Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

SEMESTER – IV

Discrete Mathematics Code: PCC-CS401 Contacts: 3L+1T

Name	e of the Course:	Discrete Mathematics		
Cours	se Code: PCC-CS401	Semester: IV	-	
Durat	tion:6 months	Maximum Marks:	100	
Teac	hing Scheme		Examination Scheme	
Theor	ry:3 hrs./week		Mid Semester exam: 15	
Tutor	ial: 1 hour/week		Assignment and Quiz : 10 marks	
Att			Attendance : 5 marks	
Pract	ical: NIL		End Semester Exam :70 Marks	
Credi	t Points:	4		
Objeo	ctive:	·		
1	Use mathematically	correct terminolog	gy and notation.	
2	Construct correct direct and indirect proofs.			
3	To know Syntax, Semantics, Validity and Satisfiability, Graphs and Trees			
4	Use counterexampl	les. Apply logical reasoning to solve a variety of problems.		
Pre-Requisite:				
1	Some concepts from basic math – algebra, geometry, pre-calculus			

Unit	Content	Hrs/Unit	Marks/Unit
1	Sets, Relation and Function: Operations and Laws of Sets, Cartesian Products, Binary Relation, Partial Ordering Relation, Equivalence Relation, Image of a Set, Sum and Product of Functions, Bijective functions, Inverse and Composite Function, Size of a Set, Finite and infinite Sets, Countable and uncountable Sets, Cantor's diagonal argument and The Power Set theorem, Schroeder-Bernstein theorem.	8	
	Principles of Mathematical Induction: The Well- Ordering Principle, Recursive definition, The Division algorithm: Prime Numbers, The Greatest Common Divisor: Euclidean Algorithm, The Fundamental Theorem of Arithmetic.		
2	Basic counting techniques-inclusion and exclusion, pigeon-hole principle, permutation and combination	5	
3	Propositional Logic: Syntax, Semantics, Validity and Satisfiability, Basic Connectives and Truth Tables,	8	

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

	(Applicable from the academic session 20	10 2017)
	Logical Equivalence: The Laws of Logic, Logical	
	Implication, Rules of Inference, The use of	
	Quantifiers. Proof Techniques: Some Terminology,	
	Proof Methods and Strategies, Forward Proof,	
	Proof by Contradiction, Proof by Contraposition,	
	Proof of Necessity and Sufficiency.	
	Algebraic Structures and Morphism: Algebraic	
4.	Structures with one Binary Operation, Semi	7
	Groups, Monoids, Groups, Congruence Relation and	
	Quotient Structures, Free and Cyclic Monoids and	
	Groups, Permutation Groups, Substructures, Normal Subgroups, Algebraic Structures with two	
	Binary Operation, Rings, Integral Domain and	
	Fields. Boolean Algebra and Boolean Ring,	
	Identities of Boolean Algebra, Duality,	
	Representation of Boolean Function, Disjunctive	
	and Conjunctive Normal Form	
5	Graphs and Trees: Graphs and their properties,	
	Degree, Connectivity, Path, Cycle, Sub Graph,	8
	Isomorphism, Eulerian and Hamiltonian Walks,	
	Graph Colouring, Colouring maps and Planar Graphs, Colouring Vertices, Colouring Edges, List	
	Colouring, Perfect Graph, definition properties and	
	Example, rooted trees, trees and sorting, weighted	
	trees and prefix codes, Bi-connected component	
	and Articulation Points, Shortest distances.	

Text book and Reference books:

1. Russell Merris, Combinatorics, Wiley-Interscience series in Discrete Mathematics and Optimisation

2. N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI

3. Gary Haggard, John Schlipf and Sue Whitesides, Discrete Mathematics for Computer Science, CENGAGE Learning

4. Gary Chartrand and Ping Zhang – Introduction to Graph Theory, TMH

5. J.K. Sharma, Discrete Mathematics, Macmillan

6. Winfried Karl Grassmann and Jean-Paul Tremblay, Logic and Discrete Mathematics, PEARSON.

7. S. K. Chakraborty and B. K. Sarkar, Discrete Mathematics, OXFORD University Press.

8. Douglas B. West, Introduction to graph Theory, PHI

9. C. L. Liu, Elements of Discrete Mathematics, 2nd Ed., Tata McGraw-Hill, 2000.

10. R. C. Penner, Discrete Mathematics: Proof Techniques and Mathematical Structures, World Scientific, 1999.

11. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd Ed., Addison-Wesley, 1994.

12. N. Deo, Graph Theory, Prentice Hall of India, 1974.

13. S. Lipschutz and M. L. Lipson, Schaum's Outline of Theory and Problems of Discrete

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

Mathematics, 2nd Ed., Tata McGraw-Hill, 1999.

14. J. P. Tremblay and R. P. Manohar, Discrete Mathematics with Applications to Computer Science, Tata McGraw-Hill, 1997.

15. Russell Merris, Combinatorics, Wiley-Interscience series in Discrete Mathematics and Optimisation

16. N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI

17. Gary Haggard, John Schlipf and Sue Whitesides, Discrete Mathematics for Computer Science, CENGAGE Learning

18. Gary Chartrand and Ping Zhang – Introduction to Graph Theory, TMH

19. S.B. Singh, Discrete Structures, KPH

20. S.B. Singh, Combinatorics & Graph Theory, Khanna Book Publishing Co. (P) Ltd. Delhi

Course Outcome(s)

On completion of the course students will be able to

PCC-CS401.1 Express a logic sentence in terms of predicates, quantifiers, and logical connectives

PCC-CS401.2 Derive the solution for a given problem using deductive logic and prove the solution based on logical inference

PCC-CS401.3 Classify its algebraic structure for a given a mathematical problem,

PCC-CS401.4 Evaluate Boolean functions and simplify expressions using the properties of Boolean algebra

PCC-CS401.5 Develop the given problem as graph networks and solve with techniques of graph theory.

Computer Architecture Code: PCC-CS402 Contacts: 3L

Name	e of the Course:	Computer Architecture		
Cours	se Code: PCC-CS402	Semester: IV		
Durat	tion: 6 months	Maximum Marks:1	100	
Teac	hing Scheme		Examination Scheme	
Theor	ry: 3 hrs./week		Mid Semester exam: 15	
Tutor	rial: NIL		Assignment and Quiz: 10 marks	
			Attendance: 5 marks	
Practical: hrs./week End Semester Exam: 70 Marks		End Semester Exam: 70 Marks		
Credi	Credit Points: 3			
Obje	ctive:			
1	To learn the basics	of stored program c	oncepts.	
2	To learn the princip	les of pipelining		
3	To learn mechanisn	n of data storage		
4	To distinguish between the concepts of serial, parallel, pipeline architecture.		serial, parallel, pipeline architecture.	
Pre-Requisite:				
1	Basic Structure of Computers, Functional units, software, performance issues			
	software, machine in	structions		
2	RAM, ROM, Memory	management		

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Review of basic computer architecture (Revisited), Quantitative techniques in computer design,	12	
	measuring and reporting performance. (3L)		
	Pipelining: Basic concepts, instruction and arithmetic pipeline, data hazards, control hazards		
	and structural hazards, techniques for handling hazards. Exception handling. Pipeline optimization		
	techniques; Compiler techniques for improving		
	performance. (9L)		
2	Hierarchical memory technology: Inclusion, Coherence and locality properties; Cache memory organizations,	8	
	Techniques for reducing cache misses; Virtual memory organization, mapping and management techniques, memory replacement policies. (8L)		
3	Instruction-level parallelism: basic concepts, techniques for increasing ILP, superscalar, super- pipelined and VLIW processor architectures. Array	6	

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

	and vector processors. (6L)	
4.	Multiprocessor architecture: taxonomy of parallel architectures; Centralized shared- memory	7
	architecture: synchronization, memory consistency, interconnection networks. Distributed shared- memory architecture. Cluster computers. (8L)	
	Non von Neumann architectures: data flow computers, reduction computer architectures, systolic architectures. (4L)	

Text/Reference Books:

1. V. Carl, G. Zvonko and S. G. Zaky, "Computer organization", McGraw Hill, 1978.

2. B. Brey and C. R. Sarma, "The Intel microprocessors", Pearson Education, 2000.

3. J. L. Hennessy and D. A. Patterson, "Computer Architecture A Quantitative Approach", Morgan Kauffman, 2011.

4. W. Stallings, "Computer organization", PHI, 1987.

5. P. Barry and P. Crowley, "Modern Embedded Computing", Morgan Kaufmann, 2012.

6. N. Mathivanan, "Microprocessors, PC Hardware and Interfacing", Prentice Hall, 2004.

7. Y. C. Lieu and G. A. Gibson, "Microcomputer Systems: The 8086/8088 Family", Prentice Hall India, 1986.

8. J. Uffenbeck, "The 8086/8088 Design, Programming, Interfacing", Prentice Hall, 1987.

9. B. Govindarajalu, "IBM PC and Clones", Tata McGraw Hill, 1991.

10. P. Able, "8086 Assembly Language Programming", Prentice Hall India6. Winfried Karl Grassmann and Jean-Paul Tremblay, Logic and Discrete Mathematics, PEARSON.

Course Outcomes:

On completion of the course students will be able to

PCC-CS402.1 Learn pipelining concepts with a prior knowledge of stored program methods

PCC-CS402.2 Learn about memory hierarchy and mapping techniques.

PCC-CS402.3 Study of parallel architecture and interconnection network

Formal Language & Automata Theory Code: PCC-CS403 Contacts: 3L

Name	e of the Course:	Formal Language & Automata Theory		
Cours	se Code: PCC-CS403	Semester: IV		
Durat	tion: 6 months	Maximum Marks:1	00	
Teac	hing Scheme		Examination Scheme	
	01 (1		NULC 45	
-	ry: 3 hrs./week		Mid Semester exam: 15	
Tutor	ial: NIL		Assignment and Quiz: 10 marks	
			Attendance: 5 marks	
Pract	ical: NIL		End Semester Exam: 70 Marks	
Credi	t Points:	3		
Objec	ctive:			
1	Be able to construct	finite state machines and the equivalent regular expressions.		
2	Be able to prove the	e equivalence of lang	uages described by finite state machines	
	and regular express	ions		
3	Be able to construct pushdown automata and the equivalent context free			
	grammars.			
	And Be able to prov	e the equivalence of	languages described by pushdown	
	automata and conte	ext free grammars.		
4	Be able to construct	Turing machines a	nd Post machines.	
	Be able to prove the equivalence of languages described by Turing machines and			
	Post machines			
Pre-F	Requisite:			
1	Grammar and its cla	assification (Context	Free Grammar)	

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Alphabet, languages and grammars, productions and derivation, Chomsky hierarchy of languages.	6	
2	Regular languages and finite automata: Regular expressions and languages, deterministic finite automata (DFA) and equivalence with regular expressions, nondeterministic finite automata (NFA) and equivalence with DFA, regular grammars and equivalence with finite automata, properties of regular languages, pumping lemma for regular languages, minimization of finite automata)	7	
	Context-free languages and pushdown automata:		

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

	(Applicable from the academic session 20	18-2019)
3	Context-free grammars (CFG) and languages (CFL),	6
	Chomsky and Greibach normal forms,	
	nondeterministic pushdown automata (PDA) and	
	equivalence with CFG, parse trees, ambiguity in	
	CFG, pumping lemma for context-free languages,	
	deterministic push down automata, closure properties of CFLs.	
	Context-sensitive languages: Context-sensitive	
4.	grammars (CSG) and languages, linear bounded	6
	automata and equivalence with CSG.	
5	Turing machines: The basic model for Turing	6
	machines (TM), Turing recognizable(recursively	
	enumerable) and Turing-decidable (recursive)	
	languages and their closure properties, variants of	
	Turing machines, nondeterministic TMs and	
	equivalence with deterministic TMs, unrestricted	
	grammars and equivalence with Turing machines,	
	TMsas enumerators	
6	Undecidability: Church-Turing thesis, universal	6
	Turing machine, the universal and diagonalization	
	languages, reduction between languages and Rice s	
	theorem, undecidable problems about languages	

Text books/ reference books:

1. John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson Education Asia.

2. Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation, Pearson Education Asia.

3. Dexter C. Kozen, Automata and Computability, Undergraduate Texts in Computer Science, Springer.

4. Michael Sipser, Introduction to the Theory of Computation, PWS Publishing.

5. John Martin, Introduction to Languages and The Theory of Computation, TataMcGraw Hill., PEARSON.

6. Dr. R.B. Patel, Theory of Computation, Khanna Publishing House

7. Mishra, Theory of Computers, PHI Publications

Course Outcomes:

On completion of the course students will be able to

PCC-CS403.1 Write a formal notation for strings, languages and machines.

PCC-CS403.2 Design finite automata to accept a set of strings of a language.

PCC-CS403.3 For a given language determine whether the given language is regular or not.

PCC-CS403.4 Design context free grammars to generate strings of context free language. PCC-CS403.5 Determine equivalence of languages accepted by Push Down Automata and languages generated by context free grammars

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

PCC-CS403.6 Write the hierarchy of formal languages, grammars and machines.

PCC-CS403.7 Distinguish between computability and non-computability and Decidability and undecidability

Design and Analysis of Algorithms Code: PCC-CS404 Contacts: 3L

Name	of the Course:	Design and Analysis of Algorithms		
Cours	e Code: PCC-CS404	Semester: IV		
Durat	ion: 6 months	Maximum Marks	s:100	
Teach	ning Scheme		Examination Scheme	
Theor	y: 3 hrs./week		Mid Semester exam: 15	
Tutor	ial: NIL		Assignment and Quiz: 10 marks	
A			Attendance: 5 marks	
Practi	cal: hrs./week		End Semester Exam: 70 Marks	
Credit	Points:	3		
Objec	tive:			
1	1 The aim of this module is to learn how to develop efficient algorithms for simple computational tasks and reasoning about the correctness of them			
2	Through the complexity measures, different range of behaviors of algorithms			
	and the notion of tractable and intractable problems will be understood.		ctable problems will be understood.	
Pre-Requisite:				
1	To know data-structure and basic programming ability			

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurements of Algorithm, Time and space trade-offs, Analysis of recursive algorithms through recurrence relations: Substitution method, Recursion tree method and	8	
	Masters' theorem		
2	Fundamental Algorithmic Strategies: Brute-Force, Greedy, Dynamic Programming, Branch and- Bound and Backtracking methodologies for the design of algorithms; Illustrations of these techniques for Problem-Solving, Bin Packing, Knap Sack TSP. Heuristics –characteristics and their application domains.	8	
	Graph and Tree Algorithms: Traversal algorithms:		

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Information Technology

	(Applicable from the academic session 2	018-2019)	
3	Depth First Search (DFS) and Breadth First Search	6	
	(BFS); Shortest path algorithms, Transitive		
	closure, Minimum Spanning Tree, Topological		
	sorting, Network Flow Algorithm.		
	Tractable and Intractable Problems: Computability		
4.	of Algorithms, Computability classes – P,NP, NP-	10	
	complete and NP-hard. Cook's theorem, Standard		
	NP-complete problems and Reduction techniques.		
5	Advanced Topics: Approximation algorithms,	4	
	Randomized algorithms, Class of problems beyond		

Text books/ reference books:

NP - P SPACE

1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.

2. Fundamentals of Algorithms – E. Horowitz et al.

4. Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson.

5. Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.

6. Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading, MA

7. Gajendra Sharma, Design & Analysis of Algorithms, Khanna Publishing House, Delhi

Course Outcomes

On completion of the course students will be able to

PCC-CS404.1 For a given algorithms analyze worst-case running times of algorithms based on asymptotic analysis and justify the correctness of algorithms.

PCC-CS404.2 Describe the greedy paradigm and explain when an algorithmic design situation calls for it. For a given problem develop the greedy algorithms.

PCC-CS404.3 Describe the divide-and-conquer paradigm and explain when an algorithmic design situation calls for it. Synthesize divide-and-conquer algorithms. Derive and solve recurrence relation.

PCC-CS404.4 Describe the dynamic-programming paradigm and explain when an algorithmic design situation calls for it. For a given problems of dynamic-programming and

PCC-CS404.5 develop the dynamic programming algorithms, and analyze it to determine its computational complexity.

PCC-CS404,6 For a given model engineering problem model it using graph and write the corresponding algorithm to solve the problems.

PCC-CS404.7 Explain the ways to analyze randomized algorithms (expected running time, probability of error).

PCC-CS404.8 Explain what an approximation algorithm is. Compute the approximation factor of an approximation algorithm (PTAS and FPTAS).

Biology Code: BSC 401 Contacts: 2L+1T

Name o	of the Course:	Biology	
Course	Course Code: BSC-401 Semester: IV		
Duratio	on: 6 months	Maximum Marks:100)
Teachi	ng Scheme		Examination Scheme
Theory	: 2hrs./week		Mid Semester exam: 15
Tutoria	ıl: 1 hour		Assignment and Quiz: 10 marks
Attendance: 5 marks		Attendance: 5 marks	
Practical: NIL			End Semester Exam: 70 Marks
Credit Points: 3		3	
Object	ive:		
1	Bring out the fu	indamental difference	s between science and engineering
2	2 Discuss how biological observations of 18th Century that lead to major		of 18th Century that lead to major
discoveries			
Pre-Re	Pre-Requisite:		
1	1 Basic knowledge of Physics ,Chemistry and mathematics		

Unit	Content	Hrs/Unit	Marks/Unit
1	To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry Bring out the fundamental differences between science and engineering by drawing a	2	
	comparison between eye and camera, Bird flying and aircraft. Mention the most exciting		
	aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th		
	Century that lead to major discoveries. Examples from Brownian motion and the origin of		
	thermodynamics by referring to the		
	original observation of Robert Brown and Julius Mayor. These examples will highlight the fundamental importance of observations in any		
	scientific inquiry.		
2	The underlying criterion, such as morphological, biochemical or ecological be highlighted.	3	
	Hierarchy of life forms at phenomenological level. A common thread weaves this hierarchy		
	Classification. Discuss classification based on (a) cellularity- Unicellular or multicellular (b)		
	ultrastructure- prokaryotes or eucaryotes. (c)		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-201	9)
--	----

1	(Applicable from the academic session 20	10-2017)	
	energy and Carbon utilisation -Autotrophs,		
	heterotrophs, lithotropes (d) Ammonia excretion		
	– aminotelic, uricoteliec, ureotelic (e)		
	Habitata- acquatic or terrestrial (e) Molecular		
	taxonomy- three major kingdoms of life. A		
	given organism can come under different		
	category based on classification. Model organisms		
	for the study of biology come from different		
	groups. E.coli, S.cerevisiae, D. Melanogaster,		
	• •		
	C. elegance, A. Thaliana, M. musculus		
	To convey that "Genetics is to biology what		
3	Newton's laws are to Physical Sciences" Mendel's	4	
	laws, Concept of segregation and independent		
	assortment. Concept of allele. Gene		
	mapping, Gene interaction, Epistasis. Meiosis and		
	Mitosis be taught as a part of genetics.		
	Emphasis to be give not to the mechanics of cell		
	division nor the phases but how genetic		
	material passes from parent to offspring.		
	Concepts of recessiveness and dominance.		
	Concept of mapping of phenotype to genes.		
	Discuss about the single gene disorders in		
	humans.		
	Discuss the concept of complementation using		
	human genetics.		
	Biomolecules: To convey that all forms of life have		
4	the same building blocks and yet the	4	
4.	the same building blocks and yet the	4	
4.	manifestations are as diverse as one can imagine	4	
4.	manifestations are as diverse as one can imagine Molecules of life. In this context discuss	4	
4.	manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures.	4	
4.	manifestations are as diverse as one can imagine Molecules of life. In this context discuss	4	
4.	manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino	4	
4.	manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and	4	
	manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids.		
4.	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life 	4	
	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth 		
	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed 		
	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth 		
	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed 		
	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of 		
	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two 		
	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic 		
	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these 		
5	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis. 	4	
	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these 		
5	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis. 	4	
5	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis. Information Transfer:The molecular basis of coding and decoding genetic information is 	4	
5	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis. Information Transfer:The molecular basis of coding and decoding genetic information is universal 	4	
5	 manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids. Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis. Information Transfer:The molecular basis of coding and decoding genetic information is 	4	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable	from the	academic	session	2018_2019)
(Applicable	monn une	academic	20221011	2010-2019)

(Applicable from the academic session 2018-2019)				
	structure- from single stranded to double helix to			
	nucleosomes. Concept of genetic code.			
	Universality and degeneracy of genetic code.			
	Define gene in terms of complementation and			
	recombination.			
7	Macromolecular analysis: How to analyse	5		
	biological processes at the reductionist level			
	Proteins- structure and function. Hierarch in			
	protein structure. Primary secondary, tertiary and			
	quaternary structure. Proteins as enzymes,			
	transporters, receptors and structural elements.			
8	Metabolism: The fundamental principles of	4		
	energy transactions are the same in physical and			
	biological world.			
	Thermodynamics as applied to biological systems.			
	Exothermic and endothermic versus			
	endergonic and exergoinc reactions. Concept of			
	Kegand its relation to standard free energy.			
	Spontaneity. ATP as an energy currency. This			
	should include the breakdown of glucose to			
	CO ₂ + H ₂ O (Glycolysis and Krebs cycle) and			
	synthesis of glucose from CO ₂ and H ₂ O			
	(Photosynthesis). Energy yielding and energy			
	consuming reactions. Concept of Energy			
	charge			
9	Microbiology Concept of single celled organisms.	3		
	Concept of species and strains. Identification and			
	classification of microorganisms. Microscopy.			
	Ecological aspects of single celled			
	organisms. Sterilization and media compositions.			
	Growth kinetics.			

Text books/ reference books:

1. Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd

2. Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H. John Wiley and Sons

3. Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H. Freeman and Company

4. Molecular Genetics (Second edition), Stent, G. S.; and Calender, R. W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher

5. Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C. Brown Publishers

6. Biology for Engineers, McGraw Hill (ISBN: 978-11-21439-931)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

Course Outcomes:

On completion of the course students will be able to

BSC-401.1 Describe how biological observations of $18\ensuremath{\scriptscriptstyle th}$ Century that lead to major discoveries.

BSC-401.2 Convey that classification *per se* is not what biology is all about but highlight the underlying

criteria, such as morphological, biochemical and ecological

BSC-401.3 Highlight the concepts of recessiveness and dominance during the passage of genetic material

from parent to offspring

BSC-401.4 Convey that all forms of life have the same building blocks and yet the manifestations are as

diverse as one can imagine

BSC-401.5 Classify enzymes and distinguish between different mechanisms of enzyme action.

BSC-401.6 Identify DNA as a genetic material in the molecular basis of information transfer.

BSC-401.7 Analyse biological processes at the reductionistic level

BSC-401.8 Apply thermodynamic principles to biological systems.

BSC-401.9 Identify and classify microorganisms.

Environmental Sciences Code: MC-401 Contacts: 1L

Name	e of the Course:	Environmental Scie	nces
Cours	se Code: MC-401	Semester: IV	
Durat	tion:6 months	Maximum Marks:100)
Teacl	hing Scheme	·	Examination Scheme
Theor	ry:1hrs./week		Mid Semester exam: 15
Tutor	rial: NIL		Assignment and Quiz : 10 marks
			Attendance : 5 marks
Practi	ical: NIL		End Semester Exam :70 Marks
Credi	Credit Points: 1		
Objec	Objective:		
1	Be able to understand the natural environment and its relationships with human		
	activities.		
2	Be able to apply the fundamental knowledge of science and engineering to assess environmental and health risk.		
3	Be able to under	stand environmental l	aws and regulations to develop guidelines
	and procedures f	for health and safety is	sues.
4	Be able to solve	e scientific problem-so	olving related to air, water, noise & land
	pollution		
Pre-R	Requisite:		
1	Basic knowledge of Environmental science		

Unit	Content	Hrs/Unit	Marks/Unit
1	Basic ideas of environment, basic concepts, man, society & environment, their interrelationship (1L)	6	
	Mathematics of population growth and associated problems, Importance of population study in environmental engineering, definition of resource, types of resource, renewable, non-renewable, potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development. (2L)		
	Materials balance: Steady state conservation system, steady state system with non-conservative pollutants, step function. (1L)		
	Environmental degradation: Natural environmental Hazards like Flood, earthquake, Landslide-causes, effects and control/management; Anthropogenic		

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

	(Applicable from the academic session 2018-20	J19)	
	degradation like Acid rain-cause, effects and control. Nature and scope of Environmental Science and Engineering. (2L)		
2	Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem- components types and function. (1L)	6	
	Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain [definition and one example of each food chain], Food web.(2L)		
	Biogeochemical Cycle- definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur]. (1L)		
	Biodiversity- types, importance, Endemic species, Biodiversity Hot-spot, Threats to biodiversity, Conservation of biodiversity.(2L)		
3	Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesopause. (1L)	11	
	Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model [Earth as a black body, earth as albedo], Problems.(1L)		
	Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth's heat budget.(1L)		
	Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).(2L)		
	Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L)		
	Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology (Applicable from the academic session 2018-2019)

	(Applicable from the academic session 2018-2019)			
	pollutant. Sources and effect of different air pollutants- Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN. (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L)			
	Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)			
4.	Hydrosphere, Hydrological cycle and Natural water. Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, volatile organic compounds. (2L)	9		
	River/Lake/ground water pollution: River: DO, 5-day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river [deoxygenation, reaeration], COD, Oil, Greases, pH. (2L)			
	Lake: Eutrophication [Definition, source and effect]. (1L)			
	Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only)(1L)			
	Standard and control: Waste water standard [BOD, COD, Oil, Grease],			
	Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening] Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated sludge, sludge treatment, oxidation ponds] tertiary treatment definition. (2L)			
	Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic (1L)			
5	Lithosphere; Internal structure of earth, rock and soil (1L)	3		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019))
---	------------

	Solid Waste: Municipal, industrial, commercial,		
	agricultural, domestic, pathological and hazardous solid		
	wastes;		
	Recovery and disposal method- Open dumping, Land		
	filling, incineration, composting, recycling.		
	Solid waste management and control (hazardous and		
	biomedical waste).(2L)		
6	Definition of noise, effect of noise pollution, noise	3	
	classification [Transport noise, occupational noise,		
	neighbourhood noise] (1L)		
	Definition of noise frequency, noise pressure, noise		
	intensity, noise threshold limit value, equivalent noise		
	level,		
	<i>L</i> 10 (18hr Index) , <i>n Ld</i> .Noise pollution control. (1L)		
7	Environmental impact assessment, Environmental	2	
	Audit, Environmental laws and protection act of India,		
	Different international environmental treaty/		
	agreement/ protocol. (2L)		

Text books/ reference books:

- 1. Masters, G. M., "Introduction to Environmental Engineering and Science", Prentice-Hall of India Pvt. Ltd.,1991.
- 2. Erach Bharucha, Environmental Studies, University Press
- 3. M.P. Poonia, Environmental Studies, Khanna Publishing House
- 4. De, A. K., "Environmental Chemistry", New Age International
- 5. Rajagopalan, Environmental Studies, Oxford University Press

Course Outcomes:

On completion of the course students will be able to

MC-401.1 To understand the natural environment and its relationships with human activities.

MC-401.2 To apply the fundamental knowledge of science and engineering to assess environmental and health risk.

MC-401.3 To develop guidelines and procedures for health and safety issues obeying the environmental laws and regulations.

MC-401.4 Acquire skills for scientific problem-solving related to air, water, noise& land pollution.

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Information Technology (Applicable from the academic session 2018-2019) PRACTICAL SYLLABUS Semester IV

Computer Architecture Lab Code: PCC-CS492 Contacts: 4P

Name of	of the Course:	Computer Architecture Lab
Course	Code: PCC-CS492	Semester: IV
Duratio	on: 6 months	Maximum Marks:100
Teach	ing Scheme:	
Theory	/: hrs./week	Continuous Internal Assessment
Tutoria	al: NIL	External Assesement: 60
Practical: 4 hrs./week Distribution of		Distribution of marks: 40
Credit	Points:	2
Course	Course Outcomes:	
1	PCC-CS402.1	
2	PCC-CS402.2	
3	PCC-CS402.3	
Pre-Requisite:		
1	The hardware based o	lesign has been done in 1.the Analog & Digital
	Electronics laboratory	
2	Computer Organisation l	aboratory

Laboratory Experiments:		
1	HDL introduction.	
2	Basic digital logic base programming with HDL	
3	8-bit Addition, Multiplication, Division	
4	8-bit Register design	
5	Memory unit design and perform memory operations.	
6	8-bit simple ALU design	
7	8-bit simple CPU design	
8	Interfacing of CPU and Memory.	

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Contact: 4P

Name of	f the Course:	Design & Analysis Algorithm Lab	
Course Code: PCC-CS494		Semester: IV	
Duration:6 months		Maximum Marks:100	
Teaching Scheme:			
Theory: hrs./week		Continuous Internal Assessment	
Tutorial: NIL		External Assesement: 60	
Practical: 4 hrs./week		Distribution of marks: 40	
Credit Points:		2	
Course	Course Outcomes:		
1	PCC-CS402.1		
2	PCC-CS402.2		
3	PCC-CS402.3		
Pre-Requisite:			
Pre-Requisite as in : PCC-CS404			

Laborat	ory Experiments:
Divide a	ind Conquer:
1	Implement Binary Search using Divide and Conquer approach
	Implement Merge Sort using Divide and Conquer approach
2	Implement Quick Sort using Divide and Conquer approach
	Find Maximum and Minimum element from a array of integer using Divide
	and Conquer approach
3	Find the minimum number of scalar multiplication needed for chain of
	matrix
4	Implement all pair of Shortest path for a graph (Floyed- Warshall Algorithm)
	Implement Traveling Salesman Problem
5	Implement Traveling Salesman Problem Implement Single Source shortest Path for a graph (Dijkstra , Bellman Ford
D 1	Algorithm
	and Bound:
6	Implement 15 Puzzle Problem
Backtra	cking:
7	Implement 8 Queen problem
8	Graph Coloring Problem
	Hamiltonian Problem
Greedy	method
9	Knapsack Problem
	Job sequencing with deadlines
10	Minimum Cost Spanning Tree by Prim's Algorithm
	Minimum Cost Spanning Tree by Kruskal's Algorithm
Graph T	raversal Algorithm:
11	Implement Breadth First Search (BFS)
	10

(Applicable from the academic session 2010-2
Implement Depth First Search (DFS)

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)