(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

SEMESTER - VI

Database Management Systems

Code: PCCCS601 Contact: 3L

Name	e of the Course:	Database Management Systems	
Course Code: PCC-CS601 Semester: V		Semester: VI	
Durat	ion:6 months	Maximum Marks:	100
Teacl	hing Scheme		Examination Scheme
Theor	ry:3 hrs./week		Mid Semester exam: 15
	ial: NIL		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Practi	cal: hrs./week		End Semester Exam:70 Marks
Credi	t Points:	3	
Objective:			
1	To understand the different issues involved in the design and implementation of a		
	database system.		
2	1 2 2	_	designs, database modeling, relational,
	hierarchical, and netw		
3	To understand and use data manipulation language to query, update, and manage a		anguage to query, update, and manage a
	database		
4	1 *	_	DBMS concepts such as: database security,
			e, and intelligent database, Client/Server
	(Database Server), Data Warehousing.		
5		To design and build a simple database system and demonstrate competence with the	
			g, designing, and implementing a DBMS.
6		ferent issues involve	d in the design and implementation of a
	database system.		

Unit	Content	Hrs/Unit	Marks/Unit
1	Database system architecture: Data Abstraction, Data Independence, Data Definition Language (DDL), Data Manipulation Language (DML). Data models: Entity-relationship model, network model, relational and object oriented data models, integrity constraints, data manipulation operations.	9	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

2	Relational query languages: Relational algebra, Tuple and domain relational calculus, SQL3, DDL and DML constructs, Open source and Commercial DBMS - MYSQL, ORACLE, DB2, SQLserver. Relational database design: Domain and data dependency, Armstrong's axioms, Normal forms, Dependency preservation, Losslessdesign. Query processing and optimization: Evaluation of relational algebra expressions, Query equivalence, Join strategies, Query optimization algorithms.	13
3	Storage strategies: Indices, B-trees, hashing.	3
4.	Transaction processing: Concurrency control, ACID property, Serializability of scheduling, Locking and timestamp based schedulers, Multiversion and optimistic Concurrency Control schemes, Database recovery.	5
5	Database Security: Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion detection, SQL injection.	3
6	Advanced topics: Object oriented and object relational databases, Logical databases, Web databases, Distributed databases, Data warehousing and data mining.	3

- 1."Database System Concepts", 6th Edition by Abraham Silberschatz, Henry
- F. Korth, S. Sudarshan, McGraw-Hill.
- 2. "Principles of Database and Knowledge Base Systems", Vol 1 by J. D. Ullman, Computer SciencePress.
- 3. "Fundamentals of Database Systems", 5th Edition by R. Elmasri and S. Navathe,
- 4.PearsonEducation "Foundations of Databases", Reprint by Serge Abiteboul, Richard Hull, Victor Vianu, Addison-Wesley
- 5. Database Management Systems, R.P. Mahapatra, Khanna Publishing House

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

Course Outcomes:

On completion of the course students will be able to

- 1. For a given query write relational algebra expressions for that query and optimize the developed expressions
- 2. For a given specification of the requirement design the databases using E R method and normalization.
- 3. For a given specification construct the SQL queries for Open source and Commercial DBMS -MYSQL, ORACLE, and DB2.
- 4. For a given query optimize its execution using Query optimizationalgorithms
- 5. For a given transaction-processing system, determine the transaction atomicity, consistency, isolation, and durability.
- 6. Implement the isolation property, including locking, time stamping based on concurrency control and Serializability of scheduling.

Computer Networks Code: PCC-CS602

Name	of the Course:	Computer Networks		
Cours	se Code: PCC-CS602	Semester: VI		
Durat	ion:6 months	Maximum Marks:	100	
Teach	ning Scheme		Examination Scheme	
Theor	ry:3 hrs./week		Mid Semester exam: 15	
Tutor	· ·		Assignment and Quiz: 10 marks	
	Attendance: 5 marks			
Practi	Practical: hrs./week End Semester Exam:70 Marks		End Semester Exam:70 Marks	
Credit	t Points:	3		
Objec	Objective:			
1	To develop an unders	standing of modern 1	network architectures from a design and	
	performance perspective.			
2	To introduce the student to the major concepts involved in wide-area networks			
	(WANs), local area networks (LANs) and Wireless LANs (WLANs).			
3	To provide an opportunity to do network programming			
4	To provide a WLAN measurement ideas.			

Unit	Content	Hrs/Unit	Marks/Unit
	Data communication Components:		
1	Representation of data and its flow	9	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

	Networks, Various Connection Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless LANs, Connecting LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing - Frequency division, Time division and Wave division, Concepts on spread spectrum.	
2	Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back - N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA,CSMA/CD,CDMA/CA	8
3	Network Layer: Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols.	14
4.	Transport Layer: Process to Process Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.	8
5	Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography.	8

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Information Technology (Applicable from the academic session 2018-2019)

Text book and Reference books:

- 1. Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos.
- 4. "Design and Analysis of Algorithms" by Gajendra Sharma.

Course Outcomes:

On completion of the course students will be able to

- 1. Understand research problem formulation.
- 2. Analyze research related information
- 3. Follow research ethics
- 4. Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- 5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- 6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Advanced Algorithms Code: PEC-IT601 A

Name	of the Course:	Advanced Algorithms	
Course	e Code: PEC-IT601A	Semester: VI	
Durati	on:6 months	Maximum Marks:100	
Teach	ing Scheme	Examination Schen	ne
Theory	y:3 hrs./week	Mid Semester exam:	15
Tutoria	al: NIL	Assignment and Qui	z: 10 marks
		Attendance: 5 marks	
Practic	al: NIL	End Semester Exam	:70 Marks
Credit	Credit Points: 3		
Objec	Objective:		
1	Introduce students to	the advanced methods of designing and analyzing algorithms.	
2	The student should be	e able to choose appropriate algorithms and use it for a specific	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

	problem.
3	To familiarize students with basic paradigms and data structures used to solve
	advanced algorithmic problems.
4	Students should be able to understand different classes of problems concerning their
	computation difficulties.
5	To introduce the students to recent developments in the area of algorithmic design.
Pre-R	Requisite:
1	Algorithm Design and Analysis

Unit	Content	Hrs/Unit	Marks/Unit
	Sorting: Review of various sorting algorithms,		
1	topological sorting	6	
	Graph: Definitions and Elementary Algorithms:		
	Shortest path by BFS, shortest path in edge-weighted		
	case (Dijkasra's), depth-first search and computation		
	of strongly connected components, emphasis on		
	correctness proof of the algorithm and time/space		
	analysis, example of amortized analysis.		
	Matroids: Introduction to greedy paradigm,	8	
2	algorithm to compute a maximum		
	weight maximal independent set. Application to		
	MST.		
	Graph Matching: Algorithm to compute maximum		
	matching. Characterization of		
	maximum matching by augmenting paths, Edmond's		
	Blossom algorithm to compute augmenting path.	0	
	Flow-Networks: Maxflow-mincut theorem, Ford-	9	
	Fulkerson Method to compute		
	maximum flow, Edmond-Karp maximum-flow		
	algorithm.		
	Matrix Computations: Strassen's algorithm and introduction to divide and		
	conquer paradigm, inverse of a triangular matrix,		
	relation between the time		
	complexities of basic matrix operations,		
	LUP-decomposition.		
	Shortest Path in Graphs: Floyd-Warshall	10	
3	algorithm and introduction to dynamic	- •	
	programming paradigm. More examples of dynamic		
	programming.		
	Modulo Representation of integers/polynomials:		
	Chinese Remainder Theorem,		
	Conversion between base-representation and		
	modulo-representation. Extension to		
	polynomials. Application: Interpolation problem.		
	Discrete Fourier Transform (DFT): In complex		
	field, DFT in modulo ring. Fast		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

	Fourier Transform algorithm. Schonhage-Strassen		
	Integer Multiplication algorithm		
	Linear Programming: Geometry of the feasibility	10	
4.	region and Simplex algorithm		
	NP-completeness: Examples, proof of NP-hardness		
	and NP-completeness.		
	One or more of the following topics based on time		
	and interest		
	Approximation algorithms, Randomized Algorithms,		
	Interior Point Method,		
	Advanced Number Theoretic Algorithm		
5	Recent Trands in problem solving paradigms using	5	
	recent searching and sorting techniques by applying		
	recently proposed data structures.		

Text book and Reference books:

- 1. "Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos.
- 4. "Design and Analysis of Algorithms" by Gajendra Sharma.

Course Outcomes:

On completion of the course students will be able to

- 1. Analyze the complexity/performance of different algorithms.
- 2. Determine the appropriate data structure for solving a particular set of problems.
- 3. Categorize the different problems in various classes according to their complexity.
- 4. Students should have an insight of recent activities in the field of the advanced data structure.

Distributed Systems Code: PEC-IT601B

Name of the Course:	se: Distributed Systems	
Course Code: PEC-IT601B	Semester: VI	
Duration:6 months	Maximum Marks:100	
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credi	t Points:	3
Objective:		
1	To introduce the fundamental concepts and issues of managing large volume of shared data in a parallel and distributed environment, and to provide insight into related research problems.	
Pre-Requisite:		
1	Database Management Systems	

Unit	Content	Hrs/Unit	Marks/Unit
	INTRODUCTION		
1	Distributed data processing; What is a DDBS;	8	
	Advantages and disadvantages of DDBS; Problem		
	areas; Overview of database and computer network		
	concepts DISTRIBUTED DATABASE		
	MANAGEMENT SYSTEM ARCHITECTURE		
	Transparencies in a distributed DBMS; Distributed		
	DBMS architecture; Global directory issues		
	DISTRIBUTED DATABASE	11	
2	DESIGN		
	Alternative design strategies;		
	Distributed design issues;		
	Fragmentation; Data allocation		
	SEMANTICS DATA CONTROL		
	View management; Data security;		
	Semantic Integrity Control QUERY		
	PROCESSING ISSUES		
	Objectives of query processing;		
	Characterization of query processors;		
	Layers of query processing; Query		
	decomposition; Localization of		
	distributed data	1.1	
	DISTRIBUTED QUERY OPTIMIZATION	11	
3	Factors governing query optimization; Centralized		
	query optimization; Ordering of fragment queries; Distributed query optimization algorithms		
	TRANSACTION MANAGEMENT		
	The transaction concept; Goals of transaction		
	management; Characteristics of transactions;		
	Taxonomy of transaction models		
	CONCURRENCY CONTROL		
	Concurrency control in centralized database systems;		
	Concurrency control in DDBSs; Distributed		
	concurrency control algorithms; Deadlock		
	management		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

	Reliability issues in DDBSs; Types of failures;	8	
4.	Reliability techniques; Commit protocols; Recovery		
	protocols Algorithm		
5	PARALLEL DATABASE SYSTEMS	6	
	Parallel architectures; parallel query		
	processing		
6	ADVANCED TOPICS Mobile	4	
	Databases, Distributed Object		
	Management, Multi-databases		

Text book and Reference books:

- 1. Principles of Distributed Database Systems, M.T. Ozsu and PValduriez, Prentice-Hall, 1991.
- 2. Distributed Database Systems, D. Bell and J. Grimson, Addison-Wesley, 1992.

Course Outcomes:

On completion of the course students will be able to

- 1. Design trends in distributed systems.
- 2. Apply network virtualization.
- 3. Apply remote method invocation and objects.

Software Engineering Code:PEC-IT601C

Name of the Course:	Software Engineering	
Course Code: PEC-IT601C	Semester: VI	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
------	---------	----------	------------

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

1	Overview of System Analysis & Design , Business System Concept, System Development Life Cycle, Waterfall Model , Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model. [10L]	10
2	System Design – Context diagram and DFD, Problem Partitioning, Top-Down And Bottom-Up design; Decision tree, decision table and structured English; Functional vs. Object- Oriented approach. [5L]	5
3	Coding & Documentation – Structured Programming, OO Programming, Information Hiding, Reuse, System Documentation. [4L] Testing – Levels of Testing, Integration Testing, Test case Specification, Reliability Assessment, Validation & Verification Metrics, Monitoring & Control. [8L]	12
4.	Software Project Management – Project Scheduling, Staffing, Software Configuration Management, Quality Assurance, Project Monitoring. [7L]	7
5	Static and dynamic models, why modeling, UML diagrams: Class diagram, interaction diagram: collaboration diagram, sequence diagram, state chart diagram, activity diagram, implementation diagram. [10 L]	10

- 1. Pressman, Software Engineering: A practitioner's approach—(TMH)
- 2. Pankaj Jalote, Software Engineering- (Wiley-India)
- 3. Rajib Mall, Software Engineering- (PHI)
- 4. Agarwal and Agarwal, Software Engineering (PHI)
- 5. Sommerville, Software Engineering Pearson
- 6. Martin L. Shooman, Software Engineering TMH
- 7. N.S. Gill, Software Engineering Khanna Publishing House

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

Image Processing Code:PEC-IT601 D Contact: 3L

Name of the Course:	Image Processing	
Course Code: PEC-IT601D	Semester: VI	
Duration:6 months	Maximum Marks:100	
Teaching Scheme	Examination Scheme	
Theory:3 hrs./week	Mid Semester exam: 15	
Tutorial: NIL	Assignment and Quiz: 10 marks	
	Attendance: 5 marks	
Practical: NIL	End Semester Exam:70 Marks	
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction [3L] Background, Digital Image Representation, Fundamental steps in Image Processing, Elements of Digital Image Processing - Image Acquisition, Storage, Processing, Communication, Display.	9	
2	Digital Image Formation [4L] A Simple Image Model, Geometric Model- Basic Transformation (Translation, Scaling, Rotation), Perspective Projection, Sampling & Quantization - Uniform & Non uniform.	4	
3	Mathematical Preliminaries[9L] Neighbour of pixels, Connectivity, Relations, Equivalence & Transitive Closure; Distance Measures, Arithmetic/Logic Operations, Fourier Transformation, Properties of The Two Dimensional Fourier Transform, Discrete Fourier Transform, Discrete Cosine & SineTransform.	9	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

4.	Image Enhancement [8L] Spatial Domain Method, Frequency Domain Method, Contrast Enhancement -Linear & Nonlinear Stretching, Histogram Processing; Smoothing - Image Averaging, Mean Filter, Low-pass Filtering; Image Sharpening. High-pass Filtering, High-boost Filtering, Derivative Filtering, Homomorphic Filtering; Enhancement in the frequency domain - Low pass filtering, High pass filtering.	8
5		7
	Image Restoration [7L] Degradation Model, Discrete Formulation, Algebraic Approach to Restoration - Unconstrained & Constrained; Constrained Least Square Restoration, Restoration by Homomorphic Filtering, Geometric Transformation - Spatial Transformation, Gray Level Interpolation.	
6		7
	Image Segmentation [7L] Point Detection, Line Detection, Edge detection, Combined detection, Edge Linking & Boundary Detection - Local Processing, Global Processing via The Hough Transform; Thresholding - Foundation, Simple Global Thresholding, Optimal Thresholding; Region Oriented Segmentation - Basic Formulation, Region Growing by Pixel Aggregation, Region Splitting & Merging.	

- 1. Hearn, Baker "Computer Graphics (C version 2nd Ed.)" Pearson education
- 2. Z. Xiang, R. Plastock "Schaum's outlines Computer Graphics (2nd Ed.)" TMH
- 3. D. F. Rogers, J. A. Adams "Mathematical Elements for Computer Graphics (2nd Ed.)" TMH

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

Parallel and Distributed Algorithms

Code: PEC-IT602A

Contacts: 3L

Name of the Course:	Parallel and Distributed Algorithms		
Course Code PEC-IT602A	Semester: VI		
Duration: 6 months	Maximum Mark	s: 100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points: 3			

Unit	Content	Hrs/Unit	Marks/Unit
	UNIT-I :Basic Techniques, Parallel Computers for		
1	increase Computation speed, Parallel & Cluster	8	
	Computing		
	UNIT-II :Message Passing Technique- Evaluating		
2	Parallel programs and debugging, Portioning and	8	
	Divide and Conquer strategies examples		
	UNIT-III :Pipelining- Techniques computing platform,		
3	pipeline programs examples	8	
	UNIT-IV:Synchronous Computations, load balancing,		
4.	distributed termination examples, programming with	11	
	shared memory, shared memory multiprocessor		
	constructs for specifying parallelist sharing data parallel		
	programming languages and constructs, open MP		
5	UNIT-V: Distributed shared memory systems and	9	
	programming achieving constant memory distributed		
	shared memory programming primitives, algorithms –		
	sorting and numerical algorithms.		

- 1. Parallel Programming, Barry Wilkinson, Michael Allen, Pearson Education, 2nd Edition.
- 2. Introduction to Parallel algorithms by Jaja from Pearson, 1992.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

Data Warehousing and Data Mining

Code: PEC-IT602B

Name of the Course:	Data Warehousing and Data Mining		
Course Code PEC-IT602B	Semester: VI		
Duration: 6 months	Maximum Marks	s: 100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points: 3			

Unit	Content	Hrs/Unit	Marks/Unit
1	Unit 1: Introduction to Data Warehousing; Data Mining: Mining frequent patterns, association and correlations; Sequential Pattern Mining concepts, primitives, scalable methods;	8	
2	Unit 2: Classification and prediction; Cluster Analysis – Types of Data in Cluster Analysis, Partitioning methods, Hierarchical Methods; Transactional Patterns and other temporal based frequent patterns,	8	
3	Unit 3: Mining Time series Data, Periodicity Analysis for time related sequence data, Trend analysis, Similarity search in Time-series analysis;	8	
4.	Unit 4: Mining Data Streams, Methodologies for stream data processing and stream data systems, Frequent pattern mining in stream data, Sequential Pattern Mining in Data Streams, Classification of dynamic data streams, Class Imbalance Problem; Graph Mining; Social Network Analysis; modulation for communication, filtering, feedback control systems.	11	
	Unit 5: Web Mining, Mining the web page layout structure,	9	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

m	nining web link structure,		
	nining multimedia data on the web, Automatic		
	,		
cl	lassification of web documents		
aı	nd web usage mining; Distributed Data Mining.		
U	Jnit 6:	5	
R	Recent trends in Distributed Warehousing and Data		
N	Mining, Class Imbalance		
P	Problem; Graph Mining; Social Network Analysis		

Text book and Reference books:

- 1. Data Warehousing Fundamentals for IT Professionals, Second Edition by Paulraj Ponniah, Wiley India.
- 1. Data Warehousing, Data Mining, & OLAP Second Edition by Alex Berson and Stephen J. Smith, Tata McGraw Hill Education
- 2. Data warehouse Toolkit by Ralph Kimball, Wiley India
- 3. Jiawei Han and M Kamber, Data Mining Concepts and Techniques,, Second Edition, Elsevier Publication, 2011.
- 4. Vipin Kumar, Introduction to Data Mining Pang-Ning Tan, Michael Steinbach, Addison Wesley, 2006.
- 4. G Dong and J Pei, Sequence Data Mining, Springer, 2007.

Course Outcomes:

After completion of course, students would be:

- 1. Study of different sequential pattern algorithms
- 2. Study the technique to extract patterns from time series data and it application in real world.
- 3. Can extend the Graph mining algorithms to Web mining
- 4. Help in identifying the computing framework for Big Data

Human Computer Interaction

Code: PEC-IT602C Contacts: 3L

Name of the Course: Human Computer Interaction			
Course Code: PEC-IT602C	Semester: VI		
Duration: 6 months	Maximum Marks	:100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance : 5 marks	
Practical: NIL		End Semester Exam :70 Marks	
Credit Points: 3			
Objective:			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

1	Learn the foundations of Human Computer Interaction		
2	Be familiar with the design technologies for individuals and persons with disabilities		
3	Be aware of mobile Human Computer interaction		
4	Learn the guidelines for user interface.		
Pre-R	Pre-Requisite:		
1	Computer Organization & Architecture		

Unit	Content	Hrs/U	Marks/
		nit	Unit
1	Human: I/O channels – Memory – Reasoning and problem solving; The computer: Devices – Memory – processing and networks; Interaction: Models – frameworks – Ergonomics – styles – elements – interactivity- Paradigms.	9	
2	Interactive Design basics – process – scenarios – navigation – screen design – Iteration and prototyping. HCI in software process – software life cycle	11	
	usability engineering – Prototyping in practice – design rationale. Design rules – principles, standards, guidelines, rules. Evaluation Techniques – Universal Design.		
3.	Cognitive models –Socio-Organizational issues and stake holder requirements —Communication and collaboration models-Hypertext, Multimedia and WWW.	8	
4.	Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.	8	
5.	Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Case Studies.	8	
6.	Recent Trends: Speech Recognition and Translation, Multimodal System	3	

Text book and Reference books:

1. Theodor Richardson, Charles N Thies, Secure Software Design, Jones & Bartlett

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

2. Kenneth R. van Wyk, Mark G. Graff, Dan S. Peters, Diana L. Burley, Enterprise Software Security, Addison Wesley.

Course Outcomes:

On completion of the course students will be able to

- 1. Differentiate between various software vulnerabilities.
- 2. Software process vulnerabilities for an organization.
- 3. Monitor resources consumption in a software.
- 4. Interrelate security and software development process.

Pattern Recognition

Code:PEC-IT602D

Name of the Course:	Pattern Recognition			
Course Code: PEC-IT602D	D Semester: VI		Semester: VI	
Duration:6 months	Maximum Marks:1	00		
Teaching Scheme		Examination Scheme		
Theory:3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance: 5 marks		
Practical: NIL		End Semester Exam:70 Marks		
Credit Points:	3			

Unit	Content	Hrs/Unit	Marks/Unit
1	Basics of pattern recognition	2	
	Bayesian decision theory 8L	8	
2	Classifiers, Discriminant functions, Decision surfaces		
	Normal density and discriminant functions		
	Discrete features		
	Parameter estimation methods 6L	6	
3	Maximum-Likelihood estimation		
	Gaussian mixture models		
	Expectation-maximization method		
	Bayesian estimation		
	Hidden Markov models for sequential pattern	8	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

4.	classification 8L 4.1. Discrete hidden Markov models 4.2. Continuous density hidden Markov models		
5	Dimension reduction methods 3L 5.1. Fisher discriminant analysis 5.2Principal component analysis . Parzen-window method K-Nearest Neighbour method	3	
6	Non-parametric techniques for density estimation	2	
7	Linear discriminant function based classifier 5L 7.1. Perceptron 7.2. Support vector machines	5	
8	Non-metric methods for pattern classification 4L 8.1. Non-numeric data or nominal data 8.2. Decision trees	4	
9	Unsupervised learning and clustering 2L 9.1. Criterion functions for clustering 9.2. Algorithms for clustering: K-means, Hierarchical and other methods	2	

Text book and Reference books:

- 1. R. O. Duda, P. E. Hart and D. G. Stork: Pattern Classification, John Wiley, 2001.
- 2. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009.
- 3. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Numerical Methods Code: OEC-IT601A

Name of the Course:	Numerical Methods
Course Code: OEC-IT601A	Semester: VI

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

Duration:6 months	Maximum	Maximum Marks:100		
Teaching Scheme		Examination Scheme		
Theory:3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance: 5 marks		
Practical: NIL		End Semester Exam:70 Marks		
Credit Points:	3	·		

Unit	Content	Hrs/Unit	Marks/Unit
1	Approximation in numerical computation: Truncation and rounding errors, Fixed and floating- point arithmetic, Propagation of errors.	2	
2	Interpolation: Newton forward/backward interpolation, Lagrange's and Newton's divided difference Interpolation.	8	
3	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for corresponding error terms.	3	
4.	Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU Factorization method, Gauss-Seidel iterative method.	8	
5	Numerical solution of Algebraic equation: Bisection method, Regula-Falsi method, Newton-Raphson method.	3	
6	Numerical solution of ordinary differential equation: Euler's method, Runge-Kutta methods, Predictor- Corrector methods and Finite Difference method.	2	

- 1. C.Xavier: C Language and Numerical Methods.
- 2. R.S. Salaria: Computer Oriented Numerical Methods.
- 3. Dutta & Jana: Introductory Numerical Analysis.
- 4. J.B.Scarborough: Numerical Mathematical Analysis.
- 5. Jain, Iyengar, & Jain: Numerical Methods (Problems and Solution).
- 6. Balagurusamy: Numerical Methods, Scitech.
- 7. Baburam: Numerical Methods, Pearson Education.
- 8. N. Dutta: Computer Programming & Numerical Analysis, Universities Press.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

Human Resource Development and Organizational Behavior Code: OEC-IT601 B

Name of the Course:	Human Resource Development and Organizational Behavior	
Course Code: OEC-IT601 B	Semester: VI	
Duration:6 months	Maximum Marks:100	
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Organizational Behaviour: Definition, Importance, Historical Background, Fundamental Concepts of OB,	4	
	Challenges and Opportunities for OB. [2]		
	Personality and Attitudes: Meaning of personality,		
	Personality Determinants and Traits, Development of		
	Personality, Types of Attitudes, Job Satisfaction.		
	Perception: Definition, Nature and Importance, Factors influencing Perception, Perceptual	8	
2	Selectivity, Link between Perception and Decision		
	Making. [2]		
	4. Motivation: Definition, Theories of Motivation -		
	Maslow's Hierarchy of Needs Theory, McGregor's Theory X &		
	Y, Herzberg's Motivation-Hygiene Theory,		
	Alderfer's ERG Theory, McClelland's Theory of		
	Needs, Vroom's		
	Expectancy Theory.		
	Group Behaviour: Characteristics of Group, Types	4	
3	of Groups, Stages of Group Development, Group		
	Decision Making. [2]		
	Communication: Communication Process, Direction		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

	of Communication, Barriers to Effective		
	Communication. [2]		
	Leadership: Definition, Importance, Theories of		
	Leadership Styles.		
	Organizational Politics: Definition, Factors	8	
4.	contributing to Political Behaviour. [2]		
	Conflict Management: Traditional vis-a-vis Modern		
	View of Conflict, Functional and Dysfunctional		
	Conflict,		
	Conflict Process, Negotiation – Bargaining		
	Strategies, Negotiation Process. [2]		
	Organizational Design: Various Organizational		
	Structures and their Effects on Human Behaviour,		
	Concepts of		
	Organizational Climate and Organizational Culture.		

Text book and Reference books:

- 1. Robbins, S. P. & Judge, T.A.: Organizational Behavior, Pearson Education, 15th Edn.
- 2. Luthans, Fred: Organizational Behavior, McGraw Hill, 12th Edn.
- 3. Shukla, Madhukar: Understanding Organizations Organizational Theory & Practice in India, PHI
- 4. Fincham, R. & Rhodes, P.: Principles of Organizational Behaviour, OUP, 4th Edn.
- 5. Hersey, P., Blanchard, K.H., Johnson, D.E.- Management of Organizational Behavior Leading Human Resources,

PHI, 10th Edn.

PRACTICAL SYLLABUS

Database Management System Lab

Code: PCC-CS691 Contacts: 4P

Name of the Course:	Database Management System Lab			
Course Code: PCC- CS691	Semester:VI			
Duration:6 months	Maximum Marks:100			
Teaching Scheme:				
Theory: hrs./week	Continuous Internal Assessment			
Tutorial: NIL	External Assesement:60			
Practical: 4 hrs./week	Distribution of marks:40			
Credit Points:	2			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

Laboratory Experiments:

Structured Query Language

- 1. Creating Database
 - Creating a Database
 - □ Creating a Table
 - Specifying Relational Data Types

 - Creating Indexes

2. Table and Record Handling

- INSERT statement
- Using SELECT and INSERT together
- DELETE, UPDATE, TRUNCATE statements
- DROP, ALTER statements

3. Retrieving Data from a Database

- 1. The SELECT statement
- 2. Using the WHERE clause
- 3. Using Logical Operators in the WHERE clause
- 4. Using IN, BETWEEN, LIKE, ORDER BY, GROUP BY and HAVING

Clause

- 5. Using Aggregate Functions
- 6. Combining Tables Using JOINS
- 7. Subqueries

4. Database Management

- Creating Views
- Creating Column Aliases
- Creating Database Users
- Using GRANT and REVOKE

Cursors in Oracle PL/SQL

Writing Oracle PL / SQL Stored Procedures

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

Computer Networks Lab

Code: PCC-CS692 Contacts: 4P

Name of the Course:	Computer Networks Lab		
Course Code: PCC- CS692	Semester:VI		
Duration:6 months	Maximum Marks:100		
Teaching Scheme:			
Theory: hrs./week	Continuous Internal Assessment		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Information Technology

(Applicable from the academic session 2018-2019)

Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

Laboratory Experiments: 1) NIC Installation & Configuration (Windows/Linux) 2) Understanding IP address, subnet etc Familiarization with • Networking cables (CAT5, UTP) Connectors (RJ45, T-connector) Hubs, Switches 3) TCP/UDP Socket Programming • Simple, TCP based, UDP based • Multicast & Broadcast Sockets • Implementation of a Prototype Multithreaded Server 4) Implementation of □ □ Data Link Layer Flow Control Mechanism (Stop & Wait, Sliding Window) □ □ Data Link Layer Error Detection Mechanism (Cyclic Redundancy Check) □ □ Data Link Layer Error Control Mechanism (Selective Repeat, Go Back N) 5) Server Setup/Configuration

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

FTP, TelNet, NFS, DNS, Firewall