Semester-VIII

Name of the course		DIGITAL SIGNAL PROCESSING		
Course Code: PC-EEE-801		Semester: 8th		
Duration: 6 months		Maximum Marks: 100		
Teach	ling Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	15 Marks	
Tutor	al: 0 hr/week	Assignment & Quiz:	10 Marks	
Credit	Points: 3	Attendance:	05 Marks	
		End Semester Exam:	70 Marks	
Objec		<u> </u>		
1.	To understand sampling and reconstruction of	of signal	C 1 1 1	
2.	To understand the method of Z-transform and	inverse Z- transform of	t signal and its p	roperties
3.	To understand Discrete Fourier Transform	C 1.		
4.	To understand methods of design of Digital	tilters		
5.	To understand applications of Digital signal p	rocessing		
0.	10 solve numerical problems on the topics stu	lalea		
Pre-R	Electric circuit theory (DC EEE 201)			
1.	Control system (PC EEE 503)			
LInit	Content		Hrs	Marks
	Unit Content Hrs			
	systems: Sequences: representation of s	ignals on orthogonal		
	basis: Representation of discrete systems using difference		06	
basis, Representation of discrete s		of signals aliasing		
1	Sampling theorem and Nyquist rate			
	Sampling meorem and Nyquist rate. 7 transform: 7 Transform: Pagion of convergence. Analysis			
	2-transform. 2-transform, Region of Co	transform Dronartia	06	
	of Linear Shift Invariant systems using z-transform, Properties 06			
2	of z-transform for causal signals, interpre-	etation of stability in		
	z-domain, Inverse z- transforms.			
	Discrete Fourier Transform : Frequence	cy Domain Analysis,		
	Discrete Fourier Transform (DFT),	Properties of DFI,	08	
3	Convolution of signals, Fast Fourier 1	ransform Algorithm,	08	
5	Parseval's Identity, Implementation of Dis	screte Time Systems.		
	Design of Digital filters. Design of	FIR Digital filters		
Window method Dark McClallands		thod Design of IIR		
	Digital Filters: Butterworth Cheby	shev and Elliptic		
4	Approximations: Low-pass Band-pass	Bandston and High-		
	nass filters Effect of finite register length	in FIR filter design	12	
	pass filters. Effect of finite register length in FIK filter design.			
	Parametric and non-parametric spectral estimation.			
	Applications of Digital Signal Processin	ng. Completion		
5	Applications of Digital Signal Processif	ng: Correlation		
	Functions and Power Spectra, Stationary I	Processes, Optimal	06	
	Thering using AKMA Model, Linear Mea	in-Square Estimation,	00	
	Wiener Filter.			

Text book:

- 1. Digital Signal Processing-A computer based approach, S. Mitra, TMH
- 2. Digital Signal Processing: Principles, Algorithms & Application, J.C. Proakis & M.G. Manslakis, PHI
- 3. Fundamental of Digital Signal Processing using MATLAB, Robert J. Schilling, S.L. Harris, Cengage Learning.

Reference books

- 1. Digital Signal Processing-implementation using DSP microprocessors with examples from TMS320C54XX, Avtar Singh & S. Srinivasan, Cengage Learning
- 2. Digital Signal Processing, Chen, OUP
- 3. Digital Signal Processing, Johnson, PHI
- 4. Digital Signal Processing using MATLAB, Ingle, Vikas.
- 5. Digital Signal Processing, Ifeachor, Pearson Education.
- 6. Digital Signal Processing, A.V. Oppenhein & R.W. Shaffer, PHI
- 7. Theory and application of Digital Signal Processing, L.R. Rabiner & B. Gold, PHI
- 8. Digital Signal Processing, Ashok Ambarder, Cengage Learning.
- 9. Digital Signal Processing, S. Salivahanan, A. Vallavaris & C. Gnanpruja, TMH.
- 10. Xilinx FPGA user manual and application notes.

Course Outcome:

After completion of this course, the learners will be able to

- 1. represent signals mathematically in continuous and discrete-time and in the frequency domain.
- 2. analyse discrete-time systems using z-transform.
- 3. explain the Discrete-Fourier Transform (DFT) and the FFT algorithms.
- 4. design digital filters for various applications.
- 5. apply digital signal processing for the analysis of real-life signals.

Special Remarks (if any)

Name of the course UTI		UTILIZATION OF ELECT	RIC POWER	
Course Code: PE-EEE 801A Semester		Semester: 8 th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	al: 0 hr/week	Assignment & Quiz: 1	0 Marks	
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks	
Credit	Points: 3	End Semester Exam: 7	70 Marks	
Objec	tive:			
1.	To understand basic principle of illumination	on and good lighting p	ractices	
2.	To understand the method of Electric heating	ig, Welding and Elect	rolytic process	es.
3.	To understand the concepts of Electrical t	traction systems.	2 1	
4.	To solve numerical problems on the topics stu	idied.		
Pre-R	equisite			
1.	Electric Machine (PC-EEE-401, PC-EEE-501)			
2.	Control System (PC-EEE-503)			
3.	Power Electronics (PC-EEE-504)			
Unit	Content		Hrs	Marks
1	Electric Traction : Requirement of an ideal	traction system, Supply		
	system for electric traction. Train movement (speed time curve.			
	simplified speed time curve, average speed and schedule speed).			
	Mechanism of train movement (energy consumption, tractive effort			
	during acceleration, tractive effort on a gradient, tractive effort for			
	resistance, power & energy output for the driving axles, factors			
	affecting specific energy consumption, coefficient of adhesion).			
	Electric traction motor & their control: Parallel and series operation		10	
	of Series and Shunt motor with equal and unequal wheel diameter,			
	effect of sudden change of in supply voltage, Temporary			
	interruption of supply, Tractive effort and horse power.			
	Use of AC series motor and Induction motor f	for traction.		
	Traction motor control: DC series motor	control, Multiple unit		
	control, Braking of electric motors, Electroly	sis by current through		
	earth, current collection in traction syste	em, Power electronic		
	controllers in traction system.			
2	Electric Lighting: Definition of terms;	laws of illumination;		
	Luminaries; Lighting requirements; Illum	nination levels; lamp		
	selection and maintenance; Lighting schemes	, calculations & design		
	– Interior lighting – industrial, Factory, residential lighting; Exterior		8	
	lighting - Flood, street lighting, lighting for displays and signaling -			
	neon signs, LED-LCD displays beacor	ns and lighting for		
	surveillance; Energy Conservation codes	Ior lighting; lighting		
	controls – daylight sensors and occupancy sen	isors; controller design.		
3	Electric Heating : Advantages of electric	ical heating, Heating	80	
	inemods, Resistance neating – direct and indi	rect resistance neating,		
	electric ovens, their temperature range, pi	operties of resistance		
	nearing elements, domestic water heater	s and other heating		

	appliances and thermostat control circuit ,Induction heating; principle of core type and coreless induction furnace , Electric arc heating, direct and indirect arc heating, construction, working and applications of arc furnace, Dielectric heating, applications in various industrial fields, Infra-red heating and its applications, Microwave heating, Simple design problems of resistance heating element.		
4	Electric Welding: Advantages of electric welding, Welding methods, Principles of resistance welding, types –spot, projection seam and butt, welding and welding equipment used , Principle of arc production, electric arc welding, characteristics of arc, carbon arc, metal arc, hydrogen arc welding and their applications, Power supply required ,Advantages of using coated electrodes, comparison between AC and DC arc welding, welding control circuits, welding of aluminum and copper, Introduction to TIG, MIG welding	08	
5	Electrolytic processes: Need of electro-deposition, Laws of electrolysis, process of electro-deposition - clearing, operation, deposition of metals, polishing, buffing, Equipment and accessories for electroplating, Factors affecting electro-deposition, Principle of galvanizing and its applications, Principle of anodising and its applications, Electroplating on non-conducting materials , Manufacture of chemicals by electrolytic process and electrolysis process.	06	

Text books:

- 1. Generation Distribution and Utilization of Electrical Energy, C.L. Wadhawa, New Age International Publishers, 2015
- 2. Art and Science of Utilization of Electrical Energy, H. Partab, Dhanpat Rai & co, 2017
- 3. Utilisation of Electric Energy, E.Openahaw Taylor, Universities press, 1981

Reference books:

- 1. Generation and Utilization of Electrical Energy by S. Sivanagaruju, Pearson, 2010.
- 2. Utilization of Electrical Energy by J. B. Gupta, Rajeev Manglik, Rohit Manglik, Kataria Publications, 2012.

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the fundamentals of illumination and different lighting schemes.
- 2. explain the fundamental of Electrolytic processes, Electric heating and Welding.
- 3. able to select appropriate lighting, heating and welding techniques for specific applications.
- 4. apply different electrolysis process for different applications.
- 5. explain the principle of different aspect of Electric traction and control of traction motor.

Special Remarks (if any)

Name of the course		ADVANCED ELECTRIC DRIVE		
Course Code: PE-EEE 801B		Semester: 8 th		
Duration: 6 months Maximum Marks: 100				
Teach	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	al: 0 hr/week	Assignment & Quiz: 1	0 Marks	
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks	
Credit	: Points: 3	End Semester Exam: 7	70 Marks	
Objec	tive:			
1.	To understand basic principle of operation o	f Power Converters used	for AC drives	
2.	To understand the method for modeling and c	ontrol of Induction moto	r and Synchron	ous motor.
3.	To understand the method of control of Perma	anent magnet motor drive	e, Switched relu	ctance motor
	drive.			
4.	To understand the principle of DSP based mo	tion control.		
Pre-R	equisite			
1.	Electric Machine (PC-EEE-401, PC-EEE-501)			
2.	Control System (PC-EEE-503)			
3.	Power Electronics (PC-EEE-504)			
Unit	Content		Hrs	Marks
1	Power Converters for AC drives: PWM control of inverter, 8			
	selected harmonic elimination, space vector modulation, current			
	control of VSI, three level inverter, Different topologies, SVM for 3			
	level inverter, Diode rectifier with boost chopper, PWM converter as			
	line side rectifier, current fed inverters with self-commutated			
2	Induction motor drives: Different transformations and reference 2			
2	frame theory modeling of induction machine	es voltage fed inverter	0	
	control-v/f control. vector control. dire	ect torque and flux		
	control(DTC).			
3	Synchronous motor drives: Modeling of s	synchronous machines,	5	
	open loop v/f control, vector control, direct	torque control, CSI fed		
	synchronous motor drives.			
4	Permanent magnet motor drives: Introduction to various PM 5			
	motors, BLDC and PMSM drive configuration, comparison, block			
	diagrams, Speed and torque control in BLDC and PMSM.			
5	Switched reluctance motor drives: Ev	volution of switched	5	
	reluctance motors, various topologies for SR Closed loop speed and torgue control of SDM	dvi drives, comparison,		
G	DSD based motion control: Use of DS	Do in motion control		
0	various DSPs available realization of some b	asic blocks in DSP for		
	implementation of DSP based motion control			
L		-	I	1

Text books:

- 1. Modern Power Electronics and AC Drives, B. K. Bose, PHI, 2005
- 2. Permanent Magnet Synchronous and Brushless DC motor Drives, R. Krishnan, CRC Press, 2009
- 3. DSP based Electromechanical Motion Control, H. A. Taliyat and S. G. Campbell, CRC Press, 2003.

Reference books:

1. Analysis of Electric Machinery and Drive Systems, P.C. Krause, O. Wasynczuk and S.D. Sudhoff, Wiley, 2013.

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the principle of operation of converters for AC drives.
- 2. model Induction and Synchronous motor by reference frame theory.
- 3. apply different control methods to control speed and torque of Induction and Synchronous motor.
- 4. explain the configurations and method of speed control of BLDC, PMSM and SRM.
- 5. realize basic blocks for DSP based motion control.
- 6. develop appropriate scheme for speed control of Induction and Synchronous motor.

Special Remarks (if any)

Name of the course		POWER SYSTEM DYNAMICS AND CONTROL		
Cours	e Code: PE-EEE 801C	Semester: 8 th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	al: 0 hr/week	Assignment & Quiz: 10	0 Marks	
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks	
Credit	: Points: 3	End Semester Exam: 7	70 Marks	
Objec	tive:			
1.	To understand power stability problems and	the basic concepts of mo	deling and anal	ysis of
	dynamical systems.	*	C	
2.	To understand the Modeling of power system	components - generators	s, transmission l	ines,
	excitation and prime mover controllers.			
3.	To understand the Stability of single machine	and multi-machine syste	ems using digita	l simulation
	and small-signal analysis techniques.			
4.	To understand the impact of stability problem	s on power system plann	ing, and operati	on.
Pre-R	equisite			
1.	Power System (PC-EEE-502, PC-EEE-601)			
2.	Control System (PC-EEE-503)			
3.	Electric Machine(PC-EEE-401, PC-EEE-501)			
Unit	Content		Hrs	Marks
1	Introduction to Power System Operations: Introduction to power			
	system stability. Power System Operations	and Control. Stability	3	
	problems in Power System. Impact on Power System Operations and			
	control.			
2	Analysis of Linear Dynamical System and I	Numerical Methods :		
	Analysis of dynamical System, Concept of I	Equilibrium, Small and	_	
	Analysis using Numerical Integration Technic	sis of Linear System.	5	
	Modeling: Slow and Fast Transients Stiff Sys	atem		
3	Modeling of Synchronous Machines and A	ssociated		
	Controllers:	sociated		
	Modeling of synchronous machine: Physical	Characteristics. Rotor		
	position dependent model. D-Q Transfor	rmation. Model with		
	Standard Parameters. Steady State Anal	ysis of Synchronous		
	Machine. Short Circuit Transient Analys	is of a Synchronous	10	
	Machine. Synchronization of Synchronous Machine to an Infinite		10	
	Bus. Modeling of Excitation and Prime Mover Systems. Physical			
	Characteristics and Models. Excitation System Control. Automatic			
	Voltage Regulator. Prime Mover Control Systems. Speed			
	Governors.			
4	Modeling of other Power System Compone	nts:		
	Physical Characteristics Transmission Lines and Load	us. Transmission Line		
	- induction machine model Frequency and V	oltage	80	
	- induction machine model. Frequency and Voltage Dependence of Loads Other Subsystems – HVDC and $F\Delta CTS$			

	controllers, Wind Energy Systems.		
5	Stability Analysis:		
	Angular stability analysis in Single Machine Infinite Bus System.		
	Angular Stability in multi-machine systems – Intra-plant, Local and		
	Inter-area modes. Frequency Stability: Centre of Inertia Motion.		
	Load Sharing: Governor droop. Single Machine Load Bus System:	10	
	Voltage Stability. Introduction to Tensional Oscillations and the		
	SSR phenomenon. Stability Analysis Tools: Transient Stability		
	Programs, Small Signal Analysis Programs		
6	Enhancing System Stability:		
	Planning Measures. Stabilizing Controllers (Power System	4	
	Stabilizers). Operational Measures- Preventive Control. Emergency		
	Control.		

Text books:

- 1. Power System Dynamics, Stability and Control, K.R. Padiyar. B. S. Publications, 2002.
- 2. Power System Stability and Control, Prabha Kundur. McGraw Hill, 2006.
- 3. Power System Dynamics and Stability, P. W. Sauer and M. A. Pai. Pearson, 1997.

Reference books:

- 1. The Essentials of Power System Dynamics and Control, Hemanshu Roy Pota, Springer, 2018
- 2. Power System Dynamics and Control, H.G. Kwanty and K.M.Miller, Birkhauser. 2016

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the model of power system components
- 2. select the appropriate model for required analysis.
- 3. analyze the performance of the system with small signal analysis.
- 4. evaluate the stability of the single and multi machine systems.
- 5. develop measures for enhancing the stability of the system.
- 6. Solve numerical problems of linear dynamical system, modeling of different components and stability.

Special Remarks (if any)

Name of the course		INDUSTRIAL AUTOMATION AND CONTROL		
Cours	e Code: PE-EEE 801D	Semester: 8 th		
Duration: 6 months		Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	ial: 0 hr/week	Assignment & Quiz: 1	0 Marks	
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks	
Credit	: Points: 3	End Semester Exam: 7	'0 Marks	
Objec	tive:			
1.	To understand Industrial automation and cor	ntrol.		
2.	To understand the different control modes.			
3.	To understand advance industrial control strat	egies.		
4	To understand the Programmable Logic Cont	roller and distributed con	trol system	
Pre-R	equisite			
1.	Control System (PC-EEE-503)			
Unit	Content		Hrs	Marks
1	Introduction to Industrial Automation and	Control:		
-	Architecture of Industrial Automation Syste	ems General review of	08	
	process Process control & automation Syste	and regulatory control	08	
	Characteristic parameter of a process. Pro	ocess quality Process		
	potential. Process resistance. Process capacitance. Process lag Self			
	regulation.			
2	Different control modes and Implementation			
	On-off control, Multistep, Time propo	ortional, Proportional,		
	Proportional-integral, Proportional -derivative, Proportional- 08			
	integral-derivative, integral windup, bump less transfer, Inverse			
	derivative control, controller tuning techniques and selection			
	guideline. Implementation of PID Controllers.			
3	Advance Industrial control strategies (Brid	ef analysis):		
	Feedforward control, Cascade control, Ratio	control, Selective	06	
	Control, Split Range Control, Adaptive control	ol.		
4	Actuators and final control elements:			
	Classification of Actuators: pneumatic,	hydraulic, electro-	06	
	pneumatic, and stepper motor operated actuat	ors. Pumps and motors,		
	proportional and servo valves.			
5	Programmable Logic Controller:			
	Block diagram, Classification, Basic Architecture and Functions;		06	
	Input-Output Modules, power supply.			
	PLC Programming: Relay logic and ladder logic, PLC ladder			
	diagram realization, PLC Timer, PLC Counter, advance instructions			
	PLC programming examples for industrial ma	annenance and control.		
6	Distributed Control System (DCS):	Swatana Amilitante		
	basic concept and overview of DCS, DCS	b System Architecture,	06	
	configuration, operation and features. HN	ii and SCADA, USI		
	Communication Standard and Fieldbus.			

Text books:

- 1. Industrial Instrumentation and Control, S. K. Singh, Tata-McGraw, 2010
- 2. Industrial Instrumentation, Control and Automation, S. Mukhopadhyay, S. Sen and A. K. Deb, Jaico Publishing House, 2012.
- 3. Process Control, K. Krishnaswamy, New Age International Publishers, 2009
- 4. Programmable Logic Controllers with Control Logix, Jon Stenerson, Delmar Cengage learning, 2009

Reference books:

- 1. Automatic Process Control, D.P. Eckman, John Wiley and sons, 1958
- 2. Process control instrumentation technology, C.D. Johnson, PHI, 2005
- 3. Instrument Engineers Handbook, B.G. Liptak, CRC Press, 2003

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the basic structure of industrial automation and control
- 2. classify different types of control actions of controllers.
- 3. analyze control strategies of different processes of industry.
- 4. illustrate the construction and use of different types of actuators and control valves.
- 5. use PLC, DCS and SCADA in advanced industrial control.

Special Remarks (if any)

Name of the course		DIGITAL IMAGE PH	ROCESSING	
Cours	se Code: OE-EEE 801A	Semester: 8th		
Durat	tion: 6 months	Maximum Marks: 10	0	
Teach	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	al: 0hr/week	Assignment & Quiz: 1	10 Marks	
Credit	t Points: 3	Attendance: (05 Marks	
		End Semester Exam:	70 Marks	
Objec	etive:			
1.	To understand fundamentals and mathematic	cal transforms necessary	for image proc	essing.
2.	To understand the image enhancement techr	niques.		
3.	To understand the image restoration procedu	ires.		
4.	To understand the image compression procee	dures.		
Pre-R	equisite			
1.	Digital Signal Processing (OE-EE 601A)			
Unit	Content		Hrs	Marks
	Introduction: Fundamental Steps in Digi	tal Image Processing,		
	Components of an Image Processing Sy	ystem, Sampling and		
	Quantization, Representing Digital Images ((Data structure), Some	08	
1	Basic Relationships Between Pixels- Neighbo	ors and Connectivity of		
	pixels in image, Applications of Image Processing: Medical			
	imaging, Robot vision, Character recognition, Remote Sensing.			
	Image Enhancement In The Spatial Dom	ain: Some Basic Gray		
2	Level Transformations, Histogram Processin	g, Enhancement Using		
	Arithmetic/Logic Operations, Basics of Spatia	al Filtering, Smoothing	08	
	Spatial Filters, Sharpening Spatial Filters	s, Combining Spatial		
	Enhancement Methods.			
	Image Enhancement In Frequency Domain	1: Introduction, Fourier		
3	Iransform, Discrete Fourier Transform (DF	1), properties of DF1,	08	
	Discrete Cosine Transform (DCT), Image	filtering in frequency		
4	domain.		0.0	
4	Image Segmentation: Introduction, Detection	ion of isolated points,	08	
	line detection, Edge detection, Edge linking, Region based			
	segmentation- Kegion growing, split and merge technique, local			
	processing, regional processing, Hough transform, Segmentation			
	Image Compression: Introduction acding D	edundancy Inter nivel		
	redundancy image compression model	Lossy and Lossless	08	
5	compression Huffman Coding Arithmetic	Coding I 7W coding	00	
5	Transform Coding Sub-image size selec	ction blocking DCT		
	implementation using FFT Dup length adding	, otoeking, DCI		
	Implementation using FFT, Kun length coding	·		

Text book:

- 1. Digital Image Processing, R.C Gonzalez and R. Woods, Pearson publication, 2017
- 2. Digital Image Processing, Anil K. Jain, Prentice-Hall, India, 1988.

Reference books:

- 1. Digital Image Processing, W.K. Pratt, John Wiley & Sons, 1991.
- 2. Digital Image Processing and Analysis, B. Chanda & D. Dutta Majumder Prentice-Hall India, 2011
- 3. Image Processing- Theory, Algorithms & Architecture, M. A. Sid-Ahmed, McGraw-Hill, 1994.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the fundamental concepts of a digital image processing system.
- 2. enhance images in the spatial and frequency domain using various transforms.
- 3. apply different image segmentation techniques.
- 4. categorize various compression techniques.
- 5. implement image process and analysis algorithms.
- 6. apply image processing algorithms in practical applications.

Special Remarks (if any)

Name of the course		BIOMEDICAL INST	RUMENTATI	ON
Cours	se Code: OE-EEE 801B	Semester: 8th		
Dura	tion: 6 months	Maximum Marks: 10	0	
Teach	ning Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0hr/week	Assignment & Quiz: 1	10 Marks	
Credit	t Points: 3	Attendance: (05 Marks	
		End Semester Exam:	70 Marks	
Objec	ctive:			
1.	To understand the fundamental of Medical	Instruments		
2.	To understand Biomedical recorders, Medica	l Imaging equipments, Si	urgical, Therap	eutic
	Instruments and Medical Laboratory equipme	ents.		
Pre-R	equisite			
1.	Analog Electronics (PC-EEE-302)			
2.	Digital Electronics (PC-EEE-402)			
Unit	Content		Hrs	Marks
	Fundamentals of Medical Instruments:			
1	Fundamentals of medical instrumentation- Sources of biomedical			
	signals, Generalized medical instrumentation block diagram.			
	Medical electrodes - ECG, EEG, EMG, Defibrillator. Medical		08	
	transducers: Body temperature, Blood pressure, respiration rate.			
	Classification of Medical instruments based on application -			
	(diagnostic, therapeutic, Imaging, analytical).			
2	Biomedical Recorders:			
	Electrocardiograph (ECG) machine -ECG b	block diagram, Bipolar		
	and unipolar leads, Phono-cardiograph.	Electroencephalograph	08	
	(EEG). 10-20 electrode placement system,	EEG readout device,		
	Electro-myograph (EMG) machine. Bio-feed	back Instrumentation.		
2	Pulse-Oximeter.			
3	Medical Imaging Equipments:	machine Dronarties of		
	X-ray machine, CT-Scan machine, MRI Scan machine, Properties of		08	
	ultrasound, Ultrasonic foetal monitors. Echoencephalography. Echo-		08	
4	Surgical & Theranautic Instruments:			
- T	Electro-surgery machine (cautery) Hemo-di	alvsis machine Muscle	06	
	stimulators. Defibrilator Machine			
5	Medical Laboratory Instruments			
~	Types of test- Blood cell. Bio chemistry Bl	ood Cell Counter. Bio	06	
	chemistry analyze, Auto analyzer, Blood gas	analyzer.		
	, , ,	5		

Text book:

- 1. Handbook of Biomedical instrumentation, R. S. Khandpur, Tata McGraw Hill, New Delhi, 2003
- 2. Introduction to Biomedical equipment technology, Joseph J. Carr and J.M. Brown, Pearson education, New Delhi, 2000

3. Biomedical instrumentation measurements, Lesli P Cromwell, Fred J. Weibell, Erich A. Pfeiffer, PHI Learning, New Delhi, 2018

Reference books:

- 1. Medical instrumentation application & design, John G. Webster, Editor, John Wiley and Sons, New Delhi, 2009
- 2. Introduction to Biomedical Instrumentation, Mandeep Singh, PHI, 2010

Course Outcome:

After completion of this course, the learners will be able to

- 1. describe the principle of medical transducers for temperature, pressure and respiration rate.
- 2. explain the principle of operation of Biomedical recorders, Medical Imaging equipments
- Surgical & Therapeutic Instruments and Medical Laboratory Instruments.
- 3. use different Medical laboratory equipments for different tests .
- 4. analyze any measurement application and suggest suitable measurement methods.
- 5. suggest suitable imaging methodology for a specific ailment.

Special Remarks (if any)

etworks.
Marks

Text book:

- 1. Cryptography and Network Security, William Stallings, Pearson Education, 2017
- 2. Cryptography and Network Security, V.K. Jain, Khanna Publishing House, 2013
- 3. Cryptography & Network Security: Atul Kahate, Mc Graw Hill education, 2017

Reference books:

- 1. Network Security private communication in a public world, C. Kaufman, R. Perlman and M.Speciner, Prentice Hall, 2002
- 2. Network Security Essentials: Applications and Standards, William Stallings, Pearson. 1999
- 3. Designing Network Security, Merike Kaeo, Cisco Press, 2003

Course Outcome:

After completion of this course, the learners will be able to

- 1. describe Symmetrical and Asymmetrical cryptography, Firewall, Web security, Email security, and Malicious software etc.
- 2. apply the different cryptographic operations of Symmetric and Asymmetric key algorithms,
- 3. apply security principles to system design
- 4. identify network security threat
- 5. analyze network security protocols

Special Remarks (if any)

Name of the course		SENSORS AND TRANSDUCERS		
Cour	se Code: OE-EEE 801D Se	emester: 8th		
Duration: 6 months Maximum Marks: 1		/aximum Marks: 100		
Teach	ning Scheme E	Examination Scheme		
Theor	ry: 3 hrs/week M	Iid Semester Exam: 1	5 Marks	
Tutor	ial: 0hr/week A	Assignment & Quiz: 1	0 Marks	
Credi	t Points: 3 A	Attendance: 0	05 Marks	
	E	and Semester Exam: 7	70 Marks	
Obje	ctive:			
1.	To understand the principle of operation of Tran	nsducers and Sensors		
2.	To understand the application of Transducers an	nd Sensors		
Pre-R	equisite			
1.	Electric Circuit Theory (PC-EEE-301)			
2.	Electromagnetic Field Theory (PC-EEE-303)			
Unit	Content		Hrs	Marks
	Introduction:			
1	Definition, significance of measurement and in	struments. Principle	05	
	of sensing & transduction, transducer classif	fication, Transducer		
	characteristics, emerging fields of sensor technologies.			
2	Resistive transducers: Potentiometers: types,	loading error, metal		
	and semiconductor strain gauges, types, re	esistance measuring	05	
	methods, strain gauge applications: Load and torque measurement.			
3	Inductive transducers: Transformer type, synchros, eddy current			
	transducers, LVDT: Construction, material, input-output		08	
	characteristics.			
	Optical Sensors: LDR, Photo Diode, Stroboscope, IR Sensor.			
4	Capacitive transducers: Variable distance-parallel plate type,			
	variable area- parallel plate type, cylindrical typ	pe, differential type,		
	variable dielectric constant type, calculati	ion of sensitivity.		
	Capacitive microphone, fluid level measurement.	t.	1.0	
	Piezoelectric transducers: piezoelectric effects	s, Materials, natural	10	
	and synthetic types – their comparison, Char	rge and voltage co-		
	efficient, Force and stress sensing, displacement	measurement.		
	Magnetic Iransducer: Hall effect sensors	s, Magnetostrictive		
5	Thermal concerts: Designed to the protocol	detector (DTD):		
3	ninoinla materials and trace. Thermister aring	activity activity and	06	
	principle, materials and types; Thermistor: principle, materials and		00	
	thermocouple types, construction IC temperature sensor DTAT type			
	thermocouple types, construction. IC temperature sensor, PTAT type			
	Radiation sensors: types characteristics	and comparison		
	Pyroelectric type	and comparison.		
6	Micro-sensors and smart sensors. Construct	ction characteristics		
	and applications. Standards for smart sensor inter	rface.	04	
	Recent Trends in Sensor Technologies: Introdu	luction: Film sensors	~ •	
	(Thick film sensors, thin film sensor)			

Text book:

- 1. Transducers and Instrumentation, D.V.S. Murthy, Prentice Hall, 2008
- 2. Sensors and Transducers, D. Patranabis, Prentice Hall India, 2003
- 3. Measurement Systems Application and Design, E.O. Doebelin, McGraw-Hill, 2008

Reference books:

- 1. Instrument Transducers An Introduction to their Performance and Design", H.K.P. Neubert, Oxford University Press, 1999.
- 2. Measurement Systems and Sensors, WaldemarNawrocki Artech House, 2016.
- 3. Semiconductor sensors", S.M. Sze, Wiley Interscience, 1994
- 4. Instrumentation Measurement and Analysis", B. C. Nakara&Chaudhry TATA McGraw-Hill, 2009
- 5. Smart Sensors and Sensing Technology, Daniel E. Suarez, Nova Science Publishers, 2011

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the basic principle of operation of Transducers and Sensors.
- 2. distinguish different sensors and transducers.
- 3. identify suitable transducer by comparing different industrial standards and procedures for measurement of physical parameters
- 4. estimate the performance of different transducers.
- 5. design real life electronics and instrumentation measurement systems.
- 6. apply smart sensors, bio-sensors, PLC and Internet of Things to different applications.

Special Remarks (if any)

Name	of the course	DIGITAL SIGNAL PROCESSING LABORATORY			
Cours	e Code: PC-EEE 891	Semester: 8 th			
Durat	ion: 6 months	Maximum marks:100			
Teach	ing Scheme	Examination scheme:			
Theor	y: 0 hr/week	Continuous Internal Assessment:40			
Tutori	al: 0 hr/week	External Assessment: 60			
Practi	cal: 2 hrs/week				
Credit	Points:1				
	Laboratory Exp	periments:			
	Simulation Laboratory using standard Simulator:				
1.	Sampled sinusoidal signal, various sequences and different arithmetic operation.				
2.	Convolution of two sequences using graphical methods and using commands-verification of the				
	properties of convolution.				
3.	Z transform of various sequences-verification	of the properties of Z transform.			
4.	Twiddle factors-verification of the properties.				
5.	DFTs/IDFTs using matrix multiplication and al	so using commands.			
6.	Circular convolution of two sequences using g	graphical methods and using commands.			
	Differentiation between linear and circular convolutions				
7.	. Verification of the different algorithms associated with filtering of long data sequences and				
	Overlap add and Overlap-save methods.				
8.	Butterworth filter design with different set of	parameters.			
9.	FIR filter design using rectangular, Hamming a	and Blackman windows.			

	Hardware laboratory using either 5416 or 6713 Processor and Xilinx FPGA:
10.	Writing & execution of small programs related to arithmetic operation and convolution using
	assembly language of TMS320C5416/6713 processor. Study of MAC instruction.
11.	Writing of small programs in VHDL and downloading onto Xilinx FPGA.
12.	Mapping of some DSP algorithms onto FPGA.

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. identify appropriate simulator / equipments and instruments for the experiment.
- 2. test the simulator / instruments for application to the experiment.
- 3. construct algorithm / circuits with appropriate simulator / instruments and safety precautions.
- 4. verify different algorithms and operations in the laboratory.
- 5. analyse experimental data obtained in the laboratory.
- 6. work effectively in a team