog, Michel D. Celliti, PHI

Reference books

- 1. Digital Integrated Circuits, Demassa & Ciccone, John Willey & Sons.
- 2. Modern VLSI Design: system on silicon, Wayne Wolf; Addison Wesley Longman Publisher
- 3. Basic VLSI Design, Douglas A. Pucknell & Kamran Eshranghian, PHI
- 4. CMOS Circuit Design, Layout & Simulation, R.J.Baker, H.W.Lee, D.E. Boyee, PHI
- 5. Digital System Design using VHDL, R. Anand, Khanna Publications.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of design of VLSI circuits
- 2. explain different MOS structure with characteristics
- 3. apply different processes for VLSI fabrication
- 4. use programming language for the design of logic circuits
- 5. draw the stick diagram and layout for simple MOS circuits

Special Remarks (if any)

Name	e of the course	ECONOMICS FOR F	ENGINEERS	
Cour	se Code: HM-EE-601	Semester: 6th		
Dura	ration: 6 months Maximum Marks: 10		0	
Teac	ning Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0 hr/week	Assignment & Quiz:	10 Marks	
Credi	t Points: 3	Attendance: (05 Marks	
		End Semester Exam:	70 Marks	
Ohio	-4			
	To understand the process of economic decisi	ion making		
2	To understand the process of economic decisi			
2.	To develop the skills to analyze financial state	aspects		
<u>J</u> .	To understand the basic of accounting			
Pre-F	ro understand the basic of accounting			
1.	Basic understanding of Engineering processes	5		
Unit	Content		Hrs	Marks
	Economic Decisions Making – Overview, Pr	oblems, Role, Decision		
	making process.			
	Engineering Costs & Estimation – Fixed, Variable, Marginal &			
	Average Costs, Sunk Costs, Opportunity Costs, Recurring And			
1	Nonrecurring Costs, Incremental Costs, Cash Costs vs Book Costs,			
	Life-Cycle Costs; Types Of Estimate, Estima	06		
	Model, Segmenting Model, Cost Indexes, Power-Sizing Model,			
	Improvement & Learning Curve, Benefits.			
	Cash Flow, Interest and Equivalence: Ca	sh Flow – Diagrams,		
	Categories & Computation, Time Value Of M	oney, Debt repayment,		
	Nominal & Effective Interest.			
2	Present Worth Analysis : End-Of-Year Con	vention, Viewpoint Of		
	Economic Analysis Studies, Borrowed Mone	y Viewpoint, Effect Of		
	Inflation & Deflation, Taxes, Economic Crit	eria, Applying Present	10	
	Worth Techniques, Multiple Alternatives.		10	
	Cash Flow & Rate Of Return Analysis – Calc	culations, Treatment of		
	Salvage Value, Annual Cash Flow Analysis, Ar	nalysis Periods; Internal		
	Rate Of Return, Calculating Rate Of Return,	, Incremental Analysis;		
	Best Alternative Choosing An Analysis M	lethod, Future Worth		
	Analysis, Benefit-Cost Ratio Analysis, Sensitivity And Breakever Analysis. Economic Analysis In The Public Sector - Quantifying And			
	Valuing Benefits & drawbacks.			
	Uncertainty In Future Events - Estimates And	Their Use In Economic		
	Analysis, Range Of Estimates, Probabil	ity, Joint Probability		
3	Distributions, Expected Value, Economic De	cision Trees, Risk, Risk		
	vs Return, Simulation, Real Options.			
	Depreciation - Basic Aspects, Deteriorat	tion & Obsolescence,	10	
	Depreciation And Expenses, Types Of P	roperty, Depreciation	10	

	Calculation Fundamentals, Depreciation And Capital Allowance Methods, Straight-Line Depreciation Declining Balance Depreciation, Common Elements Of Tax Regulations For Depreciation And Capital Allowances.		
4	Replacement Analysis - Replacement Analysis Decision Map, Minimum Cost Life Of A New Asset, Marginal Cost, Minimum Cost Life Problems. Inflation And Price Change – Definition, Effects, Causes, Price Change With Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes In Engineering Economic Analysis, Cash Flows that inflate at different Rates.	08	
5	Accounting – Function, Balance Sheet, Income Statement, Financial Ratios Capital Transactions, Cost Accounting, Direct and Indirect Costs, Indirect Cost Allocation.	06	

Text book:

- 1. Sociology & Economics for Engineers, Premvir Kapoor, Khanna Publishing House.
- 2. Engineering Economics, James L.Riggs, David D. Bedworth, Sabah U. Randhawa 4e, McGraw-Hill Education.
- 3. Engineering Economics Analysis, Donald Newnan, Ted Eschembach, Jerome Lavelle, OUP
- 4. Principle of Engineering Economic Analysis, John A. White, Kenneth E.Case, David B.Pratt, Wiley

Reference books

- 1. Engineering Economy, Sullivan and Wicks, Koelling, Pearson
- 2. Engineering Economics, R.Paneer Seelvan, PHI
- 3. Engineering Economics Analysis, Michael R Lindeburg, , Professional Pub

Course Outcome:

After completion of this course, the learners will be able to

- 1. evaluate the economic theories, cost concepts and pricing policies
- 2. explain the market structures and integration concepts
- 3. apply the concepts of financial management for project appraisal
- 4. explain accounting systems, the impact of inflation, taxation, depreciation
- 5. analyze financial statements using ratio analysis
- 6. explain financial planning, economic basis for replacement, project scheduling, legal and regulatory issues applied to economic investment and project-management problems

Special Remarks (if any)

Name	of the course	POWER SYSTEM-II LABORATORY
Cours	e Code: PC-EE 691	Semester: 6 th
Durat	ion: 6 months	Maximum marks:100
Teach	ing Scheme	Examination scheme:
Theor	y: 0 hr/week	Continuous Internal Assessment:40
Tutori	al: 0 hr/week	External Assessment: 60
Practi	cal: 2 hrs/week	
Credit	Points:1	
	Laboratory Exp	periments:
1.	Study on the characteristics of on load time delay relay and off load time delay relay.	
2.	Test to find out polarity, ratio and magnetization characteristics of CT and PT.	
3.	Test to find out characteristics of	
	(a) under voltage relay	
	(b) earth fault relay.	
4.	Study on DC load flow	
5.	Study on AC load flow using Gauss-seidel method	
6.	Study on AC load flow using Newton Raphson method.	
7.	Study on Economic load dispatch.	
8.	Study of different transformer protection schemes by simulation	
9.	Study of different generator protection schemes by simulation	
10.	Study of different motor protection schemes	by simulation

11.	Study of different characteristics of over current relay.
12.	Study of different protection scheme for feeder.

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. Identify appropriate equipment and instruments for the experiment.
- 2. Test the instrument for application to the experiment.
- 3. Construct circuits with appropriate instruments and safety precautions.
- 4. Validate the characteristics of under voltage relay, over current relay, earth fault relay, on load time delay relay, off load time delay relay, CT and PT.
- 5. Validate protection schemes of transformer, generator, motor and feeder.
- 6. Apply software tools to find bus voltage, currents and power flows throughout the electrical system.
- 7. work effectively in a team

Name	of the course	MICRO PROCESSOR AND MICRO CONTROLLER	
		LABORATORY	
Cours	e Code: PC-EE 692	Semester: 6 th	
Durat	ion: 6 months	Maximum marks:100	
Teaching Scheme		Examination scheme:	
Theor	y: 0 hr/week	Continuous Internal Assessment:40	
Tutori	ial: 0 hr/week	External Assessment: 60	
Practi	cal: 2 hrs/week		
Credit	: Points:1		
	Laboratory Exp	beriments:	
1.	Programs for 16 bit arithmetic operations for	8086 (using various addressing modes)	
2.	Program for sorting an array for 8086		
3.	Program for searching for a number or character in a string for 8086		
4.	Program for String manipulations for 8086		
5.	Program for digital clock design using 8086.		
6.	Interfacing ADC and DAC to 8086.		
7.	Parallel communication between two microprocessors using 8255.		
8.	Serial communication between two microprocessor kits using 8251.		
9.	Interfacing to 8086 and programming to control stepper motor.		
10.	Programming using arithmetic, logical and bit manipulation instructions of 8051		
11.	Program and verify Timer/Counter in 8051.		

12.	Program and verify interrupt handling in 8051.
13.	UART operation in 8051.
14.	Interfacing LCD to 8051.
15.	Interfacing matrix or keyboard to 8051.
16.	Data transfer from peripheral to memory through DMA controller 8237/8257

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment
- 2. test the instrument for application to the experiment
- 3. construct circuits with appropriate instruments and safety precautions
- 4. program 8086 for arithmatic operation, sorting of array, searching for a number in a string and string manipulation
- 5. interface ADC/DAC, 8255, 8251 to 8086 and LCD, keyboard to 8051
- 6. program 8051 using arithmatic, logical and bit manipulation instructions of 8051
- 7. work effectively in a team

Name	e of the course	ELECTRICAL AND ELECTRONICS DESIGN LABORATORY
Course Code: PC-EE 681		Semester: 6 th
Durat	ion: 6 months	Maximum marks:100
Teach	ing Scheme	Examination scheme:
Theory: 1hr/week		Continuous Internal Assessment:40
Tutorial: 0 hr/week		External Assessment: 60
Practi	cal: 4 hrs/week	
Credit	t Points:3	
	GROUP A	
1.	Designing a heating element with specified wattage, voltage and ambient temperature.	
2.	Designing an aircore grounding reactor with specified operating voltage, nominal current and fault current	
3.	Designing the power distribution system for a small township	
4.	Designing a double circuit transmission line for a given voltage level and power (MVA) transfer.	
5.	Wiring and installation design of a multistoried residential building (G+4,not less than 16 dwelling flats with a lift and common pump)	
	GROUP B	
6.	Designing an ONAN distribution transformer.	
7.	Designing a three phase squirrel cage induction	on motor.
8.	Designing a three phase wound rotor induction	on motor.
9.	Designing a split phase squirrel cage induction motor for a ceiling fan or a domestic pump.	
10.	Designing a permanent magnet fractional hp servo motor .	
	GROUP C	

11.	Design the control circuit of a Lift mechanism
12.	Design a controller for speed control of DC machine.
13.	Design a controller for speed control of AC machine.
14.	Electronic system design employing electronic hardware (Analog, Digital, Mixed signal), microcontrollers, CPLDs, and FPGAs, PCB design and layout leading to implementation of an application

Topics to be covered in the Lecture class:

1.	Basic concepts on measurements; Noise in electronic systems; Sensors and signal	
	conditioning circuits; Introduction to electronic instrumentation and PC based data	
	cquisition; Electronic system design, Analog system design, Interfacing of analog and $\Big egin{array}{c} 1 \ 01 \ \end{array}$	
	digital systems, Embedded systems,; System assembly considerations	

Evaluation Method:

- 1. The students would INDIVIDUALLY design the equipment and systems as per specifications provided by the class teacher following established procedures.
- 2. For each student, one item from each of the three groups would be chosen.
- 3. For unspecified items of specification and or specifications of wires, cables etc., data should be taken by students from handbooks and Indian standard.
- 4. Students should spend the allotted periods for carrying out design computations.
- 5. Their attendance shall be recorded.
- 6. Students should maintain a dedicated bound notebook for recording design activities like calculations, formulae used, sketches, flowcharts etc. The notebook should be regularly submitted to the class teacher for review and signature.
- 7. Evaluation would be based on (i) Class attendance (20%), (ii) Design Note Book (30%) (iii) Design Report (30%) (iv) End of semester viva (20%,)

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. explain basic concept of measurement, noise in electronic system, sensor and signal conditioning circuits
- 2. implement PC based data acquisition systems
- 3. construct circuits with appropriate instruments and safety precautions
- 4. design heating elements, air core grounding reactor, power distribution system for small township, double circuit transmission line and Electric machines
- 5. do wiring and installation design of a multistoried residential building with lift and pump
- 6. design electronic hardware for controller of lift, speed of AC/DC motor, and for an application with analog, digital, mixed signal, microcontroller and PCB