Semester-VIII

Name of the course		UTILIZATION OF ELECT	RIC POWER	
Cours	e Code: PC-EE 801	Semester: 8 th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0 hr/week	Assignment & Quiz: 1	0 Marks	
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks	
Credit	: Points: 3	End Semester Exam: 7	70 Marks	
Objec	tive:			
1.	To understand basic principle of illumination	on and good lighting p	ractices	
2.	To understand the method of Electric heating	ng, Welding and Elect	rolytic process	es.
3.	To understand the concepts of Electrical t	traction systems.		
4.	To solve numerical problems on the topics stu	idied.		
Pre-R	equisite			
1.	Electric Machine (PC-EE-401, PC-EE-501)			
2.	Control System (PC-EE-503)			
3	Power Electronics (PC-EE-504)			
Unit	Content		Hrs	Marks
1	Electric Traction : Requirement of an ideal	traction system. Supply		
1	system for electric traction. Train movement	nt (speed time curve.		
	simplified speed time curve, average speed an	d schedule speed).		
	Mechanism of train movement (energy consumption, tractive effort			
	during acceleration, tractive effort on a grad	lient, tractive effort for		
	resistance, power & energy output for the	driving axles, factors		
	affecting specific energy consumption, coeffic	cient of adhesion).		
	Electric traction motor & their control: Paral	lel and series operation	10	
	of Series and Shunt motor with equal and u	nequal wheel diameter		
	effect of sudden change of in supply	voltage Temporary		
	interruption of supply Tractive effort and hor	se nower		
	Use of AC series motor and Induction motor f	for traction		
	Traction motor control: DC series motor	control Multiple unit		
	control Broking of electric motors Electroly	unit vois by current through		
	control, blaking of electric motors, Electroly	sis by current infough		
	controllers in traction system			
2	Electric Lighting: Definition of terms:	lows of illumination:		
2	Luminorios: Lighting requirements: Illum	ination lovals lown		
	collection and maintenances Lighting schemes	alculations & design		
	Laterian lighting in dustrial Eastern maid	, calculations & design		
	- Interior lighting $-$ industrial, Factory, reside	ential lighting; Exterior	8	
	lighting - Flood, street lighting, lighting for c	lisplays and signaling -		
	neon signs, LED-LCD displays beacor	is and lighting for		
	surveillance; Energy Conservation codes	Ior lighting; lighting		
	controls – daylight sensors and occupancy ser	isors; controller design.		
3	Electric Heating : Advantages of electr	ical heating, Heating	08	
	methods, Resistance heating – direct and indi	rect resistance heating,		
	electric ovens, their temperature range, pi	roperties of resistance		
	heating elements, domestic water heater	rs and other heating		

	appliances and thermostat control circuit ,Induction heating; principle of core type and coreless induction furnace , Electric arc heating, direct and indirect arc heating, construction, working and applications of arc furnace, Dielectric heating, applications in various industrial fields, Infra-red heating and its applications, Microwave heating, Simple design problems of resistance heating element.		
4	Electric Welding: Advantages of electric welding, Welding methods, Principles of resistance welding, types –spot, projection seam and butt, welding and welding equipment used , Principle of arc production, electric arc welding, characteristics of arc, carbon arc, metal arc, hydrogen arc welding and their applications, Power supply required ,Advantages of using coated electrodes, comparison between AC and DC arc welding, welding control circuits, welding of aluminum and copper, Introduction to TIG, MIG welding	08	
5	Electrolytic processes: Need of electro-deposition, Laws of electrolysis, process of electro-deposition - clearing, operation, deposition of metals, polishing, buffing, Equipment and accessories for electroplating, Factors affecting electro-deposition, Principle of galvanizing and its applications, Principle of anodising and its applications, Electroplating on non-conducting materials , Manufacture of chemicals by electrolytic process and electrolysis process.	06	

Text books:

- 1. Generation Distribution and Utilization of Electrical Energy, C.L. Wadhawa, New Age International Publishers, 2015
- 2. Art and Science of Utilization of Electrical Energy, H. Partab, Dhanpat Rai & co, 2017
- 3. Utilisation of Electric Energy, E.Openahaw Taylor, Universities press, 1981

Reference books:

- 1. Generation and Utilization of Electrical Energy by S. Sivanagaruju, Pearson, 2010.
- 2. Utilization of Electrical Energy by J. B. Gupta, Rajeev Manglik, Rohit Manglik, Kataria Publications, 2012.

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the fundamentals of illumination and different lighting schemes.
- 2. explain the fundamental of Electrolytic processes, Electric heating and Welding.
- 3. able to select appropriate lighting, heating and welding techniques for specific applications.
- 4. apply different electrolysis process for different applications.
- 5. explain the principle of different aspect of Electric traction and control of traction motor.

Special Remarks (if any)

Name of the course LINE COMMUT RECTIFIERS RECTIFIERS		LINE COMMUTATED A RECTIFIERS	ND ACTIVE PW	Μ
Cours	e Code: PE-EE 801A	Semester: 8 th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0 hr/week	Assignment & Quiz: 10	0 Marks	
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks	
Credit	Points: 3	End Semester Exam: 7	70 Marks	
0.00.0			•	
Ohier	tive:			
1	To understand the principle of operation of d	ifferent converter circuit	ts and filters	
2	To understand the method of steady state analy	vsis of converters		
2.	To understand the different control techniques	of the converters		
J.	To understand the application of different con	verters		
H.	aquicite	verters		
1	Control System (BC EE E02)			
1.	Power Electronics (PC EE E04)			
Z.	Power Electronics (PC-EE-504)		Ling	Marka
Unit	Content		Hrs	IVIALKS
	Half-wave diode rectifier with RL and RC loads; 1-phase full-wave diode rectifier with L, C and LC filter; 3-phase diode rectifier with L, C and LC filter; continuous and discontinuous conduction, input current wave shape, effect of source inductance; commutation overlap.		5	
2	Thyristor rectifiers with passive filtering: Half-wave thyristor rectifier with RL and RC loads; 1-phase thyristor rectifier with L and LC filter; 3- phase thyristor rectifier with L and LC filter; continuous and discontinuous conduction, input current waveshape		5	
3	Multi-Pulse converter: Review of transformer phase shifting, gene voltage from 3-phase ac, 6-pulse converter ar with inductive loads, steady state analysis, con notches during commutation.	eration of 6-phase ac nd 12-pulse converters nmutation overlap,	6	
4	Single-phase ac-dc single-switch boost conver- Review of dc-dc boost converter, power circu dc converter, steady state analysis, unity po closed-loop control structure.	erter: ait of single-switch ac- ower factor operation,	6	
5	Ac-dc bidirectional boost converter: Review of 1-phase inverter and 3-phase inverter phase and 3-phase ac-dc boost converter, operation at leading, lagging and unity power and regenerating modes. Phasor diagrams, structure.	er, power circuits of 1- steady state analysis, r factors. Rectification , closed-loop control	6	
6	Isolated single-phase ac-dc fly back convert Dc-dc fly back converter, output voltage as a and transformer turns ratio. Power circui	er: a function of duty ratio at of ac-dc fly back	08	

converter, steady state analysis, unity power factor operation, closed	
loop control structure	

Text books:

- 1. Power Electronics: Converters, Applications and Design, N. Mohan and T. M. Undeland, John Wiley & Sons, 2007.
- 2. Power Electronics: Essentials and Applications, L. Umanand, Wiley India, 2009
- 3. Principles of Power Electronics, J.G. Kassakian, M. F. Schlecht and G. C. Verghese, Addison-Wesley, 1991.

Reference books:

1. Fundamentals of Power Electronics, R. W. Erickson and D. Maksimovic, Springer Science & Business Media, 2001.

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the principle of operation of different converters.
- 2. suggest the application of different filters.
- 3. apply converters for different applications.
- 4. analyze converter circuits.
- 5. develop appropriate scheme for control of different converters.
- 6. solve numerical problems relating to different converters.

Special Remarks (if any)

Name of the course POWER SYSTE		POWER SYSTEM DYN	AMICS AND CO	NTROL
Cours	e Code: PE-EE 801B	Semester: 8 th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	al: 0 hr/week	Assignment & Quiz: 1	0 Marks	
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks	
Credit	Points: 3	End Semester Exam: 7	'0 Marks	
Obiec	tive:			
1.	To understand power stability problems and	the basic concepts of mo	deling and anal	vsis of
	dynamical systems.		8	<i>J</i>
2.	To understand the Modeling of power system	components - generators	s, transmission l	ines.
	excitation and prime mover controllers.	8	-,	,
3.	To understand the Stability of single machine	and multi-machine syste	ms using digita	l simulation
	and small-signal analysis techniques.	5	00	
4.	To understand the impact of stability problem	s on power system plann	ing, and operati	on.
Pre-R	equisite		<u> </u>	
1.	Power System (PC-EE-502, PC-EE-601)			
2.	Control System (PC-EE-503)			
3.	Electric Machine(PC-EE-401, PC-EE501)			
Unit	Content		Hrs	Marks
1	Introduction to Power System Operations:	Introduction to power		
	system stability. Power System Operations and Control. Stability		3	
	problems in Power System. Impact on Power	problems in Power System. Impact on Power System Operations and		
	control.			
2	Analysis of Linear Dynamical System and I	Numerical Methods :		
	Analysis of dynamical System, Concept of I	Equilibrium, Small and		
	Large Disturbance Stability. Modal Analys	sis of Linear System.	5	
	Analysis using Numerical Integration Technic	jues. Issues in		
	Modeling: Slow and Fast Transients, Stiff Sys	stem.		
3	Modeling of Synchronous Machines and A	ssociated		
	Controllers:			
	Modeling of synchronous machine: Physical	Characteristics. Rotor		
	position dependent model. D-Q Iransfor	rmation. Model with		
	Standard Parameters. Steady State Anal	ysis of Synchronous		
	Machine. Short Circuit I ransient Analys	1s of a Synchronous	10	
	Rug Modeling of Excitation and Drime Move	r Systema Dhysical		
	Characteristics and Models Excitation Syste	m Control Automatic		
	Voltage Regulator Prime Mover Cont	trol Systems Speed		
	Governors	ioi systems. speed		
4	Modeling of other Power System Compone	nts:		
	Modeling of Transmission Lines and Load	ds. Transmission Line		
	Physical Characteristics. Transmission Line N	Adeling, Load Models	08	
	- induction machine model. Frequency and Vo	oltage	00	
	Dependence of Loads. Other Subsystems -	- HVDC and FACTS		

	controllers, Wind Energy Systems.		
5	Stability Analysis:		
	Angular stability analysis in Single Machine Infinite Bus System.		
	Angular Stability in multi-machine systems – Intra-plant, Local and		
	Inter-area modes. Frequency Stability: Centre of Inertia Motion.		
	Load Sharing: Governor droop. Single Machine Load Bus System:	10	
	Voltage Stability. Introduction to Tensional Oscillations and the	10	
	SSR phenomenon. Stability Analysis Tools: Transient Stability		
	Programs, Small Signal Analysis Programs		
6	Enhancing System Stability:		
	Planning Measures. Stabilizing Controllers (Power System	4	
	Stabilizers). Operational Measures- Preventive Control. Emergency		
	Control.		

Text books:

- 1. Power System Dynamics, Stability and Control, K.R. Padiyar. B. S. Publications, 2002.
- 2. Power System Stability and Control, Prabha Kundur. McGraw Hill, 2006.
- 3. Power System Dynamics and Stability, P. W. Sauer and M. A. Pai . Pearson, 1997.

Reference books:

- 1. The Essentials of Power System Dynamics and Control, Hemanshu Roy Pota, Springer, 2018
- 2. Power System Dynamics and Control, H.G. Kwanty and K.M.Miller, Birkhauser. 2016

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the model of power system components
- 2. select the appropriate model for required analysis.
- 3. analyze the performance of the system with small signal analysis.
- 4. evaluate the stability of the single and multi machine systems.
- 5. develop measures for enhancing the stability of the system.
- 6. Solve numerical problems of linear dynamical system, modeling of different components and stability.

Special Remarks (if any)

Name of the course ADVANCED ELECTRIC		DRIVE		
Cours	e Code: PE-EE 801C	Semester: 8 th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	al: 0 hr/week	Assignment & Quiz: 1	0 Marks	
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks	
Credit	Points: 3	End Semester Exam: 7	70 Marks	
Objec	tive:			
1.	To understand basic principle of operation o	f Power Converters used	for AC drives	
2.	To understand the method for modeling and c	ontrol of Induction moto	r and Synchron	ous motor.
3.	To understand the method of control of Perma	anent magnet motor drive	e, Switched relu	ctance motor
	drive.			
4.	To understand the principle of DSP based mo	tion control.		
Pre-R	equisite			
1.	Electric Machine (PC-EE-401, PC-EE-501)			
2.	Control System (PC-EE-503)			
3.	Power Electronics (PC-EE-504)		1	1
Unit	Content		Hrs	Marks
1	Power Converters for AC drives: PWN	A control of inverter,	8	
	selected harmonic elimination, space vector	or modulation, current		
	control of VSI, three level inverter, Different	topologies, SVM for 3		
	level inverter, Diode rectifier with boost chop	per, PWM converter as		
	devices Control of CSI H bridge as a 4 O dri			
2	Induction motor drives: Different transfor	mations and reference	8	
2	frame theory, modeling of induction machine	es voltage fed inverter	0	
	control-v/f control, vector control, dire	ect torque and flux		
	control(DTC).	1		
3	Synchronous motor drives: Modeling of s	synchronous machines,	5	
	open loop v/f control, vector control, direct	torque control, CSI fed		
	synchronous motor drives.			
4	Permanent magnet motor drives: Introd	uction to various PM	5	
	motors, BLDC and PMSM drive configurat	ion, comparison, block		
	diagrams, Speed and torque control in BLDC	and PMSM.		
5	switched reluctance motor drives: Ev	M drives comparison	5	
	Closed loop speed and torque control of SPM	unives, companson,		
6	DSP based motion control. Use of DS	Ps in motion control	5	
	various DSPs available, realization of some h	asic blocks in DSP for		
	implementation of DSP based motion control.			

Text books:

- 1. Modern Power Electronics and AC Drives, B. K. Bose, PHI, 2005
- 2. Permanent Magnet Synchronous and Brushless DC motor Drives, R. Krishnan, CRC Press, 2009
- 3. DSP based Electromechanical Motion Control, H. A. Taliyat and S. G. Campbell, CRC Press, 2003.

Reference books:

1. Analysis of Electric Machinery and Drive Systems, P.C. Krause, O. Wasynczuk and S.D. Sudhoff, Wiley, 2013.

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the principle of operation of converters for AC drives.
- 2. model Induction and Synchronous motor by reference frame theory.
- 3. apply different control methods to control speed and torque of Induction and Synchronous motor.
- 4. explain the configurations and method of speed control of BLDC, PMSM and SRM.
- 5. realize basic blocks for DSP based motion control.
- 6. develop appropriate scheme for speed control of Induction and Synchronous motor.

Special Remarks (if any)

Name of the course		INDUSTRIAL AUTOMATION AND CONTROL		
Cours	e Code: PE-EE 801D	Semester: 8 th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0 hr/week	Assignment & Quiz: 1	0 Marks	
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks	
Credit	t Points: 3	End Semester Exam: 7	'0 Marks	
Objec	tive:			
1.	To understand Industrial automation and cor	ntrol.		
2.	To understand the different control modes.			
3.	To understand advance industrial control strat	egies.		
4.	To understand the Programmable Logic Contr	roller and distributed con	trol system.	
Pre-R	equisite		<u>y</u>	
1.	Control System (PC-EEE-503)			
Unit	Content		Hrs	Marks
1	Introduction to Industrial Automation and	Control:		
	Architecture of Industrial Automation Syste	ms. General review of	08	
	process, Process control & automation, Servo	and regulatory control,		
	Characteristic parameter of a process: Pro	ocess quality, Process		
	potential, Process resistance, Process capacit	ance, Process lag, Self		
	regulation.			
2	Different control modes and Implementation	on:		
	On-off control, Multistep, Time propo	ortional, Proportional,		
	Proportional-integral, Proportional -deri	vative, Proportional-	08	
	integral-derivative, integral windup, bump	less transfer, Inverse		
	derivative control, controller tuning tech	iniques and selection		
	guideline. Implementation of PID Controllers			
3	Advance Industrial control strategies (Brid	ef analysis):		
	Feedforward control, Cascade control, Ratio	control, Selective	06	
	Control, Split Range Control, Adaptive contro	ol.		
4	Actuators and final control elements:	1 1 1 1		
	Classification of Actuators: pneumatic,	hydraulic, electro-	06	
	pneumatic, and stepper motor operated actuat	ors. Pumps and motors,		
E	Proportional and servo valves.			
5	Block diagram Classification Basic Archi	tecture and Functions:	06	
	Input-Output Modules power supply	iceture and Functions,	00	
	PLC Programming: Relay logic and lade	ler logic PLC ladder		
	diagram realization PLC Timer PLC Counter	r advance instructions		
	PLC programming examples for Industrial ma	intenance and control		
<u> </u>	- 20 programming enumpres for maastriar me			
6	Distributed Control System (DCS)			
	Basic concept and overview of DCS DCS	System Architecture	06	
	configuration, operation and features HN	I and SCADA OSI	50	
	Communication Standard and Fieldbus.			

Text books:

- 1. Industrial Instrumentation and Control, S. K. Singh, Tata-McGraw, 2010
- 2. Industrial Instrumentation, Control and Automation, S. Mukhopadhyay, S. Sen and A. K. Deb, Jaico Publishing House, 2012.
- 3. Process Control, K. Krishnaswamy, New Age International Publishers, 2009
- 4. Programmable Logic Controllers with Control Logix, Jon Stenerson, Delmar Cengage learning, 2009

Reference books:

- 1. Automatic Process Control, D.P. Eckman, John Wiley and sons, 1958
- 2. Process control instrumentation technology, C.D. Johnson, PHI, 2005
- 3. Instrument Engineers Handbook, B.G. Liptak, CRC Press, 2003

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the basic structure of industrial automation and control
- 2. classify different types of control actions of controllers.
- 3. analyze control strategies of different processes of industry.
- 4. illustrate the construction and use of different types of actuators and control valves.
- 5. use PLC, DCS and SCADA in advanced industrial control.

Special Remarks (if any)

Name	e of the course	SOFT COMPUTING	TECHNIQUE	S
Cour	se Code: OE-EE 801A	Semester: 8th		
Dura	tion: 6 months	Maximum Marks: 10	0	
Teacl	ning Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0hr/week	Assignment & Quiz:	10 Marks	
Credi	t Points: 3	Attendance:	05 Marks	
		End Semester Exam:	70 Marks	
Obje	ctive:			
1.	To understand the theory of Neural netwo	rk, Fuzzy logic and Genet	tic Algorithm.	
2.	To Introduce neural networks, Genetic Algo	rithm and Fuzzy logic fro	m an engineerir	ng
	perspective.			
Pre-R	equisite			
1.	Programming for problem solving (ES-CS 201)		
Unit	Content		Hrs	Marks
	Introduction: Introduction to soft computing	g; introduction to fuzzy		
1	sets and fuzzy logic systems; introduction to	biological and artificial	05	
	neural network; introduction to Genetic Algorithm.			
2	Fuzzy sets and Fuzzy logic systems: Classic	cal Sets and Fuzzy Sets		
	and Fuzzy relations: Operations on Classi	cal sets, properties of		
	classical sets, Fuzzy set operations, proj	perties of fuzzy sets,		
	cardinality, operations, and properties			
	Membership functions: Features of membership functions, standard			
	forms and boundaries, different fuzzification	on methods. Fuzzy to	10	
	Crisp conversions: Lambda Cuis for luzzy	sets, luzzy Relations,	12	
	Classical predicate logic Euzzy Logic App	rovimate reasoning and		
	Fuzzy Implication Fuzzy Rule based System	ms: Linguistic Hedges		
	Fuzzy Rule based system - Aggregation	of fuzzy Rules Fuzzy		
	Inference System- Mamdani Fuzzy Models -	Sugeno Fuzzy Models		
	Applications of Fuzzy Logic: How Fuzzy Logic	gic is applied in Home		
	Appliances General Fuzzy Logic contro	ollers Basic Medical		
	Diagnostic systems and Weather forecasting			
	Fuzzy Control. Convention control systems.	Fuzzy logic control vs.		
	PID control.	5 0		
3	Neural Network: Introduction to Neural	Networks: Advent of		
	Modern Neuroscience, Classical AI an	d Neural Networks,		
	Biological Neurons and Artificial neural netw	vork; model of artificial		
	neuron. Learning Methods : Hebbian, comp	betitive, Boltzman etc.,		
	Neural Network models: Perceptron, A	daline and Madaline	10	
	networks; single layer network; Back propa	agation and multi layer		
	networks. Competitive learning networks: K	ohonen self organizing		
	networks, Hebbian learning; Hopfield N	letworks. Neuo-Fuzzy		
	modelling:Applications of Neural Network	s: Pattern Recognition		
	and classification:			
4	Genetic Algorithms: Simple GA, crossove	er and mutation, Multi-		

	objective Genetic Algorithm (MOGA). Applications of Genetic	08	
	Algorithm: genetic algorithms in search and optimization, GA based		
	clustering Algorithm, Image processing and pattern Recognition.		
5	Other Soft Computing techniques: Simulated Annealing, Tabu	05	
	search, Ant colony optimization (ACO), Particle Swarm		
	Optimization (PSO).		

Text book:

- 1. Fuzzy logic with engineering applications, Timothy J. Ross, Wiley ,2011
- 2. Neural Networks Fuxxy Logic and Genetic Algorithm: Synthesis and Application, S. Rajashekharan and G.A. Vijaylakshmi Pai, PHI,2013
- 3. Principles of Soft Computing, S N Sivanandam, S.N. Deepa, Wiley , 2011.

Reference books:

- 1. Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg, Addison Wesley, 1989.
- 2. Neuro-Fuzzy and Soft computing, Jang, Sun, Mizutani, Pearson, 1996.
- 3. Neural Networks: A Classroom Approach, Satish Kumar, McGraw Hill, 2017.
- 4. Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg, Pearson/PHI
- 5. Introduction to Soft Computing-Neuro Fuzzy and Genetic Algorithm, Samir Roy & Udit Chakraborty, Pearson, 2013.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain soft computing techniques and their roles in building intelligent machines
- 2. anlyse the feasibility of application of soft computing techniques for a particular problem
- 3. effectively use existing software tools to solve real problems using a soft computing approach
- 4. evaluate solutions by various soft computing approaches for a given problem.
- 5. apply different soft computing techniques to solve Engineering problems.

Special Remarks (if any)

Name	e of the course	BIOMEDICAL INST	RUMENTATI	ON
Cours	se Code: OE-EE 801B	Semester: 8th		
Dura	tion: 6 months	Maximum Marks: 10	0	
Teach	ning Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0hr/week	Assignment & Quiz: 1	10 Marks	
Credit	t Points: 3	Attendance: (05 Marks	
		End Semester Exam:	70 Marks	
Objec	ctive:			
1.	To understand the fundamental of Medical	Instruments		
2.	To understand Biomedical recorders, Medical	Imaging equipments, Su	urgical, Therap	eutic
	Instruments and Medical Laboratory equipme	ents.		
Pre-R	equisite			
1.	Analog Electronics (PC-EE-302)			
2.	Digital Electronics (PC-EE-402)			
Unit	Content		Hrs	Marks
	Fundamentals of Medical Instruments:			
1	Fundamentals of medical instrumentation- S	Sources of biomedical		
	signals, Generalized medical instrumentation	on block diagram.		
	Medical electrodes - ECG, EEG, EMG, De	efibrillator. Medical	08	
	transducers: Body temperature, Blood pres	ssure, respiration rate.		
	Classification of Medical instruments bas	sed on application -		
	(diagnostic, therapeutic, Imaging, analytical).			
2	Biomedical Recorders:			
	Electrocardiograph (ECG) machine -ECG b	lock diagram, Bipolar		
	and unipolar leads, Phono-cardiograph.	Electroencephalograph	08	
	(EEG). 10-20 electrode placement system,	EEG readout device,		
	Electro-myograph (EMG) machine. Bio-feed	dback Instrumentation.		
2	Pulse Oximeter.			
3	Medical Imaging Equipments:			
	X-ray machine, CI-Scan machine, MIRI Scan	machine, Properties of	00	
	ardiograph Colour Doppler ultrasound mach	nicephalography. Echo-	08	
1	Surgical & Therenoutic Instruments:			
-	Flectro-surgery machine (cautery) Hemo-dia	alvsis machine Muscle	06	
	stimulators Defibrilator Machine			
5	Medical Laboratory Instruments			
5	Types of test- Blood cell Bio chemistry Bl	ood Cell Counter Bio	06	
	chemistry analyze. Auto analyzer. Blood gas a	analyzer.		

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Text book:

- 1. Handbook of Biomedical instrumentation, R. S. Khandpur, Tata McGraw Hill, New Delhi, 2003
- 2. Introduction to Biomedical equipment technology, Joseph J. Carr and J.M. Brown, Pearson education, New Delhi, 2000
- 3. Biomedical instrumentation measurements, Lesli P Cromwell, Fred J. Weibell, Erich A. Pfeiffer, PHI Learning, New Delhi, 2018

Reference books:

- 1. Medical instrumentation application & design, John G. Webster, Editor, John Wiley and Sons, New Delhi, 2009
- 2. Introduction to Biomedical Instrumentation, Mandeep Singh, PHI, 2010

Course Outcome:

After completion of this course, the learners will be able to

- 1. describe the principle of medical transducers for temperature, pressure and respiration rate.
- 2. explain the principle of operation of Biomedical recorders, Medical Imaging equipments Surgical & Therapeutic Instruments and Medical Laboratory Instruments.
- 3. use different Medical laboratory equipments for different tests .
- 4. analyze any measurement application and suggest suitable measurement methods.
- 5. suggest suitable imaging methodology for a specific ailment.

Special Remarks (if any)

Name of the course		INTRODUCTION TO MACHINE LEARNING		
Cours	se Code: OE-EE 801C	Semester: 8th		
Dura	tion: 6 months	Maximum Marks: 10	0	
Teach	ning Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	al: 0hr/week	Assignment & Quiz: 1	10 Marks	
Credit	t Points: 3	Attendance: (05 Marks	
End Semester Exam: 70 Marks				
Objec	ctive:			
1.	To understand fundamental concepts of Ma	chine Learning		
2.	To apply Machine Learning in real life applica	tions.		
Pre-R	equisite			
1.	Programming for problem solving (ES-CS 201)			
Unit	Content		Hrs	Marks
	Basics of Machine Learning and Pytho	on: Review of Linear		
	Algebra, Definition of learning systems;	Designing a learning		
	system, Goals and applications of machine	learning; Classification	12	
1	of learning system, Basic concepts in Machine	e Learning.		
	Python Basics – string, number, list, tuple,	Dictionary, functions,		
	conditional statement, Loop statements, Nun	npy, Matplotlib, simple		
	programming exercises using python.			
	Supervised Learning: Linear regression with	th one variable, Linear		
2	regression with multiple variables, Logis	tic regression; Linear	07	
	Methods for Classification; Linear Methods	hods for Regression;	07	
2	Decision trees, overfitting.			
3	Support vector Machines: Introduction	n, Maximum Margin	07	
	Classification, Mathematics Benind	Maximum Margin	07	
	Kornals for learning non linear functions	ators, non-intear 5 v Wi,		
4	Unsupervised Learning: Learning from	n unclassified data		
4	Clustering Hierarchical Agglomerative	Clustering K means	07	
	partitional clustering Expectation maximi	zation (FM) for soft	07	
	clustering: Dimensionality reduction –	Principal Component		
	Analysis factor Analysis Multidimensi	onal scaling Linear		
	Discriminant Analysis	onar seanng, Eniear		
5	Applications of Machine Learning. Strategi	ies guidelines for good	07	
	design, performance measurement Reading	Data PreProcessing	07	
	Data, handwriting recognition, object detection	n. face detection		
5	Analysis, factor Analysis, Multidimension Discriminant Analysis. Applications of Machine Learning: Strategis design, performance measurement, Reading Data, handwriting recognition, object detection	principal Component onal scaling, Linear ies, guidelines for good g Data, PreProcessing on, face detection.	07	

Text book:

- 1. Machine Learning, Dr. Rajjiv Chopra, Khanna Publishing, 2020
- 2. Introduction to Machine Learning, EthemAlpaydi, PHII, 2015
- 3. Building Machine Learning Systems with Python, Richert& Coelho, Packt publishing, 2013

Reference books:

- 1. The Elements Of Statistical Learning: Data mining, Infarence and Prediction, Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2017.
- 2. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, MIT Press 2012.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the basics concepts and classification of Machine Learning.
- 2. write simple programs using python.
- 3. describe Supervised Learning concepts.
- 4. explain the concept of Support Vector Machine.
- 5. describe unsupervised learning concepts and dimensionality reduction techniques.
- 6. apply Machine Learning in a range of real-world applications.

Special Remarks (if any)

Name of the course		SENSORS AND TRANSDUCERS		
Course Code: OE-EE 801D		Semester: 8th		
Duration: 6 months		Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
Theory: 3 hrs/week		Mid Semester Exam: 15 Marks		
Tutorial: 0hr/week		Assignment & Quiz: 10 Marks		
Credit Points: 3		Attendance: 05 Marks		
End Semester Exam:		70 Marks		
Objective:				
1. To understand the principle of operation of Transducers and Sensors				
2.	2. To understand the application of Transducers and Sensors			
Pre-Requisite				
1.	1. Electric Circuit Theory (PC-EEE-301)			
2.	Electromagnetic Field Theory (PC-EEE-303)			
Unit	Content		Hrs	Marks
	Introduction:			
1	Definition, significance of measurement and instruments. Principle		05	
	of sensing & transduction, transducer classification, Transducer			
	characteristics, emerging fields of sensor technologies.			
2	Resistive transducers: Potentiometers: types, loading error, metal			
	and semiconductor strain gauges, types, resistance measuring		05	
	methods, strain gauge applications: Load and torque measurement.			
3	Inductive transducers: Transformer type, synchros, eddy current			
	transducers, LVDT: Construction, material, input-output		08	
	characteristics.			
	Optical Sensors: LDR, Photo Diode, Stroboscope, IR Sensor.			
4	Capacitive transducers: Variable distance			
	variable area- parallel plate type, cylindrical type, differential type,			
	variable dielectric constant type, calculation of sensitivity.			
	Capacitive microphone, fluid level measureme	10		
	Piezoelectric transducers: piezoelectric effects, Materials, natural		10	
	and synthetic types – their comparison, Charge and voltage co-			
	enicient, rorce and stress sensing, displacement measurement.			
	Magnetic Iransducer: Hall effect sens	sors, Magnetostrictive		
5	Thermal concerns. Provide and negative m	hagnetostriction.		
3	ninging materials and types. Thermister, a	ire delector (RID):	06	
	types: Thermocouple, Thermoelectric effects, laws of thermocouple		00	
	thermocouple types construction IC temperature sensor PTAT type			
	sensor			
	Radiation sansars: types characteristic	liation sensors, types characteristics and comparison		
	Pyroelectric type	and comparison.		
6	Micro-sensors and smart sensors. Const.	nuction characteristics		
	and applications Standards for smart sensor in	nterface	04	
	Recent Trends in Sensor Technologies. Intr	oduction. Film sensors	Т	
	(Thick film sensors, thin film sensor)			

Text book:

- 1. Transducers and Instrumentation, D.V.S. Murthy, Prentice Hall, 2008
- 2. Sensors and Transducers, D. Patranabis, Prentice Hall India, 2003
- 3. Measurement Systems Application and Design, E.O. Doebelin, McGraw-Hill, 2008

Reference books:

- 1. Instrument Transducers An Introduction to their Performance and Design", H.K.P. Neubert, Oxford University Press, 1999.
- 2. Measurement Systems and Sensors, WaldemarNawrocki Artech House, 2016.
- 3. Semiconductor sensors", S.M. Sze, Wiley Interscience, 1994
- 4. Instrumentation Measurement and Analysis", B. C. Nakara&Chaudhry TATA McGraw-Hill, 2009
- 5. Smart Sensors and Sensing Technology, Daniel E. Suarez, Nova Science Publishers, 2011

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the basic principle of operation of Transducers and Sensors.
- 2. distinguish different sensors and transducers.
- 3. identify suitable transducer by comparing different industrial standards and procedures for measurement of physical parameters
- 4. estimate the performance of different transducers.
- 5. design real life electronics and instrumentation measurement systems.
- 6. apply smart sensors, bio-sensors, PLC and Internet of Things to different applications.

Special Remarks (if any)