Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Food Technology

(Applicable from the academic session 2018-2019)

Semester-IV

Name of the Course: Unit operation II (Transfer Operation)			
Course Code: ES-FT 4	01 Semester: IV		
Duration: 6 months	Maximum Mar	ks: 100	
Teaching	Scheme	Examination Scheme	
Theory: 3 hrs./ week		Mid Semester Exam.: 15 Marks	
Tutorial: Nil		Assignment & Quiz: 10 Marks	
Practical: Nil		Attendance: 5 Marks	
Credit Points: 3		End Semester Exam: 70 Marks	
Objective:			
1 Understand severa	al unit operations are c	arried out in Food Processing Industries by	
applying the know	vledge.		
2 Recall several fur	damental equations of	fluid flow and heat transfer in understanding the	
subject.			
3 Analyze processin	ng operation by applyin	ng the knowledge	
4 Make use of this	knowledge for underst	standing of operations in industrial distillation in	
alcohol industries	•		
5 Analyze different	Industrial scale absor	ption and stripping operations	
6 Understand basic	theory of mass transfe	r operation and different diffusion related	
theories			
Pre-Requisite:			
1 At least12 units of	of undergraduate study	in a particular profession	

Unit	Content	Hrs/	Marks
		Unit	/ Unit
1	Momentum Transfer and Flow of Fluid: Raleigh's method and	9	
	Buckingham's π theorem, dimensional analysis, dimensionless numbers		
	Pressure drop-flow rate, relationship for flow through pipe, rectangular		
	conduit and circular in laminar flow; Turbulent flow and fanning's		
	friction factor; Compressible flow: flow through nozzle and porous		
	media, Apparent viscosity, generalized viscosity coefficient,		
	fundamentals of fluidization, ideal& real fluids, Newton's law of		
	viscosity, Newtonian & Non Newtonian Fluids,		
2	II Transport theorem, conservation laws, equation of continuity, Euler's	8	
	equation of motion, Bernoulli's equation, viscous flow., types of		
	similarities, Friction in flow through packed beds; Measurement of flow		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Food Technology

(Applicable from the academic session 2018-2019)

	rate : Venturimeter, pitot tube, orificemeter; Rotameter, Pipe Fittings and valves, Pumps – classification, centrifugal and positive displacement type – peristaltic		
3	Heat Transfer: Classification of heat flow processes, conduction, Thermal conductivity. Heat flow in fluids by conduction and convection. Counter current and parallel flow. Enthalpy balance in heat exchange equipment. Individual heat transfer coefficients, overall coefficient, Heating and cooling of fluids, Heat transfer equipment. NTU- Effectiveness relationship; Unsteady state heat transfer in plate, cylinder and spherical bodies; Radiation.	10	
4	Mass Transfer:: Molecular diffusion and Fick's Law; Steady state mass transfer in equimolar counter diffusion and diffusion through stagnant mediumIntroduction to mass transfer: Molecular diffusion in fluids, diffusivity, mass transfer coefficients, interphase mass transfer, gas absorption,	9	
5	Counter-current multistage operation, packed tower. Analogy between momentum, heat and mass transfer. Distillation- vapor-liquid equilibrium, relative volatility, batch and equilibrium distillation, steam distillation, molecular distillation, azeotropic and extractive distillation; theory of rectification; design of distillation column	9	

Text and Reference Books:

Revision: 5L

Books :

1. Unit Operations of Chemical Engineering: McCabe, Smith &Harriot, TMH, 5th edition

2. Transport Processes & Unit operations: Geankopolis, PHI, 3rd edition

3. Chemical Engineering, Vol-I & II: Coulson & Richardson, Butterworth Heinemann

- 4. Heat Transfer: D.Q. Kern, MGH
- 5. Badger, W.L., Banchero, J.T., Introduction to Chemical Engineering, MGH
- 6. Foust, A.S., Wenzel, L.A., et.al. Principles of Unit Operations, 2nd edition, JWS

7. Perry, Chilton & Green, Chemical Engineers' Handbook, MGH

8 Mass transfer operations by Robert. E. Treybal Third Edition MGH

Course Outcome:

1. After completion of the course the students will be able to understand about nature of fluid flow in a pipe line.

2. They can design continuous sterilization unit considering the different holding time for different parts of fluid.

3. They can understand the operational principle of different type of heat exchangers.

4. They can correlate shear rate of a fluid and pressure drop in a pipe line

5. They can understand different diffusion control mass transfer operations.

6. They can understand the vapour liquid mass transfer phenomenon in a distillation column

7. The can also realize about importance of reflux ratio and the concept of optimum reflux ratio for minimizing the cost of operation of a distillation column.

8. They can also understand about simultaneous mas and heat transfer phenomenon and different types of analogies between mass and heat transfer

Special Remarks (If any): For understanding of basic principles in Food processing Operations

Nam	Name of the Course: Biochemistry & Nutrition			
Cours	e Code: PC-FT 401	Semester: IV		
Durat	ion: 6 months	Maximum Mark	xs: 100	
			-	
	Teaching Sche	me	Examination Scheme	
Theor	y: 3 hrs./ week		Mid Semester Exam.: 15 Marks	
Tutori	al: 1 hrs./ week		Assignment & Quiz: 10 Marks	
Practic	cal: Nil		Attendance: 5 Marks	
Credit	Points: 4		End Semester Exam: 70 Marks	
Objec	tive:			
1	To develop the knowle	edge of students ab	out biomolecules, relevant biochemical	
	reactions and nutrition	•		
2	To enable the students	to develop an insi	ght on metabolism of different biomolecules and	
	enzymatic pathways le	eading to end produ	acts	
3	To make students und	erstand about basic	concepts of nutrition, different nutritional	
	demands and dietary r	equirements		
Pre-R	equisite:			
1	Basic organic chemis	try		
2	Bio-molecules			

Unit	Content	Hrs/ Unit	Marks / Unit
1	Introduction to Biochemistry in relation to food, Concept of metabolism with respect to food groups, Proteins and protein structures; Essential amino acids, Metabolism of proteins (digestion and absorption); Nitrogen balance and nitrogen pool; Evaluation of quality of proteins, Protein hydrolysate and their role in nutrition, bioactive peptides	8	
2	Enzymes; Definition, function in human nutrition , classification, nomenclature & structure; Co-enzymes and its function; Mechanism of enzyme action, enzyme kinetics & environmental effects; Enzyme inhibition, Common food enzymes, Enzymes for food industries and their role	6	
3	Carbohydrates; Definition & classification; Metabolic pathways for breakdown of carbohydrates: glycolytic pathway, citric acid	10	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Food Technology

(Applicable from the academic session 2018-2019)

	cycle, ATP balance, electron transport chain, gluconeogenesis, glycogenolysis, pentose phosphate pathway ; Cori cycle		
4	Lipids; Essential fatty acids; Digestion & absorption of lipids	6	
5	Vitamins & minerals: their common food sources and physiological functions.	4	
6	Nutrition: Balanced diet, Nutrition and calorie requirements, Dietary requirements and deficiency diseases of different nutrients, complex carbohydrates and metabolism, special nutrition needs during pregnancy, lactation, infancy, for children, adolescents and aged; nutrition and public health; glycemic index and load, introduction to therapeutic nutrition, sports foods and nutrition food hypersensitivity: food allergy, food intolerancy, biogenic amines	8	

Text and Reference Books:

TEXT

- 1. Principles of Biochemistry by Lehninger, Nelson & Cox, CBS Publication
- 2. Biochemistry and Nutrition by Debajyoti.Das,

REFERENCE

- 3. Food Chemistry by O. R. Fennema, Third Edition, Marcel Dekker, Inc., New York
- 4. Food chemistry by Belitz H.D., Grosch W. and Schieberle, Third Edn., Berlin: Springer Verlag
- 5. Food Chemistry by L. H. Meyer, CBS Publishers and Distributors

Course Outcome:

After completion of the course the students will be able to

- 1. They can relate (BT1) properties of macro as well as micronutrients of food
- 2. They can relate (BT2) these properties to interpret (BT2) properties of food
- 3. The student will be able to compare (BT4) different catabolic & anabolic pathways with human nutrition
- 4. This will help students for future study or research analysis& conclusion (BT4)
- 5. With the previous knowledge they are able to explain (BT5) the food formulation with respect to nutrition.

Special Remarks (If any):

Name of the Course: Principles of Food Preservation			
Course Code: PC-FT 402	Semester: IV		
Duration: 6 months	Maximum Mar	ks: 100	
Teaching Scheme Examination Scheme			
Theory: 3 hrs./ week		Mid Semester Exam.: 15 Marks	
Tutorial: 1 hrs./ week		Assignment & Quiz: 10 Marks	
Practical: Nil		Attendance: 5 Marks	
Credit Points: 4 End Semester Exam: 70 Mar		End Semester Exam: 70 Marks	

Object	tive:
1	To introduce students about the importance of preserving food to prevent wastage
	and losses
2	To introduce students about the methods of preservation to increase shelf life of food
	commodities and retain its overall quality
3	To introduce students about the methods of preserving food for value addition
Pre-R	equisite:
1	Knowledge of biology, chemistry
2	Knowledge of basic mathematics
3	Knowledge of food chemistry, food microbiology

Unit	Content	Hrs/	Marks/
		Unit	Unit
1	Introduction to food preservation:	4	
	General principles of preservation; classification of methods used for		
	preservation; need and importance of preservation at domestic and large		
	scale; causes of food spoilage.		
2	Basic concepts of thermal destruction of microorganisms – lethality, D, Z	10	
	and F values; assessment of adequacy of thermal processing of food		
	processing operations; canning (definition, equipments, advantage,		
	disadvantage, influence of canning on the quality of food, spoilage of		
	canned foods); retorting process; commercial sterility; pasteurization		
	(definition, time-temperature combination and equipments, application,		
	advantage, disadvantage); blanching (definition, time-temperature		
	combination and equipments, adequacy in blanching, application,		
	advantage, disadvantage); sterilization of foods		
3	Principles of food freezing, basic working principle and application of	6	
	different types of freezers, IQF; frozen storage of foods; freeze		
	concentration, refrigerated storage; cold storage; cold chain; effect of low		
	temperature storage on organoleptic and nutritional characteristics of		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Food Technology

(Applicable from the academic session 2018-2019)

	food.		
4	Drying and dehydrations: Sun drying, Freeze drying, drying phenomenon, factors affecting rate of drying, working principle of batch & continuous driers and their suitability for different foods; intermediate moisture foods, effect of drying on organoleptic and nutritional characteristics of food; osmotic dehydration.	8	
5	Preservation by microbial fermentation (principle, types, applications); Chemical preservatives; Biopreservation; lactic acid bacteria, antibiotics; lantibiotics; Hurdle technology, Principles of preservation by use of sugar and salt, curing, pickling; smoking, Overview of minimal processing	6	
6	Novel Non-thermal methods: HPP, ultrasonication, ohmic heating, microwave, pulsed electric field, pulsed light, cold plasma, ozone. Preservation by ionizing radiations (Sources of radiations, units and doses, irradiation mechanism, effect on microorganisms and different nutrients; dose requirements for radiation preservation of foods, safe limits);	6	

Revision: 5L

Text and Reference Books:

- 1. Technology of Food Preservation by Desrosier
- 2. Handbook of. Food Preservation. Second Edition edited by. M. Shafiur Rahman. CRC Press
- **3.** Food Science by Potter
- 4. Fruits and vegetable processing by Cruss
- 5. Preservation of Fruits & Vegetables by IRRI

Course Outcome:

- 1. Relate the basic knowledge of food science to understand the need and importance of food preservation
- 2. Recognise and understand the causes of spoilage and how they affect the shelf life of food.
- **3.** Describe the principles, working mechanism, advantages and disadvantages of different methods and techniques of food preservation
- 4. Apply the knowledge of mathematics and graphical derivation in process time calculations to estimate lethality of sterilisation processes and spoilage probability of food products.
- **5.** Demonstrate the appropriate application of different preservation processes in specific foods ensuring maximum retention of nutritional and orgnoleptical quality of food products
- 6. Evaluate preservation principles in product design and value addition of food products

Name of	the Course: 1	Numerical Metl	hods & Statistical Technique
Course Co	de: BS-FT 401	Semester: IV	
Duration:	6 months	Maximum Mark	xs: 100
	Teaching Sche	eme	Examination Scheme
Theory: 2 l	nrs./ week		Mid Semester Exam.: 15 Marks
Tutorial: N	il		Assignment & Quiz: 10 Marks
Practical: N	Nil		Attendance: 5 Marks
Credit Poir	nts: 2		End Semester Exam: 70 Marks
Objective:			
1 The	e goal is to provide	e a basic understan	ding of the derivation, analysis, and use of these
nur	nerical and statistic	cal methods, to solv	ve the various problems and methods.
2 Pur	pose is to provid	e students with the	he skills, knowledge and attitudes required to
pro	vide solutions to	mathematical pr	oblems which cannot always be solved by
con	ventional analytica	al techniques,	
3 Rea	alize the importar	nce of selecting t	he right numerical technique for a particular
app	lication, and caref	ully analyse and int	erpret the results obtained
Pre-Requi	site:		
1 Ba	sic engineering ma	athematics	
2			

Unit	Content	Hrs/	Marks
		Unit	/ Unit
1	Approximation in numerical computation: Truncation and rounding errors,	4	
	Fixed and floating-point arithmetic, Propagation of errors.		
2	Interpolation: Newton forward/backward interpolation, Lagrange's and	5	
	Newton's divided difference Interpolation.		
3	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for	3	
	corresponding error terms.		
4	Design of experiments: Guidelines for designing experiments and importance	9	
	of designed experiments in food research, Types of DOE: Full Factorial,		
	fractional factorial, central composite design, rotatable central composite		
	experimental design, box behenken design. Limitations of each.		
5	Analysis of variance of experiments with one or more fixed and random	6	
	factors, Multiple comparisons. Analysis of residuals, Non-parametric ANOVA,		
	Kruskal–Wallis test.		
6	Developing empirical equations using experimental data. Basics of	4	
	RSM(Response surface methodology		
7	Application of Fuzzy logic to sensory evaluation and ranking of foods.	5	
8	Applied Statistics:	4	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Food Technology

(Applicable from the academic session 2018-2019)

	Curve fitting by the method of least squares- fitting of straight lines, second		
	degree parabolas and more general curves.		
9.	Test of significance: Large sample test for single proportion, difference of	4	
	proportions, single mean, difference of means, and difference of standard		
	deviations.		
10.	Testing of fitness: Test for single mean, difference of means and correlation	5	
	coefficients, test for ratio of variances - Chi-square test for goodness of fit and		
	independence of attributes		

Text and Reference Books:

Text Books:

- 1. C.Xavier: C Language and Numerical Methods.
- 2. R.S. Salaria: Computer Oriented Numerical Methods (AICTE Recommended 2018)
- 3. Dutta & Jana: Introductory Numerical Analysis.
- 4. J.B.Scarborough: Numerical Mathematical Analysis.
- 5. Jain, Iyengar, & Jain: Numerical Methods (Problems and Solution).

6. Experimental Designs, 2nd Edition, William G. Cochran, Gertrude M. Cox, ISBN: 978-0-471-54567-5 May 1992

7. Montgomery, D.C. (2009). Design and Analysis of Experiments.

References:

- 1. Balagurusamy: Numerical Methods, Scitech.
- 2. Baburam: Numerical Methods, Pearson Education.
- 3. N. Dutta: Computer Programming & Numerical Analysis, Universities Press.
- 4. Soumen Guha & Rajesh Srivastava: Numerical Methods, OUP.
- 5. Srimanta Pal: Numerical Methods, OUP.

Course Outcome:

After completion of the course the students will be able to

CO1: Construct the interpolating polynomial for both equispaced and unequispaced arguments.

CO2: Apply numerical techniques to solve food engineering problems.

CO3: Construct graphical displays of science/engineering data and interpret the role of such displays in data analysis.

CO4: Apply basic statistical inference techniques, including confidence intervals, hypothesis testing and analysis of variance, to science/engineering problems.

CO5:Employ appropriate regression models to determine statistical relationships.

CO6: Construct optimal or good designs for a range of practical experiments

Name of the Course: Professional ethics and IPR			
Course Code: HU-FT 401	1 Semester: IV		
Duration: 6 months	Maximum Mar	ks: 100	
		_	
Teaching Sch	eme	Examination Scheme	
Theory: 2 hrs./ week		Mid Semester Exam.: 15 Marks	
Tutorial: Nil		Assignment & Quiz: 10 Marks	
Practical: Nil		Attendance: 5 Marks	
Credit Points: 2 End Seme		End Semester Exam: 70 Marks	
Objective:			
1 To create awareness a	To create awareness amongst students on engineering ethics and Human values		
2 To instill Moral and s	To instill Moral and social values, loyalty and to appreciate the rights of others		
3 To introduce the fund	amental aspects of	Intellectual Property Rights so as to make the	
students competent to	students competent to play a major role in development and management of innovative		
projects in Industries			
Pre-Requisite:			
1 Atleast 12 units of u	Atleast 12 units of undergraduate study in a particular profession		
	•		
1 Atleast 12 units of undergraduate study in a particular profession			

Special Remarks (If any):

Unit	Content	Hrs/	Marks
		Unit	/ Unit
1	Morals, values and ethics-integrity-work ethic, moral dilemmas,	3	
	Kohlberg's theory-gilligan's theory-consensus and controversy, models		
	of professional roles -theories about right action, Moral leadership-code		
	of conduct, introduction to techniques of professional excellence and		
	stress management. corporate social responsibility, respect for authority,		
	confidentiality-conflicts of interest, occupational crime-professional		
	rights, employee rights		
2	Ethical issues in engineering practice, social and ethical responsibilities	2	
	of technologists, Conflicts between business demands and professional		
	ideas, fair trade practices, case studies		
3	Environmental ethics, environmental regulations, Safety and risk-	3	
	Assessment, risk benefit analysis and mitigation of risk,		
4	Introduction to IPR: Meaning of property, Origin, Nature, Meaning of	3	
	Intellectual Property Rights,. Kinds of Intellectual property rights-Copy		
	Right, Patent, Trade Mark, Trade Secret and trade dress, Design, Layout		
	Design, Geographical Indication, Plant Varieties and Traditional		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Food Technology

(Applicable from the academic session 2018-2019)

	Knowledge		
5	Patents and copyrights —Origin, Meaning of Patent, Types, Inventions which are not patentable, Registration Procedure, Rights and Duties of Patentee, Assignment and licence, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties. Copyright- Origin, Definition &Types of Copy Right, Registration procedure, Assignment & licence, Terms of Copy Right, Infringement, Remedies, Copy rights with special reference to food excipients, additives and processed products	8	
6	Trademarks —Origin, Meaning & Nature of Trade Marks, Types, Registration of Trade Marks, Infringement & Remedies, Offences relating to Trade Marks, Passing Off, Penalties.	3	
7	Design -Meaning, Definition, Object, Registration of Design, Cancellation of Registration, International convention of design- types and functions.	3	
8	International registration systems , Provision of IPR under TRIPS and WTO, unfair competitions, Legal implications and public concerns in genetic modification in foods, International and National policies of food security	3	

Text and Reference Books:

1. Ajit Parulekar and Sarita D Souza,Indian Patents Law-Legal and Business Implications, Macmillan India Ltd,2006

2. B. L.Wadehra, Law Relating to Patents, Trade Marks, Copyrights, Designs and Geographical Indications, Universal Law Publishing Pvt. Ltd., India 2000

3. P.Narayanan Law of Copyright and Industrial Designs, Eastern Law House, Delhi, 2010

4. Intellectual Property Rights in Agricultural Biotechnology; Edited by Erbish, Maredia, CABI

5. T.M.Murray and M.J.Mehlam, Encyclopedia of Ethical,Legal and Policy issues in Biotechnology,John Wiley and Sons 2000

6. S.K.Chakraborty: Values and Ethics in Organization, OUP

7. N.Tripathi,Human values,New age International Economic Reforms and Food Security.The Impact of trade and technology in South Asia by Suresh Chandra Babu,Haworth Press

8. Premvir Kapoor, Professional Ethics and Human Values, Khanna Publishing House (AICTE Recommended Textbook – 2018)

Course Outcome:

After completion of the course the students will be able to

CO1: Debate interaction of moral and ethics in profession.

CO2: Relate informed critical reflection on the nature of professionalism and ethical challenges inherent in professionalism

CO3: Explain ethical concepts, challenges and dilemmas confronting members in various aspects of food industry

CO4: Explain the significance of various types of IPR with special reference to food industry

CO5: Apply the strategy of acquiring patent and copyright for own innovative works.

CO6: Identify plagiarized contents in written representations and innovations which can be questioned legally in works

Special Remarks (If any):

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Food Technology

(Applicable from the academic session 2018-2019)

Name of the Course: Environmental Sciences			
Course Code: MC-401 Semester: IV			
Duration: 6 months	Maximum Mar	ks: 100	
Teaching Sch	eme	Examination Scheme	
Theory: 3 hrs./ week		Mid Semester Exam.: 15 Marks	
Tutorial: Nil		Assignment & Quiz: 10 Marks	
Practical: Nil		Attendance: 5 Marks	
Credit Points: 0		End Semester Exam: 70 Marks	
Atleast 45hrs/Sem			
Objective:			
1 To understand about of	To understand about different types of pollution of Environment		
2 To get idea of Differe	To get idea of Different type of biological Cycles in Nature		
3 To understand about of	To understand about different types of pollution and their remedy		
4 To understand Air po	To understand Air pollution and greenhouse effect		
5 To get idea about wa	To get idea about water pollution and their sources and remedial measure		
6 To analyze water for	To analyze water for pollution level organic and Inorganic load		
7 To understand land pe	To understand land pollution and its control		
8 To Understand Differ	ent type of noise p	ollution its sources and remedial measure	
9 To understand about of	To understand about different types of pollution of Environment		
10 To get idea of Differe	To get idea of Different type of biological Cycles in Nature		
Pre-Requisite:			
1 At least15 units of un	At least15 units of undergraduate study in a particular profession		
2 Basic knowledge of C	Basic knowledge of Chemistry, Biology and Mathematics		

Unit	Content	Hrs/	Marks
		Unit	/ Unit
1	<u>Introduction</u> : Basic ideas of environment, basic concepts, man, society & environment, their interrelationship. Environmental Laws of India Mathematics of population growth and associated problems, Importance of population study in environmental engineering, definition of resource, types of resource, renewable, non-renewable, potentially renewable, effect of excessive use vis-a-vis population growth, sustainable development.	3	
2	Materials balance: Steady state conservation system, steady state system with non conservative pollutants, step function.	3	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Food Technology

(Applicable from the academic session 2018-2019)

	Environmental degradation: Natural environmental Hazards like Flood,		
	earthquake, Landslide-causes, effects and control/management; Anthropogenic		
	degradation like Acid rain-cause, effects and control.Nature and scope of		
	environmental science and engineering.		
3	Ecology: Elements of ecology: System, open system, closed system, definition	5	
	of ecology, species, population, community, definition of ecosystem-		
	components types and function.		
	Structure and function of the following ecosystem: Forest ecosystem,		
	Grassland ecosystem, Desertecosystem, Aquatic ecosystems, Mangrove		
	ecosystem (special reference to Sundarban); Food chain: definition and one		
	example of each food chain, Food web.		
	Biogeochemical Cycle- definition, significance, flow chart of different cycles		
	with onlyelementaryreaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur].		
	Biodiversity- types, importance, Endemic species, Biodiversity Hot-spot, Threats		
	to biodiversity, Conservation of biodiversity.		
4	Air pollution and control: Atmospheric Composition: Troposphere,	8	
	Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesopause.		
	Energy balance: Conductive and Convective heat transfer, radiation heat		
	transfer, simple global		
	temperature model [Earth as a black body, earth as albedo], Problems.		
	Green house effects: Definition, impact of greenhouse gases on the global		
	climate and consequently on seawater level, agriculture and marine		
	food.Global warming and its consequence, Control of Global warming.Earth's		
	heat budget.		
	Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability,		
	temperature inversion (radiationinversion).		
5	Atmospheric dispersion: Maximum mixing depth, ventilation coefficient,	8	
	effective stack height,		
	smokestack plumes and Gaussian plume model.		
	Definition of pollutants and contaminants, Primary and secondary pollutants:		
	emission standard, criteriapollutant.Sources and effect of different air		
	pollutants- Suspended particulate matter, oxides of carbon, oxides ofnitrogen,		
	oxides of sulphur, particulate, PAN.		
	Smog, Photochemical smog and London smog.Depletion Ozone layer: CFC,		
	destruction of ozone layer by CFC, impact of other green house gases, effectof		
	ozone modification.		
	Standards and control measures: Industrial, commercial and residential air		
	quality standard, controlmeasure (ESP. cyclone separator, bag house, catalytic		
	converter, scrubber (ventury), Statement with briefreference).		
6	Water Pollution and Control: Hydrosphere, Hydrological cycle and Natural	8	
	water.Pollutants of water, their origin and effects: Oxygen demanding wastes,		
	pathogens, nutrients, Salts, thermalapplication, heavy metals, pesticides,		
	volatile organic compounds.		
	River/Lake/ground water pollution: River: DO, 5 day BOD test, Seeded BOD		
	test, BOD reaction rateconstants, Effect of oxygen demanding wastes on		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Food Technology

(Applicable from the academic session 2018-2019)

	river[deoxygenation, reaeration], COD, Oil, Greases, pH. Lake: Eutrophication [Definition, source and effect]. Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only) Standard and control: Waste water standard [BOD, COD, Oil, Grease],Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardnessand alkalinity, softening]Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biologicalcontractor, Activated sludge, sludge treatment, oxidation ponds] tertiarytreatment definition.		
7	Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, andArsenic Land Pollution: Lithosphere; Internal structure of earth, rock and soil. Solid Waste: Municipal, industrial, commercial, agricultural, domestic, pathological and hazardous solidwastes; Recovery and disposal method- Open dumping, Land filling, incineration, composting, recycling.Solid waste management and control (hazardous and biomedical waste).	4	
8	<u>Noise Pollution</u> : Definition of noise, effect of noise pollution, noise classification [Transport noise, occupational noise, neighbourhood noise] Definition of noise frequency, noise pressure, noise intensity, noise threshold limit value, equivalent noiselevel, L_{10} (18hr Index), Ld_n . Noise pollution control. <u>Environmental Management</u> :Environmental impact assessment, Environmental audit, Environmental laws and protection act of India,Different international environmental treaty/ agreement/ protocol.	6	

Text and Reference Books:

Revision: 5L References/Books

- 1. Masters, G. M., "Introduction to Environmental Engineering and Science", Prentice-Hall of IndiaPvt. Ltd., 1991.
- 2. De, A. K., "Environmental Chemistry", New Age International.
- 3. M.P. Poonia & S.C. Sharma, Environmental Studies, Khanna Publishing House,
- 4. O.P. Gupta, Elements of Environmental Pollution Control, Khanna Publishing House, New Delhi

Course Outcome:

- 1. After completion of the course the students will be able to understand about nature of different pollution and their sources
- 2. They can also learn about Environmental law of the country
- 3. They can also learn about the nature of industrial waste coming out of different Food Industry

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Food Technology

(Applicable from the academic session 2018-2019)

- 4. They can also have an idea about removal of different water pollutant
- 5. They can also understand about different type of air pollutant and their method of removal.
- 6. They can also have some basic idea of solid waste Management and treatment process.

Special Remarks (If any): For understanding of basic principles in Food processing Operations

Name of the Course: Unit Operation Lab					
Cours	Course Code: FS-FT 491 Semester: IV				
Durat	ion: 6 months	Maximum Mar	ks: 100		
		I			
	Teaching Sche	eme	Examination Scheme		
Theory	y: Nil		Maximum marks: 100 Marks		
Tutori	al: Nil		Continuous Internal Assessment: 40 Marks		
Practic	cal: 3 hrs./ week		External Assessment: 60 Marks		
Credit	Points: 1.5		Distribution of marks: Experiments - 40 Marks Viva -20 Marks		
Carrow		1 . 6 41			
	Desall serveral fur der	e end of the course	f fluid flow and hast transfor in understanding		
1.	Recall several lundar	nental equations o	I fluid flow and heat transfer in understanding		
	the subject.				
2.	Understand several u	nit operations are	carried out in Food Processing Industries by		
	annlying knowledge	of the lab			
3.	Assess some process line intricacy by applying knowledge of this lab				
4.	Enhance their ability to work in a team.				
5.	Enhance their oral and written communication skills through published paper				
6	Make use of this kno	wledge for unders	tanding of operations in industrial distillation in		
-	alcohol industries.	8	0 1		
7	Analyse different Inc	lustrial scale abso	rption and stripping operations		
8	They can understan	d diffusional phe	nomenon and mass and heat transfer		
	analogies	I .			
Cours	e Outcomes: After the	end of the course s	students shall be able to:		
1	Learn the different as	pect of fluid flow i	n a pipe line and through packed bed		
2	The engineering aspec	et of heat transfer p	bhenomenon.		
3	Food processing operations and different mechanical operations in Food processing				
	industries.				
4	Apply the knowledge	of mathematics, so	cience, engineering fundamentals and		
	engineering specialization to the solution of complex Engineering problem				
5	After leaning the subject they can analyze operation in distillation plant				
6	They can understan	d interphase mas	s transfer operation in absorption column		
Due Descriptes Defens the hasing in a full second of the last of the last					
rre-K	understanding of:				
unders	understanding of:				

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Food Technology

(Applicable from the academic session 2018-2019)

1.	Nature of fluid and flow characteristics		
2.	Basic principles of heat transfer.		
3.	Basic idea about mechanical operation and mass transfer operation.		
4.	Application of diffusional mass transfer operation in different separation process.		
5.	Basic idea about heat transfer with phase change		
Pract	ical:		
1.	Intellectual skills-Knowledge & Understanding, Critical Thinking, Problem Solving		
	Skills		

2. **Motor skills-**Hand – eye co-ordination, Attention to detail, Manipulative skills.

Lal	boratory Experiments:
1	Experiments on Reynolds's Apparatus –Determination of flow regime and construction of friction factor againstNRE
2	Experiments on flow measuring device — in closed conduit using (a) Venturimeter, (b) Orifice meter, (c)Rotameter.
3	Determination of Pressure drop for flow through packed bed & verification of Ergun Equation, Kozeny-Karman equation, Blake-Plummer Equation.
4	To study the working characteristics of a Jaw Crusher, calculate the energy consumption as afunction of size reduction and compare it with the actual energy requirements.
5	To study the working characteristics of a Ball Mill, calculate the energy consumption as a function of size reduction and determine the critical speed.
6	To Determine the Overall heat transfer coefficient of a concentric pipe heat exchanger based on the inside diameter of the tube.
7	To study the characteristics of film-wise/drop-wise condensation.
8	Separation: Filtration, centrifugation
9	Mass transfer coefficient / kLa determination
10	Determination of Distillation efficiency in a sieve plate distillation column.
11	Differential distillation and verification of Rayleigh's Equation
12	Differential distillation and verification of Rayleigh's Equation
13	Liquid liquid mixing

Text and Reference Books

Books :

- 1. Unit Operations of Chemical Engineering: McCabe, Smith & Harriot, TMH, 5th edition
- 2. Transport Processes & Unit operations: Geankopolis, PHI, 3rd edition
- 3. Chemical Engineering, Vol-I & II: Coulson & Richardson, Butterworth Heinemann
- 4. Heat Transfer: D.Q. Kern, MGH
- 5. Badger, W.L., Banchero, J.T., Introduction to Chemical Engineering, MGH
- 6. Foust, A.S., Wenzel, L.A., et.al. Principles of Unit Operations, 2nd edition, JWS
- 7. Perry, Chilton & Green, Chemical Engineers' Handbook, MGH

Special Remarks (If any):Nil

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Food Technology

(Applicable from the academic session 2018-2019)

Nam	Name of the Course: Biochemistry Lab			
Cours	e Code: ES-FT 492	Semester: IV		
Duration: 6 months Maximum Mar		Maximum Marl	ks: 100	
	Teaching Sc	heme	Examination Scheme	
Theory	y: Nil		Maximum marks: 100 Marks	
Tutori	al: Nil		Continuous Internal Assessment: 40 Marks	
Practic	cal: 3 hrs./ week		External Assessment: 60 Marks	
Credit	Points: 1.5		Distribution of marks: Experiments - 40 Marks	
			Viva -20 Marks	
Objec	tive:			
1	Understand the bioc	hemical composition	of food	
2	Comprehend the different methods of separation and isolation methods of biochemical			
	components of food			
3	Comprehend the principle and kinetics of different enzymatic assays			
4	Understand and use effectively BOD5 and COD methods to evaluate water pollution			
5	Analyze effectively	the data to reach reas	sonable and valid conclusion	
6	Design appropriate	nethods for biochem	ical assays in real situation	
Pre-R	equisite:			
1	Handling of glasswa	res, chemicals and e	quipments	
2	Basic knowledge of	solution preparation	, chemical reactions	
3	Spectrophotometric	, titrimetric, gravime	tric, volumetric principles	
Practi	cal:			
	1) Intellectual skills-			
	2	Motor skills- Spe	ctrophotometer, centrigfuge, pH meter, Hot Air	
	0	ven/ Moisture Analy	zer, Incubator, Vortex machine,	
	Т	itration,electrophore	sis, Glasswares, chemicals & consumables	

Laboratory Experiments:			
1	Separation of amino acids/sugars by Ascending Paper Chromatography.		
2	Separation of sugars/ lipids by Thin Layer Chromatography.		
3	Separation and isolation of proteins/amino acids by Paper Electrophoresis.		
4	Determination of BOD5 and COD of a sample of waste water.		
5	Preparation of cell-free extract: Bacterial cell by sonication, Chicken liver by homogenization.		
6	Assay of enzyme activity – (a) Phosphatase assay [Chicken liver] (b) Protease assay		
7	Study of an enzymatic reaction.		

Text and Reference Books:

- 1. Nielsen, S. S. (Ed.). (2010). Food analysis (pp. 139-141). New York: Springer.
- Jeantet, R., Croguennec, T., Schuck, P., & Brule, G. (Eds.). (2016). Handbook of Food Science and Technology 3: Food Biochemistry and Technology (Vol. 3). John Wiley & Sons.
- **3.** Official methods of analysis of AOAC

Special Remarks (If any): Nil

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Food Technology

(Applicable from the academic session 2018-2019)

Nam	Name of the Course: Numerical Method Lab						
Course Code: BS-FT 491 Semester: IV							
Duration: 6 months Maximum Mark			xs: 100				
Teaching Scheme			Examination Scheme				
Theory: Nil			Maximum marks: 100 Marks				
Tutorial: Nil			Continuous Internal Assessment: 40 Marks				
Practical: 2 hrs./ week			External Assessment: 60 Marks				
Credit Points: 1			Distribution of marks: Experiments - 40 Marks				
			Viva -20 Marks				
Objec	ctive:						
1	Demonstrate the u	use of a range of stand	lard numerical methods to solve complex				
	engineering proble	ms					
2	Apply computation	nal techniques as tool	s in solving engineering problems				
3	Demonstrate a mo	ovement towards ongo	ing independent development of applying				
	numerical methods to real engineering situations						
4	4 Interpret Graphical presentations of data						
Pre-R	lequisite:						
1	Basic computation	and mathematics					
2	Data collection and	l representation					
Practi	ical:						
		1) Intellectual skills-	Critical thinking and reasoning, Analysing,				
in		interpreting ,summariz	terpreting, summarizing				
		2) Motor skills- use o	f computer and programming				

Laboratory Experiments:			
1	Assignments on Newton forward /backward, Lagrange's interpolation		
2	Assignments on numerical integration using Trapezoidal rule, Simpson's 1/3 rule,		
	Weddle's rule		
3	Assignments on numerical solution of a system of linear equations using Gauss		
	elimination and Gauss-Seidel iterations		
4	Assignments on numerical solution of Algebraic Equation by Regular-falsi and		
	Newton Raphson methods.		
5	Assignments on ordinary differential equation: Euler's and Runga-Kutta methods.		
6	Introduction to Software Packages: Matlab / Scilab / Labview / Mathematica		
7	Generate Various types of DOE using Minitab,/Design Expert,		
8	Perform regression analysis using Minitab,/Design Expert /SPSS		

9	Construct graphical displays of science/engineering data and interpret the role of such
	displays in data analysis.
10.	Assignment on performing ANOVA for a given data
11	Perform sensory evaluation for a food product using fuzzy logic

Text and Reference Books:

R.S. Salaria, Computer Oriented Numerical Methods, Khanna Publishing House (AICTE Recommended Textbook – 2018)

Special Remarks (If any): Nil