4-Year B. Tech in Computer Science & Engineering for in-house Course - Syllabus

<u>1st Year Curriculum for B. Tech in Computer Science & Engineering for in- house Course</u>

(Applicable from the academic session 2019-2020)

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credits

B. Range of credits :

A range of credits from 150 to 160 for a student to be eligible to get B. Tech Degree in Engineering. A student will be eligible to get B. Tech Degree *with Honours*, if he/she completes an additional 20 credits. These could be acquired through Massive Open Online Courses (MOOCs).

C. MOOCs for B. Tech Honours

The additional 20 credits (for obtaining B. Tech with Honours) are to be gained through MOOCs. The complete description of the MOOCs relevant for the first year course are given in *Annexure-I*. The courses for subsequent years of study will be posted subsequently.

D. Guidelines regarding Mandatory Induction Program for the new students

All concerned are requested to follow the guidelines given in *Annexure-II* (Notice dt.06/12/2017) concerning Mandatory Induction Program. The colleges/ Institute may also refer to the AICTE Model Curriculum for Undergraduate Degree Courses in Engineering & Technology (January 2018) -Volume I (Page No.31-38), if necessary.

E. Mandatory Additional Requirement for earning B. Tech Degree

All concerned are requested to follow the guidelines in *Annexure-III* concerning Mandatory Additional Requirements.

F. Codes for Departments

1. Computer Science & Engineering ---code CSE

G. Subject Numbering Scheme:

insert image here] Image is not clear

Specific code for the subject category

List of	List of Codes for Subject Category		
Code	Category Name		
BS	Basic Science Courses		
ES	Engineering Science Courses		
	Humanities and Social Sciences including		
HM	Management courses		
PC	Professional core courses		
PE	Professional Elective courses		
OE	Open Elective courses		
MC	Mandatory courses		
PW	Project		

Sl.	Category	Subject	Subject Name	Total Number of			
No		Code		contact hours		Credits	
				L	Т	Р	
The	eory		1		-1		I
1	Basic Science						
	course	BS-CH101	Chemistry-I	3	1	0	4
2	Basic Science	BS-M101	Mathematics –IA				
	course			3	1	0	4
3	Engineering		Basic Electrical				
	Science Courses	ES-EE101	Engineering	3	1	0	4
]	Fotal Theory	y	9	3	0	12
Pra	ctical						
1			Chemistry-I				
	Basic Science	BS-CH191	Laboratory	0	0	3	2
	course						
2	Engineering		Basic Electrical				
	Science Courses	ES-EE191	Engineering	0	0	2	1
			Laboratory				
3	Engineering		Engineering				
	Science Courses		Graphics				
		ES-ME191	& Design	1	0	4	3
	T	otal Practic	al	1		9	6
	Total of First Semester		10	3	9	18	

First Year First Semester Mandatory Induction Program- 3 weeks duration

SI.	Category	Subject	Subject Name	Total Number of			
No		Code		contact hours		Credits	
				L	Т	Р	
The	eory					L	1
1	Basic Science courses	BS-PH201	Physics-I (Gr-B)	3	1	0	4
2	Basic Science courses	BS-M201	Mathematics –IIA	3	1	0	4
3	Engineering Science Courses	ES-CS201	Programming for Problem Solving	3	0	0	3
4	Humanities and Social Sciences including Management courses	HM-HU201	English	2	0	0	2
		Total Theory		11	2	0	13
Pra	ctical						
1	Basic Science courses	BS-PH291	Physics-I Laboratory	0	0	3	2
2	Engineering Science Courses	ES-CS291	Programming for Problem Solving	0	0	4	2
3	Engineering Science Courses	ES-ME292	Workshop/Manufact uring Practices	1	0	4	3
4.	Humanities and Social Sciences including Management courses	HM-HU291	Language Laboratory	0	0	2	1
	']	Fotal Practica	l	1	0	13	8
	Total	of Second Sen	nester	12	2	13	21

First Year Second Semester

Semester-I				
Course Code : BS-CH101	Category : Basic Science			
	Courses			
Course Title : Chemistry-I	Semester : First			
L-T-P : 3-1-0	Credit:4			
Pre-Requisites:				

Detailed contents

i) Atomic and molecular structure (10 lectures)

Schrodinger equation. Particle in a box solutions and their applications for simple sample. Molecular orbitals of diatomic molecules (e.g.H2). Energy level diagrams of diatomic. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

ii) Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance and magnetic resonance imaging, surface characterisation techniques. Diffraction and scattering. **iii)Intermolecular** *forces and potential energy surfaces (4 lectures)* Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and critical phenomena.

iv) Use of free energy in chemical equilibria (8 lectures)

First and second laws of thermodynamics and thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Water chemistry. Corrosion. Use of free energy considerations in metallurgy through Ellingham diagrams.

v) Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries

vi) Stereochemistry (4 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers,

diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds.

vii) Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule.

Course Outcomes

The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the 10+2 levels in schools. Technology is being increasingly based on the electronic, atomic and molecular level modifications. Quantum theory is more than 100 years old and to understand phenomena at nanometer levels, one has to base the description of all chemical processes at molecular levels. The course will enable the student to:

- Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.
- Rationalise bulk properties and processes using thermodynamic considerations.
- Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques
- Rationalise periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.
- List major chemical reactions that are used in the synthesis of molecules.

Learning Resources:

- 1. University chemistry, by B. H. Mahan
- 2. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- 3. Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and
- M. S. Krishnan
- 5. Physical Chemistry, by P. W. Atkins
- 6. Spectroscopy of Organic Compounds, by P.S.Kalsi, New Age International Pvt Ltd Publishers
- 7. Physical Chemistry, P. C. Rakshit, Sarat Book House
- 8. Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp
- 9. Engineering Chemistry, Satyaprakash, Khanna Book Publishing, Delhi

Course Code : BS-M101	Category : Basic Science Course
Course Title : Mathematics – I A	Semester : First
L-T-P : 3-1-0	Credit: 4
Pre-Requisites: High School Mathematics	

Modul	Description of Topic	Lectur	
e		es	
No.		Hours	
	Calculus (Integration):		
	Evolutes and involutes; Evaluation of definite and improper		
	integrals; Beta and Gamma functions and their properties;		
	Applications of definite integrals to evaluate surface areas and		
1	volumes of revolutions.	8	
	Calculus (Differentiation):		
	Rolle's Theorem, Mean value theorems, Taylor's and		
	Maclaurin's theorems with		
	remainders; Indeterminate forms and L'Hospital's rule; Maxima		
2	and minima.	6	
	Matrices:		
	Matrices, Vectors: addition and scalar multiplication, matrix		
	multiplication; Linear systems of equations, linear		
	Independence, rank of a matrix, determinants, Cramer's Rule,		
3	inverse of a matrix, Gauss elimination and Gauss-Jordan		
	elimination.		
	Vector Spaces:		
	Vector Space, linear dependence of vectors, Basis, Dimension;		
	Linear transformations (maps), Range and Kernel of a linear		
	map, Rank and Nullity, Inverse of a linear transformation, Rank-		
4	Nullity theorem, composition of linear maps, Matrix associated	9	
	with a linear map.		
	Vector Spaces (Continued):		
	Eigenvalues, Eigenvectors, Symmetric, Skew-symmetric,		
	and Orthogonal		
	Matrices, Eigenbases.		
5	Diagonalization; Inner product spaces, Gram-Schmidt	10	
	orthogonalization.		

Course Outcomes:

The students will be able to:

- Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.
- Understand the domain of applications of mean value theorems to engineering problems.
- Learn different types of matrices, concept of rank, methods of matrix inversion and their applications.
- Understand linear spaces, its basis and dimension with corresponding applications in the field of computer science.
- Learn and apply the concept of eigen values, eigen vectors, diagonalisation of matrices and orthogonalization in inner product spaces for understanding physical and engineering problems

Learning Resources:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 2. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 3. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 4. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.

5. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.

- 6. S.K. Mapa, Higher Algebra: Abstract and Linear, Sarat Book House Pvt.Ltd.
- 7. Hoffman and Kunze: Linear algebra, PHI.
- 8. Reena Garg, Engineering Mathematics-I, Khanna Publishers.

Course Code : ESC-EE101	Category : Engineering Science		
	Courses		
Course Title : Basic Electrical Engineering	Semester : First		
L-T-P : 3-1-0	Credit: 4		
Pre-Requisites: Basic concepts of electrical equipments and electronics			

components

COURSE OBJECTIVES

- **1.** Impart a basic knowledge of electrical quantities such as current, voltage, power, energy and frequency to understand the impact of technology in a global and societal context.
- **2.** Provide working knowledge for the analysis of basic DC and AC circuits used in electrical and electronic devices.
- **3.** To explain the working principle, construction, applications of DC machines, AC machines & measuring instruments.
- **4.** Highlight the importance of transformers in transmission and distribution of electric power.
- **5.** This course provides the student with the fundamental skills to understand the basic of semiconductor and components like diode, transistor, FET, MOSFET and operational amplifier.
- 6. It will build mathematical and numerical background for design of electronics circuit & component value.
- 7. Students equipped with the knowledge and training provided in the course will be able to participate in design , development and operation in the different area of electronics system.

Module 1:

DC circuits: Mesh analysis, Superposition theorem, Thevenin's and Norton's theorems, Maximum Power Transfer theorem, delta star and star delta transformation.

Electrostatics: Introduction to Electrostatics, Gauss' theorem, Concept of capacitance. Different types of capacitors – parallel plate and cylindrical electrode arrangement. Stored energy in capacitors. Series-parallel combination of capacitors.

Electromagnetism: Review of fundamental laws of electromagnetism, Force on current carrying conductors, Magnetic circuits, permeance, reluctance, BH loop, hysteresis and eddy current losses, Inductance, Introduction to electromagnetic induction.

Module 2:

AC circuits: Sinusoidal and other periodic waveforms, average value, rms value, form factor, peak factor, representation of alternating quantities by phasors, Single phase series and parallel R, L and C circuits, reactance and impedance, resonance, active power, reactive power, apparent power and power factor, concept of power factor improvement.

Three phase circuits: Introduction to balanced three phase systems, Concept of phase sequence, relationship between line and phase voltages in star and delta connected systems, two wattmeter method for power measurement in balanced three phase circuits.

Module 3:

Electrical Machines: Principle of operation of transformers. Introduction to DC generators and motors. Principles of Three Phase Alternators, and Three Phase Induction Motors.

Module 4:

Semiconductor fundamentals: Band structure of solids, Fermi-dirac distribution, Semiconductor elemental & compound, Intrinsic and extrinsic semiconductor, concept of effective mass and hole, generation and recombination of carriers,

carrier diffusion.

P-n junction: Energy band diagram in equilibrium, under forward and reverse bias, I-V characteristics, breakdown mechanisms.

Semiconductor Diodes: Zener diode, LED, 7-Segment display, Photodiode, Solar cell.

Module 5:

Diode Circuits: Ideal model, Clipper, Clamper, Half-wave rectifier, Full-wave rectifier, Filter, Zener voltage regulator. Transistor: Structure and operation of BJT, JFET, MOSFET.

Transistor Circuits: CE, CB, CC configurations, Input – output characteristics, biasing, loadline, Q-point analysis, Analysis of an amplifier using simplified h-parameter model. Direct coupled, RC coupled and transformer coupled amplifiers. Feedback Circuits and Oscillators: General theory of feedback, negative feedback and its advantages, requirement for oscillation, oscillators. Transistorized voltage regulator.

Module 6:

IC and Op-amp Circuits: Monolithic ICs, Analog/Digital/Hybrid ICs – basics, Ideal op-amp, Inverting amplifier, Non-inverting amplifier, Buffer amplifier, Summing amplifier, Difference amplifier, Differentiator; Integrator, Op-amp as a comparator, Square wave generator, Triangular wave generator.

Logic Circuits: Number systems, Boolean algebra, Basic gates, Simple circuits using gates, Transistor as a switch, CMOS inverter; Block diagram level descriptions – Multiplexer, Encoder, Decoder, Flip-flop, Register, Counter. Basic Electronic Measurements: Multimeter and CRO.

LECTURE WITH BREAKUP	NO. OF LECTRES
Module 1: DC circuits: Mesh analysis, Superposition theorem, Thevenin's and Norton's theorems, Maximum Power Transfer theorem, delta star and star delta transformation.	[6]
Electrostatics : Introduction to Electrostatics, Gauss' theorem, Concept of capacitance. Different types of capacitors – parallel plate and cylindrical electrode arrangement. Stored energy in capacitors. Series-parallel combination of capacitors.	
Electromagnetism: Review of fundamental laws of electromagnetism, Force on current carrying conductors, Magnetic circuits, permeance, reluctance, BH loop, Hysteresis and eddy current losses, Inductance,Introduction to electromagnetic induction.	
Module 2:	[8]
AC circuits: Sinusoidal and other periodic waveforms, average value, rms value, form factor, peak factor, representation of alternating quantities by phasors, Single phase series and parallel R, L and C circuits, reactance and impedance, resonance, active power, reactive power, apparent power and power factor, concept of power factor improvement.	
Three phase circuits: Introduction to balanced three phase systems, Concept of phase sequence, relationship between line and phase voltages in star and delta connected systems, two wattmeter method forpower measurement in balanced three phase circuits.	

Module 3:	
	[10]
Electrical Machines: Principle of operation of transformers.	
Introduction to DC generators and motors. Principles of Three Phase	
Alternators, and Three Phase Induction Motors	
Module 4:	
Semiconductor fundamentals: Band structure of solids, Fermi- dirac distribution, Semiconductor elemental & compound, Intrinsic and mextrinsic semiconductor, concept of effective mass and hole, generation and recombination of carriers, carrier diffusion.	[5]
P-n junction: Energy band diagram in equilibrium, under forward and reverse bias, I-V characteristics, breakdown mechanisms.	
Semiconductor Diodes: Zener diode, LED, 7-Segment display, Photodiode, Solar cell.	
Module 5:	
Diode Circuits: Ideal model, Clipper, Clamper, Half-wave rectifier, Full-wave rectifier, Filter, Zener voltage regulator. Transistor: Structure and operation of BJT, JFET, MOSFET.	[10]
Transistor Circuits: CE, CB, CC configurations, Input – output characteristics, biasing, loadline, Q-point analysis, Analysis of an amplifier using simplified h-parameter model. Direct coupled, RC coupled and transformer coupled amplifiers. Feedback Circuits and Oscillators: General theory of feedback, negative feedback and its advantages, requirement for oscillation, oscillators. Transistorised voltage regulator.	
Module 6:	
IC and Op-amp Circuits: Monolithic ICs, Analog/Digital/Hybrid	[9]
ICs – basics, Ideal op-amp, Inverting amplifier, Non-inverting	
Differentiator; Integrator, Op-amp as a comparator, Square wave	

generator, Triangular wave generator.

Logic Circuits: Number systems, Boolean algebra, Basic gates, Simple circuits using gates, Transistor as a switch, CMOS inverter; Block diagram level descriptions – Multiplexer, Encoder, Decoder, Flip-flop,Register, Counter.Basic Electronic Measurements: Multimeter and CRO.

COURSE OUTCOMES

After completion of course, students would be able to:

- CO1: To study basics of semiconductor & devices and their applications in different areas.
- CO2: To study different biasing techniques to operate transistor, FET, MOSFET and operational amplifier in different modes.
- CO3: Analyze output indifferent operating modes of different Semiconductor devices.

CO4: Identify the type of electrical machine used for that particular application.

CO5: Realize the requirement of transformers in transmission and distribution of electric power and other applications

CO6: Formulate and solve complex AC, Dc circuits

Textbooks/References:

Suggested books:

- 1. Advanced Electrical Technology H. Cotton
- 2. Electrical Technology Hughes
- 3. Alternating Current Circuits Kerchner and Corcoran
- 4. Fundamentals of Electrical Engineering Ashfaq Husain
- Solid State Electronic Devices by Ben G. Streetman and Sanjay K. Banerjee, Pearson Prentice Hall, 7th Edition, 2014.

Suggested reference books:

- Electronic Circuits: Discrete and Integrated by D. L. Schilling and C. Belove, McGraw-Hill, 1989 Electronics
- 2. Fundamentals and Applications by D. Chattopadhyay and P. C. Rakshit, New Age International, 10th Edition, 2010
- Digital Principles and Applications by A. P. Malvino and D. P. Leach, Tata McGraw-Hill, 7th edition, 2006
- Electroni c Principles by Albert Malvino and David Bates, Tata McGraw-Hill, 7th edition, 2017

Course Code : BS-CH191	Category : Basic Science
	Courses
Course Title : Chemistry-I Laboratory	Semester : First
L-T-P : 0-0-3	Credit:1.5
Pre-Requisites:	

Choose 10 experiments from the following:

- 1. Conductometric titration for determination of the strength of a given HCl solution by titration against a standard NaOH solution.
- 2. pH- metric titration for determination of strength of a given HCl solution against a standard NaOH solution.
- 3. Determination of dissolved oxygen present in a given water sample.
- 4. To determine chloride ion in a given water sample by Argentometric method (using chromate indicator solution)
- 5. Determination of surface tension and viscosity
- 6. Thin layer chromatography
- 7. Ion exchange column for removal of hardness of water
- 8. Determination of the rate constant of a reaction
- 9. Determination of cell constant and conductance of solutions
- 10. Potentiometry determination of redox potentials and emfs
- 11. Saponification/acid value of an oil

12. Chemical analysis of a salt

13. Determination of the partition coefficient of a substance between two immiscible liquids

14. Adsorption of acetic acid by charcoal

15. Use of the capillary viscosimeters to the demonstrate of the isoelectric point as the pH of minimum viscosity for gelatin sols and/or coagulation of the white part of egg.

Course Code	ESC-EE191
Course Name	BASIC ELECTRICAL LAB
Credits	0L:0T:P 2Credits
Pre-Requisites	Basic concept of electrical and electronics equipments

Total Number of Lectures: 24

COURSE OBJECTIVES

- 1. To familiarize with the electrical component like inductors, capacitor, resistors, etc.
- 2. Understanding of various theorems into practical applications.

2. Better understanding of electrical components like diode, Operational amplifier and practical understanding of various characteristics of it.

LIST OF EXPERIMENTS:

- 1. Familiarization with Resistor, capacitor and Inductor
- 2. Study of VI characteristics of a Diode
- 3. Study of DC network theorem
- 4. Half Wave Rectifier and Full Wave Rectifier
- 5. Study of Series and parallel RLC circuit
- 6. Zener Diode-Voltage regulator
- 7. Study of DC Motor
- 8. Studies on BJT Common Base, Common Collector, Common

Emitter characteristics

- 9. Study of Three phase induction motor
- 10. Study of basic properties of operational amplifier, inverting and non-inverting amplifiers.
- 11. Study of differentiator and integrator using operational amplifier
- 12. Study of Transformer

Course	Code : ES-ME191			Category : Engineering Science
				Courses
Course	Title : Engineering	Graphics	&	Semester : First/ Second
Design				
L-T-P	: 1-0-4			Credit: 3
Pre-Requisites:				

Sl.		Lectu	Practic
Ν	Content	re	al
0.		(L)	(P)
	INTRODUCTION TO ENGINEERING DRAWING		
	Principles of Engineering Graphics and their significance,		
1	usage of Drawing instruments, lettering, Different types	1	4
	of lines and their use; Drawing standards and codes.		
	LETTERING, DIMENSIONING, SCALES		
2		1	4
	Plain scale, Diagonal scale and Vernier Scales.		
	GEOMETRICAL CONSTRUCTION AND CURVES		
	Construction of polygons, Conic sections including the		
3	Rectangular Hyperbola (General method only); Cycloid,	1	4
	Epicycloid, Hypocycloid, Involute, Archemedian Spiral.		
	PROJECTION OF POINTS, LINES, SURFACES		
	Principles of Orthographic Projections-Conventions - 1st		
	and 3rd angle projection, Projections of Points and lines		
4	inclined to both planes; Projections of planes (Rectangle,	1	4

	pentagon, Hexagon etc.) inclined Planes		
	- Auxiliary Planes.		
	PROJECTION OF REGULAR SOLIDS		
	Regular solids inclined to both the Planes- Auxiliary		
5	Views; Draw simple annotation, dimensioning and scale	1	4
	(Cube, Pyramid, Prism, Cylinder, Cone).		
	COMBINATION OF REGULAR SOLIDS, FLOOR		
	PLANS		
6	Regular solids in mutual contact with each other like	1	4
	Spheres in contact with cones standing on their base.		
	Floor plans that include: windows, doors, and fixtures		
	such as WC, bath, sink, shower, etc.		
	ISOMETRIC PROJECTIONS		
	Principles of Isometric projection – Isometric		
	Scale, Isometric Views, Conventions; Isometric Views		
7	of lines, Planes, Simple and compound Solids:	1	4
	Conversion of Isometric Views to Orthographic Views		
	and Vice-versa, Conventions;		
	SECTIONS AND SECTIONAL VIEWS OF RIGHT		
	ANGULAR SOLIDS		
	Prism, Cylinder, Pyramid, Cone – Auxiliary Views:		
	Development of		
	1		
8	surfaces of Right Regular Solids - Prism, Pyramid,	1	4
	Cylinder and Cone; Draw the sectional orthographic		
	views of geometrical solids, objects from industry and		
	dwellings (foundation to slab only)		
	OVERVIEW OF COMPUTER GRAPHICS,		
	CUSTOMISATION&		
	CAD DRAWING		

9	listing the computer technologies that impact on graphical communication, Demonstrating knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and compound Solids]; Set up of the drawing page and the printer, including scale settings, S etting up of units and drawing limits; ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles;	1	4
	ANNOTATIONS, LAYERING & OTHER		
	FUNCTIONS		
	applying dimensions to objects, applying annotations to drawings;		
	Setting up and use of Layers, layers to create		
	drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines		
	(extend/lengthen); Printing documents to paper using		
	the print command; orthographic projection techniques: Drawing sectional views of composite right		
	regular geometric solids and project the true shape of the		
	sectioned surface; Drawing annotation, Computer- aided		
	assemblies. Parametric and non-parametric solid.		
	surface, and wireframe models. Part editing and two-		
	dimensional documentation of models. Planar projection		
	theory, including sketching of perspective, isometric, multiview auxiliary and section views. Spatial		
	muniview, auxinary, and section views. Spanar		

	visualization exercises. Dimensioning guidelines,		
	tolerancing techniques; dimensioning and scale mult i		
	views of dwelling;		
	DEMONSTRATION OF A SIMPLE TEAM		
	DESIGN PROJECT Geometry and topology of		
	engineered components: creation of engineering		
	models and their presentation in standard 2D blueprint		
	form and as 3D wire-frame and shaded solids;		
	meshed topologies for engineering analysis and tool-path		
	generation for component manufacture; geometric		
	dimensioning and tolerancing; Use of solid- modeling		
	software for creating associative models at the		
	component and assembly levels; floor plans that include:		
	windows, doors, and fixtures such as WC, bath, sink,		
11	shower, etc. Applying colour coding according to	2	8
	building drawing practice; Drawing sectional		
	elevation showing foundation to ceiling; Introduction		
	to Building Information Modelling (BIM).		

Course Outcomes

The student will learn:

- Introduction to engineering design and its place in society
- Exposure to the visual aspects of engineering design
- Exposure to engineering graphics standards
- Exposure to solid modelling

General Instructions

1. In every topic some problems are to be done in the class and some are to be given to students as home assignment.

2. The problems for class work are to be prepared on drawing sheet of A1 size in the class/ using

AutoCAD software.

3. The problems for home assignments are to be prepared on drawing copy/ using AutoCAD software.

4. Print out of every assignment is to be taken for CAD Drawings on Drawing sheets (A4 Sheets).

5.A title block must be prepared in each sheet/ assignment.

Following is the list of drawing instruments that required for making engineering drawings on paper with perfection

- 1. Drawing Board
- 2. Mini drafter/ Set-squares (45°-45° & 60°-90°), T-square
- 3. Protractor (180°, 360°)
- 4. Scales (Plain, Diagonal)
- 5. Compass (Small and Large)
- 6. Divider (Small and Large)
- 7. French Curves
- 8. Drawing paper (A1 Size)
- 9. Drawing pencil (H, HB, B)
- 10. Sharpener
- 11. Eraser
- 12. Drawing pins & clips
- 13. Duster or handkerchief etc.

Learning Resources:

1. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House

2. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication

3. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education

4. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers

5. Corresponding set of CAD Software Theory and User Manuals

6. Pradeep Jain, Ankita Maheswari, A.P. Gautam, Engineering Graphics & Design, Khanna Publishing House

Semester -II			
Course Code :BS-PH201	Category : Basic Science		
	Courses		
Course Title : Physics-I	Semester : Second		
L-T-P : 3-1-0	Credit:4		
Pre-Requisites:			

Course objectives:

Basic concepts of mechanics, optics and its applications, electricity, magnetism and qualitative understanding of concepts of quantum physics and statistical mechanics.

1. Mechanics (7L)

Problems including constraints & friction. Basic ideas of vector calculus and F = partial differential equations. Potential energy function -grad V. equipotential surfaces and meaning of gradient. Conservative and non-conservative forces. Conservation laws of energy & momentum. Non-inertial frames of reference. Harmonic oscillator; Damped harmonic motion forced oscillations and resonance. Motion of a rigid body in a plane and in 3D. Angular velocity vector. Moment of inertia.

2. Optics (5L)

Distinction between interference and diffraction. Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits (only the expressions for max;min, & intensity and qualitative discussion of fringes); diffraction grating(resolution formulac only), characteristics of diffration grating and its applications.

□ Polarisation : Introduction, polarisation by reflection, polarisation by double reflection, scattering of light, circular and elliptical polarisation, optical activity.

□ Lasers : Principles and working of laser : population inversion, pumping, various modes, threshold population inversion with examples.

3. Electromagnetism and Dielectric Magnetic Properties of Materials (8L)

□ Maxwell's equations. Polarisation, permeability and dielectric constant, polar and non-polar dielectrics, internal fields in a solid, Clausius- Mossotti equation(expression only), applications of dielectrics.

□ Magnetisation , permeability and susceptibility, classification of magnetic materials, ferromagnetism, magnetic domains and hysteresis, applications

4. Quantum Mechanics (16L)

□ Introduction to quantum physics, black body radiation, explanation using the photon concept, Compton effect, de Broglie hypothesis, wave-particle duality, verification of matter waves, uncertainty principle, Schrodinger wave equation, particle in box, quantum harmonic oscillator, hydrogen atom.

5. Statistical Mechanics(8L)

□ Macrostate, Microstate, Density of states, Qualitative treatment of Maxwell Boltzmann, Fermi-Dirac and Bose-Einstein statistics.

Course outcomes:

Students will be familiar with

□ Basic concepts of mechanics

□ Bragg's Law and introduction to the principles of lasers, types of lasers and applications.

□ Various terms related to properties of materials such as, permeability, polarization,etc.

 \Box Some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials.

 \Box Simple quantum mechanics calculations.

Learning Resources:

1. Introduction to Electrodynamics, David J. Griffiths, Pearson Education India Learning Private Limited

2. Principles of Physics, 10ed, David Halliday, Robert Resnick Jearl Walker, Wiley

3. Electricity, Magnetism, and Light, Wayne M. Saslow, Academic Press

4. Engineering Mechanics (In SI Units) (SIE), S. Timoshenko, D.H. Young, J.V. Rao, Sukumar Pati , McGraw Hill Education

5. Classical mechanics, Narayan Rana, Pramod Joag, McGraw Hill Education

6. Introduction to Classical Mechanics, R Takwale, P Puranik, McGraw Hill Education

7. Engineering Mechanics, M.K. Harbola , Cengage India

8. An Introduction to Mechanics (SIE), David Kleppner, Robert Kolenkow, McGraw Hill Education

9. Principles of mechanics, John L. Synge and Byron A. Griffith, New York, McGraw-Hill

10. Mechanics (Dover Books on Physics), J. P. Den Hartog, Dover Publications Inc.

11. Engineering Mechanics: Dynamics, L.G. Kraige J.L. Meriam, Wiley

12. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Robert Eisberg, Robert Resnick, Wiley

13. Introduction to Quantum Mechanics, J. Griffiths David, Pearson Education

14. Modern Quantum Mechanics, J. J. Sakurai, Cambridge University Press

15. Optics, Hecht, Pearson Education

16. Optics, Ghatak, McGraw Hill Education India Private Limited

17. Fundamentals of Statistical and Thermal Physics, Reif, Sarat Book Distributors

18. Statistical Mechanics, Pathria, Elsevier

19. Statistical Physics, L.D.Landau , E.M. Lifshitz, Butterworth-Heinemann

Course Code : BS-M201	Category : Basic Science		
	Course		
Course Title : Mathematics – II A	Semester : Second		
L-T-P : 3-1-0	Credit: 4		
Pre-Requisites: High School Mathematics and BS-M101			

Modul		Lectures
eNo.	Description of Topic	Hours
1	BasicProbability:Probabilityspaces,conditionalprobability, independence;Discrete random variables, Independent random variables, the Multinomial distribution, Poisson approximation to the Binomial distribution infinite sequences of Bernoulli trials sums of	11
	independent random variables; Expectation of Discrete Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev's Inequality.	
	Continuous Probability Distributions:	4
2	Continuous random variables and their properties, Distribution functions and densities, Normal, Exponential and Gamma densities.	4
	Bivariate Distributions:	5
3	Bivariate distributions and their properties, distribution of sums and quotients, Conditional densities, Bayes' rule.	5
	Basic Statistics:	0
4	Measures of Central tendency, Moments, Skewness and Kurtosis, Probability distributions: Binomial, Poisson and Normal and evaluation of statistical parameters for these three distributions, Correlation and regression – Rank correlation.	8
	Applied Statistics:	
5	Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.	8
6	Small samples:	1
	Test for single mean, difference of means and correlation coefficients, test for ratio of variances - Chi-square test for goodness of fit and independence of attributes.	4

Course Outcomes:

The students will be able to:

 \Box Learn the ideas of probability and random variables, various discrete and continuous probability distributions with their properties and their applications in physical and engineering environment.

 \Box Understand the basic ideas of statistics with different characterisation of a univariate and bivariate data set.

 \Box Apply statistical tools for analysing data samples and drawing inference on a given data set.

Learning Resources:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons
- 2. S. Ross, A First Course in Probability, Pearson Education India

3. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Wiley.

- 4. John E. Freund, Ronald E. Walpole, Mathematical Statistics, Prentice Hall.
- 5. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 6. N.G. Das, Statistical Methods (Combined Volume), Tata-McGraw Hill.

7. Reena Garg, Chandrika Prasad, Advanced Engineering Mathematics, Khanna Publishers.

Course Code : ES-CS201	Category : Engineering Science
	Courses
Course Title : Programming for Pro	blem Semester : Second
Solving	
L-T-P : 3-0-0	Credit:3
Pre-Requisites:	

Detailed contents

Unit 1: Introduction to Programming (4 lectures)

 \Box Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.) - (1 lecture).

□ Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm: Flowchart/Pseudocode with examples. (1 lecture)

□ From algorithms to programs; source code, variables (with data types) variables and memory locations, Syntax and Logical Errors in compilation, object and executable code- (2 lectures)

Unit 2: Arithmetic expressions and precedence (2 lectures) Unit 3: Conditional Branching and Loops (6 lectures)

□ Writing and evaluation of conditionals and consequent branching (3 lectures)

□ Iteration and loops (3 lectures) Unit 4: Arrays (6 lectures)

□ Arrays (1-D, 2-D), Character arrays and Strings

Unit 5: Basic Algorithms (6 lectures)

□ Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required)

Unit 6: Function (5 lectures)

□ Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference

Unit 7: Recursion (4 -5 lectures)

□ Recursion, as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.

Unit 8: Structure (4 lectures)

□ Structures, Defining structures and Array of Structures

Unit 9: Pointers (2 lectures)

□ Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list

(no implementation)

Unit 10: File handling (only if time is available, otherwise should be done as part of the lab)

Course Outcomes

The student will learn

 \Box To formulate simple algorithms for arithmetic and logical problems.

- \Box To translate the algorithms to programs (in C language).
- \Box To test and execute the programs and correct syntax and logical errors.
- □ To implement conditional branching, iteration and recursion.

□ To decompose a problem into functions and synthesize a complete program using divide and conquer approach.

□ To use arrays, pointers and structures to formulate algorithms and programs.

□ To apply programming to solve matrix addition and multiplication problems and searching and sorting problems.

□ To apply programming to solve simple numerical method problems, namely rot finding of function, differentiation of function and simple integration.

Learning Resources:

1. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

2. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill

3. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

4. R. S. Salaria, Computer Concepts and Programming in C, Khanna Publishers

	Category : Humanities and	
Course Code : HM-HU201	SocialSciences including	
	Management courses	
Course Title : English	Semester : Second	
L-T-P : 2-0-0	Credit:2	
Pre-Requisites:		

Detailed contents

1. Vocabulary Building

The concept of Word Formation

Root words from foreign languages and their use in English

Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.

Synonyms, antonyms, and standard abbreviations.

2. Basic Writing Skills

Sentence Structures Use of phrases and clauses in sentences Importance of proper punctuation Creating coherence Organizing principles of paragraphs in documents Techniques for writing precisely

3. Identifying Common Errors in Writing

- Subject-verb agreement
- Noun-pronoun agreement
- Misplaced modifiers
- Articles
- Prepositions
- Redundancies
- Clichés

4. Nature and Style of sensible Writing

Describing Defining Classifying Providing examples or evidence Writing introduction and conclusion

5. Writing Practices

Comprehension Précis Writing Essay Writing

6. Oral Communication

(This unit involves interactive practice sessions in Language Lab)

- □ Listening Comprehension
- □ Pronunciation, Intonation, Stress and Rhythm
- □ Common Everyday Situations: Conversations and Dialogues
- □ Communication at Workplace
- □ Interviews
- □ Formal Presentations

Learning Resources:

(i) Practical English Usage. Michael Swan. OUP. 1995.

(ii) Remedial English Grammar. F.T. Wood. Macmillan.2007

(iii) On Writing Well. William Zinsser. Harper Resource Book. 2001

(iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.

(v) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.

(vi) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press

(vii) Kulbushan Kumar, R S Salaria, Effective Communication Skills, Khanna Publishing House, Delhi.

CourseOutcomes

The student will acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

Course Code : BS-PH191/ BS-PH291	Category : Basic Science			
	course			
Course Title : Physics-I Laboratory	Semester : First/ Second			
L-T-P : 0-0-3	Credit:1.5			
Pre-Requisites:				

Choose 10 experiments including at least one from Optics, Electricity and Magnetism and Quantum Mechanics and at least a total of six from these three groups.

Experiments in Optics

- 1. Determination of dispersive power of the material of a prism
- 2. Determination of wavelength of a monochromatic light by Newton's ring
- 3. Determination of wavelength of a monochromatic light by Fresnel's bi-prism
- 4. Determination of wavelength of the given laser source by diffraction method

Electricity & Magnetism experiments

- 1. Determination of thermo electric power of a given thermocouple.
- 2. Determination of specific charge (e/m) of electron by J.J. Thompson's method.
- 3. Determination of dielectric constant of a given dielectric material.
- 4. Determination of Hall coefficient of a semiconductor by four probe method.

5. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.

6. Determination of resistance of ballistic galvanometer by half deflection method and study of variation of logarithmic decrement with series resistance.

- 7. Determination of unknown resistance using Carey Foster's bridge
- 8. Study of Transient Response in LR, RC and LCR circuits using expeyes
- 9. Generating sound from electrical energy using expeyes

Experiments in Quantum Physics

- 1. Determination of Stefan-Boltzmann constant.
- 2. Determination of Planck constant using photocell.
- 3. Determination of Lande-g factor using Electron spin resonance spectrometer.
- 4. Determination of Rydberg constant by studying Hydrogen spectrum.
- 5. Determination of Band gap of semiconductor.

6. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.

Miscellaneous experiments

1. Determination of Young's modulus of elasticity of the material of a bar by the method of flexure

2. Determination of bending moment and shear force of a rectangular beam of uniform cross-section

3. Determination of modulus of rigidity of the material of a rod by static method

4. Determination of rigidity modulus of the material of a wire by dynamic method

5. To determine the moment of inertia of a body about an axis passing through its centre of gravity and to determine the modulus of rigidity of the material of the suspended wire

6. Determination of coefficient of viscosity by Poiseulle's capillary flow method

Course Code : ES-CS291	Category : Engineering Science	
	Courses	
Course Title : Programming for Problem	Semester : Second	
Solving		
L-T-P : 0-0-4	Credit:2	
Pre-Requisites:		

The laboratory should be preceded or followed by a tutorial to explain the approach or algorithm to be implemented for the problem given.

Tutorial 1: Problem solving using computers:

Lab1: Familiarization with programming environment

Tutorial 2: Variable types and type conversions:

Lab 2: Simple computational problems using arithmetic expressions

Tutorial 3: Branching and logical expressions:

Lab 3: Problems involving if-then-else structures

Tutorial 4: Loops, while and for loops:

Lab 4: Iterative problems e.g., sum of series

Tutorial 5: 1D Arrays: searching, sorting:

Lab 5: 1D Array manipulation

Tutorial 6: 2D arrays and Strings

Lab 6: Matrix problems, String operations

Tutorial 7: Functions, call by value:

Lab 7: Simple functions

Tutorial 8 &9: Numerical methods (Root finding, numerical differentiation,

numerical integration):

Lab 8 and 9: Programming for solving Numerical methods problems

Tutorial 10: Recursion, structure of recursive calls

Lab 10: Recursive functions

Tutorial 11: Pointers, structures and dynamic memory allocation

Lab 11: Pointers and structures

Tutorial 12: File handling:

Lab 12: File operations

Laboratory Outcomes

 \Box To formulate the algorithms for simple problems

 $\hfill\square$ To translate given algorithms to a working and correct program

 \Box To be able to correct syntax errors as reported by the compilers

□ To be able to identify and correct logical errors encountered at run time

 \Box To be able to write iterative as well as recursive programs

□ To be able to represent data in arrays, strings and structures and manipulate them through a program

 \Box To be able to declare pointers of different types and use them in defining self-referential structures.

 \Box To be able to create, read and write to and from simple text files.

Course Code : ES-ME 292	Category : Engineering Science
	Courses
Course Title : Workshop/ Manufacturing	Semester : Second
Practices	
L-T-P : 1-0-4	Credit:3
Pre-Requisites:	

(i) Lectures & videos:

Detailed contents:

1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods

- 2. CNC machining, Additive manufacturing
- 3. Fitting operations & power tools
- 4. Electrical & Electronics
- 5. Carpentry
- 6. Plastic moulding, glass cutting
- 7. Metal casting
- 8. Welding (arc welding & gas welding), brazing

(ii) Workshop Practice:

□ Machine shop (8 hours)

Typical jobs that may be made in this practice module:

 \Box To make a pin from a mild steel rod in a lathe.

 \Box To make rectangular and vee slot in a block of cast iron or mild steel in a shaping and / or milling machine

□ Fitting shop (8 hours)

Typical jobs that may be made in this practice module: □ To make a Gauge from MS plate.

□ Carpentry (8 hours)

Typical jobs that may be made in this practice module: □ To make wooden joints and/or a pattern or like.

□ Welding shop (8 hours (Arc welding 4 hrs + gas welding 4 hrs))

Typical jobs that may be made in this practice module:

□ ARC WELDING (4 hours): To join two thick (approx. 6mm) MS plates by manual metal arc welding.

 \Box GAS WELDING (4 hours): To join two thin mild steel plates or sheets by gas welding.

□ Casting (8 hours)

Typical jobs that may be made in this practice module: □ One/two green sand moulds to prepare, and a casting be demonstrated.

\Box Smithy (4 hours) ~ 4 hours

Typical jobs that may be made in this practice module: □ A simple job of making a square rod from a round bar or like.

□ Plastic moulding & Glass cutting (4 hours)

Typical jobs that may be made in this practice module:

 \Box For plastic moulding, making at least one simple plastic component should be made.

 \Box For glass cutting, three rectangular glass pieces may be cut to make a kaleidoscope using a black colour diamond cutter, or similar other components may be made.

□ Electrical & Electronics (8 hours)

□ Familiarization with LT switchgear elements, making its sketches and noting down its specification. Kitkat fuse, Glass cartridge fuse, Plastic fuse holders (optional), Iron clad isolators, MCB style isolators, Single phase MCB, Single-phase wire, wiring cable.

□ Demonstration of domestic wiring involving two MCB, two piano key switches, one incandescent lamp, one LED lamp and plug point.

□ Simple wiring exercise to be executed to understand the basic electrical circuit.

 \Box Simple soldering exercises to be executed to understand the basic process of soldering.

□Fabrication of a single-phase full wave rectifier with a step down transformer using four diodes and electrolytic capacitor and to find its volt-ampere characteristics to understand basic electronic circuit fabrication.

Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.

 \Box Upon completion of this laboratory course, students will be able to fabricate components with their own hands.

□ They will also get practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.

□ By assembling different components, they will be able to produce small devices of their interest.

Learning Resources:

1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop

Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.

2. Kalpakjian S. and Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition,

Pearson Education India Edition, 2002.

3. Gowri P. Hariharan and A. Suresh Babu,"Manufacturing Technology – I" Pearson Education, 2008.

4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998.

5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017.

	Category : Humanities and
Course Code : HM-HU291	Social
	Sciences including Management
	courses
Course Title : Language Laboratory	Semester : Second
L-T-P : 0-0-2	Credit:1
Pre-Requisites:	

 Honing 'Listening Skill' and its sub skills through Language Lab Audio device; 3P

2) Honing 'Speaking Skill' and its sub skills 2P

3)Helping them master Linguistic/Paralinguistic features (Pronunciation/Phonetics/Voice modulation/ Stress/ Intonation/ Pitch &Accent) of connected speech 2P

4) Honing 'Conversation Skill' using Language Lab Audio –Visual input; Conversational Practice Sessions (Face to Face / via Telephone, Mobile phone &Role Play Mode)2P 5) Introducing 'Group Discussion' through audio –Visual input and acquainting them with key strategies for success 2P

6) G D Practice Sessions for helping them internalize basic Principles (turn taking, creative intervention, by using correct body language, courtesies & other soft skills) of GD 4P

7) Honing 'Reading Skills' and its sub skills using Visual / Graphics/ Diagrams /Chart Display/Technical/Non Technical Passages Learning Global/Contextual / Inferential Comprehension; 2P

8) Honing 'Writing Skill' and its sub skills by using Language Lab Audio –Visual input; Practice Sessions 2P

Course Outcomes

□ The student will acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.
Sl.	Chapter	Title				
		General, Course Structure, Theme & Semester wise Credit				
1	1	Distribution				
2		Detailed 4-YEAR Curriculum Contents				
	(i)	Professional Core Courses				
		PCC-CS301: Principles of Programming Language				
		PCC-CS302: Data structure & Algorithm				
		PCC-CS401: Discrete Mathematics				
		PCC-CS402: Computer Organization & Architecture				
		PCC-CS403: Operating Systems				
		PCC-CS-404: Design and Analysis of Algorithms				
		PCC-CS391: Data structure & Algorithm				
		PCC-CS492:Computer Organization & Architecture				
		PCC-CS493: Operating Systems				
		PCC-CS494: Design and Analysis of Algorithms				
		-				
	(ii)	Professional Elective Courses				
		Additional Courses for B.Tech (Hons.)				
3	Appendix-A	A Guide to Induction Program				
		Common courses (Physics, Chemistry, Biology &				
		Mathematics)				
4		MC: Model Curriculum for Mandatory Non-credit courses				
		HSMC: Model Curriculum for courses in Humanities and				
5		Social Sciences including Management				
6		Virtual Laboratories for various disciplines				

Chapter -1 General, Course structure & Theme &

Semester-wise credit distribution

A. Definition of Credit

1. Hr. Lecture (L) per week	1 credit
2. Hr. Tutorial (T) per week	1 credit
3. Hr. Practical (P) per week	0.5 credit
4. Hours Practical(Lab)/week	1 credit

B. Range of credits -A range of credits from 150 to 160 for a student to be eligible to get UnderGraduate degree in Engineering. A student will be eligible to get Under Graduate degree with Honours or additional Minor Engineering, if he/she completes an additional 20 credits. These could be acquired through MOOCs.

C. Structure of Undergraduate Engineering program :

S.L	Course	Credit
No.		Breakup
		for CSE
		students
	Humanities and Social Sciences including	
1	Management courses	12
2	Basic Science courses	25
	Engineering Science courses	
	including workshop, drawing, basics of	
3	electrical/mechanical/computer etc	24
4	Professional core courses	54
	Professional Elective courses relevant to chosen	
5	specialization/branch	18
	Open subjects – Electives from other technical and	
6	/or emerging subjects	12
	Project work, seminar and internship in industry or	
7	elsewhere	15

	Mandatory Courses	
	[Environmental Sciences, Induction Program,	
	Indian Constitution, Essence of Indian Traditional	(non-credit)
8	Knowledge]	
	Total	160*

*Minor variation is allowed as per need of the respective disciplines.

D. Credit distribution in the First year of Undergraduate Engineering program :

		Tutoria	Laboratory/	Total
Course	Lecture	1	Practical	credits
Chemistry-I	3	1	2	6
Physics	3	1	2	6
Maths-1	3	1	0	4
Maths -2	3	1	0	4
Programming for Problem				
solving	3	0	4	5
English	2	0	2	3
Engineering				
Graphics & Design	1	0	4	3
Workshop/Practical	1	0	4	3
Basic ElectricalEngg.	3	1	2	5
*Biology	2	1	0	3
*Maths-3	3	1	0	4

*These courses may be offered preferably in the later semesters

E. Course code and definition:

Course code	Definitions					
BSC	Basic Science Courses					
ESC	Engineering Science Courses					
	Humanities and Social Sciences including					
HSMC	Managementcourses					
PCC-CS	Professional core courses					
PEC -CS	Professional Elective courses					
OEC-CS	Open Elective courses					
LC	Laboratory course					

MC	Mandatory courses
SI	Summer Industry Internship
PROJ-CS	Project

HUMANITIES AND SOCIAL SCIENCES INCLUDING MANAGEMENT COURSES

			Hours per week			Total	
SI.	Code		Lectur		Practic	Cred	
No	No.	Course Title	e	Tutorial	al	its	Semester
	HSMC						
1	201	English	2	0	2	3	2
	HSMC						
2	301	Humanities – 1	3	0	0	3	3
		Management-I					
		(Organizational					
		Behaviour)/					
	HSMC	Finance &					
3	401	Accounting	3	0	0	3	4
	HSMC						
4	501	Humanities – II	3	0	0	3	5
Total	Credits:					12	

BASIC SCIENCE COURSE [BSC]

Sl.	Code						
No	No.	Course Title	Hours	s per week	Total		
			Lect			Cred	
			ure	Tutorial	Practical	its	Semester
		Physics					
		(Semi-conductor					
1	BSC101	Physics)	3	1	3	5.5	1
		Mathematics-II					
		(Probability and					
2	BSC 201	Statistics)	3	1	0	4	2
		Mathematics-I					
		(Calculus and					
3	BSC 102	LinearAlgebra)	3	1	0	4	1
4	BSC 202	Chemistry-I	3	1	3	5.5	2
5	BSC 701	Biology	2	1	0	3	7
6	BSC 301	Mathematics-III	2	0	0	2	3

	(Differential				
	Calculus)				
TotalCredits:					

			Но	ours per v	week	Tota	
SI.	Code		Lectur			Cred	Semes
No	No.	Course Title	e	Tutorial	Practical	its	ter
	ESC	Basic Electrical					
1	101	Engineering	3	1	2	5	1
	ESC	Engineering					
2	102	Graphics & Design	1	0	4	3	1
	ESC	Programming for					
3	201	ProblemSolving	3	0	4	5	2
	ESC	Workshop/Manufac					
4	202	turingPractices	1	0	4	3	2
	ESC	Analog Electronic					
5	301	Circuits	3	0	4	5	3
	ESC						
6	302	Digital Electronics	3	0	4	5	4
	ESC	Signals and					
7	501	Systems	3	0	0	3	5
Total	Credits:					29	

ENGINEERING SCIENCE COURSE [ESC]

PROFESSIONAL CORE COURSES [PCC]

			Hours p	Hours per week			
Sl.	Code	Course			Practica	Credit	Semest
No	No.	Title	Lecture	Tutorial	1	S	er
	PCC	Data Structure &					
1	CS301	Algorithms	3	0	4	5	3
		IT Workshop –					
	PCC	(Python/R/MATL					
2	CS303	AB/Scilab)	1	0	4	3	3
	PCC	Discrete					
3	CS401	Mathematics	3	1	0	4	4
		Computer					
	PCC	Organizationand					
4	CS402	Architecture	3	0	4	5	3

	PCC						
5	CS403	OperatingSystems	3	0	4	5	4
		Design and					
	PCC	Analysis					
6	CS404	ofAlgorithms	3	0	4	5	4
		Database					
	PCC	Management					
7	CS 501	Systems	3	0	4	5	5
		Formal Language,					
	PCC	Automats					
8	CS502	and Complier	3	0	0	3	5
	PCC	Object Oriented					
9	CS503	Programming	2	0	4	4	5
	PCC						
10	CS601	Compiler Design	3	0	4	5	6
	PCC	Computer					
11	CS602	Networks	3	0	4	5	6
	49						

4 year Curriculum structure Undergraduate Degree in Engineering & Technology Branch / course :Computer Science and Engineering Total credits (4 year course): 160

I. Induction Program (Please refer Appendix-A for guidelines)

	3 weeks duration
	(Please refer Appendix-A for guidelines &
	also details
Induction program	available in the curriculum of
(mandatory)	Mandatory courses)
	Physical activity
	Creative Arts
	Universal Human Values
	Literary
	Proficiency Modules
Induction program for students to	Lectures by Eminent People
beoffered right at the start of the	Visits to local Areas
first year.	Familiarization to Dept./Branch & Innovations

Semester-wise structure of curriculum

[L= Lecture, T = Tutorials, P = Practicals & C = Credits]

Semester I (First year) Curriculum Branch/Course: Computer Science Engineering

Sl. Category		egory Subject Subject Name		Total			
No		Code		conta	ct hour	°S	Credits
				L	T	Р	
The	eory						
1	Basic Science						
	course	BS-CH101	Chemistry-I	3	1	0	4
2	Basic Science course	BS-M102	Mathematics –I (Calculus & Linear Algebra)	3	1	0	4
3	Engineering Science Courses	ES-EE 101	Basic Electrical& Electronics Engineering	4	0	0	4
4	Engineering Science Courses	ES-ME 101	Engineering Graphics & Design	1	0	0	1
5	Basic Science course	BS-CH191	Chemistry-I Lab	0	0	4	2
6	Engineering Science Courses	ES-EE 191	Basic Electrical& Electronics Engineering Lab	0	0	2	1
7	Engineering Science Courses	ES-ME 191	Engineering Graphics & Design	0	0	4	2
		To	tal Credits				18

First Year First Semester

Semester II (First year) Curriculum Branch/Course: Computer Science Engineering

SI.	Category Subject Subject Name		Total				
No		Code		conta	ct hou	rs	Credits
				L	Т	P	
1	Basic Science courses	BS-PH201	Physics-II	3	1	0	4
2	Basic Science courses	BS-M201	Mathematics-II (Probability and Statistics)	3	1	0	4
3	Engineering Science Courses	ES-CS201	Programming for Problem Solving	3	0	0	3
4.	Engineering Science Courses	ES-ME201	Workshop/Manufac turing Practices	1	0	0	1
5	Humanities and Social Sciences including Management courses	HSMC 201	English	2	0	0	2
6	Basic Science courses	BS-PH 291	Physics- II Lab	0	0	4	2
7	Engineering Science Courses	ES-CS291	Programming for Problem Solving Lab	0	0	4	2
8	Engineering Science Courses	ES-ME201	Workshop/Manufac turing Practices	0	0	4	2
9	Humanities and Social Sciences including Management courses	HSMC 291	Language Lab	0	0	2	1
Total of Credits							21

Semester III (Second year) Curriculum Branch/Course: Computer Science Engineering

Sl.	Category	Subject	Subject Name	Total Number of		oer of	
No		Code		conta	act hou	rs	Credits
				L	Т	Р	
1	Professional Course	PCC-CS301	Principles of Programming Language	3	0	0	3
2	Professional Core Courses	PCC-CS302	Data structure & Algorithms	3	0	0	3
3	Engineering Science	ES-CS301	Digital Electronics	3	0	0	3
4	Professional Core Courses	PCC-CS303	IT Workshop(Sci Lab/MATLAB)	1	0	0	1
5	Basic Science courses	BS-M301	Mathematics-III (Differential Calculus)	2	0	0	2
6	Humanities & Social Sciences including Management Courses	HSMC 301	Humanities-I	3	0	0	3
7	Professional Course	PCC-CS391	Principles of Programming Language Lab	0	0	4	2
8	Professional Core Courses	PCC-CS392	Data structure & Algorithms Lab	0	0	4	2
9	Engineering Science	ES-CS391	Digital Electronics Lab	0	0	4	2
10	Professional Core Courses	PCC-CS393	IT Workshop(Sci Lab/MATLAB) Lab	0	0	4	2
Total Credits						23	

Semester IV (Second year) Curriculum Branch/Course: Computer Science Engineering

Sl.	Category	Subject	Subject Name Total Number of				
No		Code		conta	ct hou	rs	Credits
				L	T	Р	
1	Professional Course	PCC-CS401	Discrete Mathematics	3	1	0	4
2	Professional Core Courses	PCC-CS402	Computer Organization & Architecture	3	0	0	3
3	Professional Core Courses	PCC-CS403	Operating Systems	3	0	0	3
4	Professional Core Courses	PCC-CS404	Design & Analysis of Algorithms	3	0	0	3
5	Humanities & Social Sciences including Management courses	HSMC-401	Management 1 (Organizational Behaviour/ Finance &Accounting)	3	0	0	3
6	Mandatory Courses	MC-401	Environmental Sciences	-	-	-	0
7	Professional Core Courses	PCC-CS492	Computer Organization & Architecture Lab	0	0	4	2
8	Professional Core Courses	PCC-CS493	Operating Systems Lab	0	0	4	2
9	Professional Core Courses	PCC-CS494	Design & Analysis of Algorithms Lab	0	0	4	2
Total Credits							

Additional Courses for B.Tech (Hons.):

- 1. Graph Theory (PEC-CS-T01)
- 2. Software Engineering (PEC-CS-S01)
- 3. Embedded Systems (PEC-CS-S02)
- 4. Artificial Intelligence (PEC-CS-D01)
- 5. Cryptography and Network Security (PEC-CS-A01)
- 6. Internet-of-Things (PEC-CS-S03)
- 7. Data Analytics (PEC-CS-D02)
- 8. Machine Learning (PEC-CS-D03)

CHAPTER 2

DETAILED 4-YEAR CURRICULUM CONTENTS

Undergraduate Degree in Engineering & Technology

Branch/Course: COMPUTER SCIENCE AND ENGINEERING

Second year (Third semester onwards)

Semester-III

Course Code: PCC-CS301			Category: Professional Core Courses	
Course	Title:	Principles	of	Semester: 3 rd Semester
Program	ning Lang	uages		
L-T-P: 3-0)-4			Credit: 5
Teaching	Scheme			Examination Scheme
Theory: 31	hrs/week			Class Tests & Assignments: 25 marks
Tutorial: 1	hr/week			Attendance: 5 marks
				End Semester Exam: 70 marks

Detailed Syllabus

Course Objectives:

- 1. Provides students exposure to examples of important programming languages and paradigms such as LISP/Scheme, ML/Haskell, Prolog, C++/Python/Ruby, etc.
- 2. The languages are used to illustrate programming language constructs such as binding, binding times, data types and implementation, operations (assignment data-type creation, pattern matching), data control, storage management, parameter passing, and operating environment.
- 3. The suitability of these various languages for particular programming tasks.
- 4. Main goal for this course is to enable the students to understand enough about the fundamental principles of programming languages so that they are able to easily and quickly pick up any new programming language. Their understanding of any CS topic should not be tied to any particular programming language.

Pre-requisites:

A first course in programming (using any structured programming language such as C) such as PCC-CS-201 and PCC-CS-291.

Course Outcomes:

On completion of this course, students should have

- 1. Knowledge of, and ability to use, language features used in current programming languages
- 2. An ability to program in different language paradigms and evaluate their relative benefits
- 3. An understanding of the key concepts in the implementation of common features of programming languages

Syllabus:

Principles of Language Design, Programming language spectrum, Why study Programming Languages, Overview of Compilation, Interpretation, and Programming Environments [~2 hrs]

Specifications of Language Syntax [~2 hrs]

Fundamentals of Procedural and Object Oriented Languages [~6 hrs]

Fundamentals of Functional Programming [~9 hrs]

Fundamentals of Logic Programming [~6 hrs]

Programming Language Semantics, Values, Bindings, Types [~6 hrs]

Programming Language Constructs, Expressions, Statements, Procedures and Environments, Parameter passing [~5 hrs]

Textbook:

"Programming Language Pragmatics", 4e, by *Michael Scott*. Morgan Kaufmann Publishers "Programming Languages: Principles and Paradigms", 2010th edition, by *Maurizio Gabbrielli, Simone Martini*. Springer **Reference:**

"Concepts of Programming Languages", 11e, by Robert W. Sebesta. Pearson India

"Types and Programming Languages", Benjamin C. Pierce. MIT Press

YEAR- 2ND		SEMESTER- III				
PCC-CS302	Data Structure &	Algorithms	3L:0T: 0P	3 credits		
Pre-requisites	ESC 201					

PROFESSIONAL CORE COURSES

Objectives of the course:

1. To impart the basic concepts of data structures and algorithms.

2. To understand concepts about searching and sorting techniques

3. To understand basic concepts about stacks, queues, lists, trees and graphs.

4. To enable them to write algorithms for solving problems with the help of fundamental data structures

Detailed contents:

Module 1: [4L]

Introduction: Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space trade off.

Array : Operations , Different representations – row major, column major. Sparse matrix - its implementation and usage. Array representation of polynomials.

Module 2: [12 L]

Stacks and Queues: ADT Stack and its operations: Algorithms and their complexity analysis, Applications of Stacks: Expression Conversion and evaluation– corresponding algorithms and complexity analysis. ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority Queue; Operations on each types of Queues: Algorithms and their analysis.

Linked Lists: Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, Doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis.

Module 3: [12L]

Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree, Binary Search Tree, AVL Tree; Tree operations on each of the trees

and their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+ Tree: definitions, algorithms and analysis.

Graph: Basic Terminologies and Representations, Graph search and traversal algorithms and complexity analysis.

Module 4: [8L]

Sorting, Searching and Hashing: Objective and properties of different sorting

algorithms: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort; Performance and Comparison among all the methods, Searching: Linear Search and Binary Search Techniques and their complexity analysis. Hashing: Hashing functions, collision resolution techniques.

Text books:

1. "Fundamentals of Data Structures of C" by Ellis Horowitz, Sartaj Sahni, Susan Anderson-freed, Universities Press

2. "Data Structures in C" by Aaron M. Tenenbaum, Yedidyah Langsam, Moshe J. Augenstein, Pearson

3. "Data Structures with C" by S. Lipschutz, McGraw Hill India

Reference books:

1. Algorithms, Data Structures, and Problem Solving with C++", Illustrated Edition by

Mark Allen Weiss, Addison-Wesley Publishing Company

2. "How to Solve it by Computer", 2nd Impression by R.G. Dromey, Pearson Education.

Course outcomes

1. For a given algorithm student will able to analyze the algorithms to determine the time and computation complexity and justify the correctness.

2. For a given Search problem (Linear Search and Binary Search) student will able to implement it.

3. For a given problem of Stacks, Queues and linked list student will able to implement it and analyze the same to determine the time and computation complexity.

4. Student will able to write an algorithm Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort and compare their performance in term of Space and Time complexity.

5. Student will able to implement Graph search and traversal algorithms and determine the time and computation complexity.

YEAR- 2ND		SEMESTER- III			
ES-CS301 Digital Electronic		S	3L:0T: 4P	5	
Pre-requisites					

Course Objectives

The objectives are to study

1. To acquire the basic knowledge of digital logic levels and application of knowledge to understand digital electronics circuits.

2. To prepare students to perform the analysis and design of various digital electronic circuits.

Module 1: Fundamentals of Digital Systems and logic families (7 Hours) Digital signals, digital circuits, AND, OR, NOT, NAND, NOR and Exclusive-OR operations, Boolean algebra, examples of IC gates, number systems-binary, signed binary, octal hexadecimal number, binary arithmetic, one's and two's complements arithmetic, codes, error detecting and correcting codes, characteristics of digital ICs, digital logic families, TTL, Schottky TTL and CMOS logic, interfacing CMOS and TTL, Tri-state logic. 8hr

Module 2: Combinational Digital Circuits (7 Hours) Standard representation for logic functions, K-map representation, simplification of logic functions using K-map, minimization of logical functions. Don't care conditions, Multiplexer, De-Multiplexer/Decoders, Adders, Subtractors, BCD arithmetic, carry look ahead adder, serial adder, ALU, elementary ALU design, popular MSI chips, digital comparator, parity checker/generator, code converters, priority encoders, decoders/drivers for display devices, Q-M method of function realization. 7hr

Module 3: Sequential circuits and systems (7 Hours) A 1-bit memory, the circuit properties of Bi-stable latch, the clocked SR flip flop, J- K-T and D – types flip-flops, applications of flip-flops, shift registers, applications of shift registers, serial to parallel converter, parallel to serial converter, ring counter, sequence generator, ripple(Asynchronous) counters, synchronous counters, counters design using flip flops, special counter IC's, asynchronous sequential counters, applications of counters. 7hr

Module 4: A/D and D/A Converters (7 Hours) Digital to analog converters: weighted resistor/converter, R-2R Ladder D/A converter, specifications for D/A converters, examples of D/A converter ICs, sample and hold circuit, analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/ D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D converter ICs 7hr **Module 5:** Semiconductor memories and Programmable logic devices. (7 Hours) Memory organization and operation, expanding memory size, classification and

characteristics of memories, sequential memory, read only memory (ROM), read and write memory(RAM), content addressable memory (CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, Programmable logic array, Programmable array logic, complex Programmable logic devices (CPLDS), Field Programmable Gate Array (FPGA). 7hr Text/References:

1. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016.

2. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.

3. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.

Course Outcomes:

At the end of this course, students will demonstrate the ability to

- Understand working of logic families and logic gates
- Design and implement Combinational and Sequential logic circuits.
- Understand the process of Analog to Digital conversion and Digital to Analog conversion.
- Be able to use PLDs to implement the given logical problem.

Syllabus of IT Workshop - (Python/R/MATLAB/Sci Lab)

Subject Code: PCC-CS303	Category: Professional core course
Course Title:IT Workshop -	Semester: III
(Python/R/MATLAB/Sci Lab)	
1L : 0T: 4P	Credits: 3
Pre-requisites:No-prerequisite	

[L= Lecture, T = Tutorials, P = Practicals]

Programming with Python

Objectives of the course:

This course will expose students to the following

- 1. Learn core python scripting syntax and semantics
- 2. Illustrate the need to work with python data structures and their implementation.
- 3. Understand the concept of files, modules, and exception handling.

Detailed contents:

Modu le	Content	No. of Lecture
1	Introduction: History, Features, Setting up path, Working with Python, Basic Syntax, Variable and Data Types, Operator Conditional Statements : If, If- else, Nested if- else, Looping, For, While, Nested loops Control Statements : Break, Continue, Pass	3
2	 String Manipulation: Accessing Strings, Basic Operations, String slices, Function and Methods Functions: Defining a function, Calling a function, Types of functions, Function Arguments, Anonymous functions, Global and local variables 	3
3	Lists: Introduction, Accessing list, Operations, Working with lists, Function and Methods Dictionaries: Introduction, Accessing values in dictionaries, Working with dictionaries, Properties Tuple: Introduction, Accessing tuples, Operations, Working, Functions and Methods	3

4	Modules: Importing module, Math module, Random module,	3
	Packages, Composition, Input-Output Printing on screen,	
	Reading data from keyboard, Opening and closing file, Reading	
	and writing files.	
	Exception Handling: Exception, Exception Handling, Try	
	clause, Except clause.	

Suggested text books:

1. "Introducing Python: Modern Computing in Simple Packages"- O'Reilly Media by Bill Lubanovic.

Suggested reference books:

- 1. "Python Cookbook: Recipes for Mastering Python 3" by David Beazley, Brian K. Jones.
- 2. "Think Python: How to Think Like a Computer Scientist" by Allen B. Downey.

Course outcomes:

The student will learn

- 1. To write Python programs, interpret correct syntax and logical errors, and implement conditional branching, iteration.
- 2. To implement and handle string efficiently, decompose a problem into functions and implement a program using function efficiently.
- 3. To implement and manipulate a python program using python data structure list, tuple and dictionaries.
- 4. To implement a python program to read and write data from & to files, handle exceptions, and import modules.

Programming in R

Objectives of the course:

This course will expose students to the following

- 1. Learn basic programming syntax and semantics.
- 2. Learn fundamental problem solving and programming techniques.

Detailed contents:

Modu	Content	No. of
<u>1</u>	Introduction to mechanism for statistics, data analysis, and machine learning; Introduction of R Programming, How to install and run R, Use of R help files, R Sessions, R Objects – Vectors, Attributes, Matrices, Array, Class, List, Data Frames etc. Operators in R.	3
2	R Programming Structures, Control Statements, Loops, Repeat and Break, R-Function, R-Vector Function, Recursive Function in R.	3
3	R Packages (Install and Use), Input/Output Features in R, Reading or Writing in File. Data Manipulation in R. Rearranging data , Random Number and Simulation, Statistical methods like min, max, median, mean, length, Linear Regression, Normal Distribution, Decision tree.	3
4	Graphics, Creating Graphs, The Workhorse of R Base Graphics, Graphical Functions – Customizing Graphs, Saving Graphs to Files, Pie chart, Bar Chart, Histogram.	3

Suggested Text Book:

1. "Hands-On Programming with R: Write Your Own Functions and Simulations" by Garrett Grolemund.

Course outcomes:

- 5. Write, Test and Debug R Programs, interpret correct syntax and semantics, and R objects.
- 6. Implement control flow statements, loop and function.
- 7. Write program using packages and statistical methods.
- 8. Understand R graphics.

Programming in Matlab

Objectives of the course:

This course will expose students to the following

- 1. Learn the core syntax and semantics
- 2. Learn fundamental problem solving and programming techniques.

Detailed contents:

Modu	Content	No. of
le		Lecture
1	 Introduction: Why MATLAB?, History, Its strengths, Competitors, Starting MATLAB, Using MATLAB as a calculator, Quitting MATLAB Basics: Familiar with MATLAB windows, Basic Operations, MATLAB-Data types, Rules about variable names, Predefined variables 	3
2	 Programming-I: Vector, Matrix, Array Addressing, Built- in functions, Mathematical Operations, Dealing with strings (Array of characters), Array of array (cell) concept Programming-II: Script file, Input commands, Output commands, Structure of function file, Inline functions, Feval command, Comparison between script file and function file 	3
3	Conditional statements and Loop: Relational and Logical Operators, If-else statements, Switch-case statements, For loop, While loop, Special commands (Break and continue), Import data from large database, Export data to own file or database	3
4	 2D Plotting: In-built functions for plotting, Multiple plotting with special graphics, Curve fitting, Interpolation, Basic fitting interface 3D Plotting: Use of mesh grid function, Mesh plot, Surface plot, Plots with special graphics 	3

Suggested Text Book:

1. "Matlab: A Practical Introduction to Programming and Problem Solving" by Stormy Attaway.

Course outcomes:

- 1. Write, Test and Debug Matlab Programs, interpret correct syntax and semantics.
- 2. Implement conditional branching, loop, and iteration.
- 3. Implement vector, matrix, array, function and file.
- 4. Apply 2D and 3D plotting.

Programming in Scilab

Objectives of the course:

This course will expose students to the following

- 1. Learn the core syntax and semantics
- 2. Learn fundamental problem solving and programming techniques.

Detailed contents:

Modu	Content	No. of
le		Lecture
1	Introduction: About Scilab, History, Its strengths, Competitors, Starting Scilab, Using Scilab as a calculator, Quitting Scilab Basics: Scilabdatatypes, variables and constants.	3
2	 Matrices and Arrays: Matrix and basic matrix operations of addition and multiplication, transpose, Determinants of 2 × 2 and 3×3 matrices, and array. Expression: Variables Numbers, Operators Functions, Expressions. 	3
3	Conditional statements and Loop: If, else, else if, switch, for, while, continue, break, try, catch, return, etc.	3
4	Graphics: Plotting Process, Editing Process, Preparing Graphs, Basic Plotting Functions,Plotting math functions in Scilab, Plotting Bar graphs in Scilab,Changing axes properties in scilab plots, Image Reading & Writing, Printing graphics.	3

Suggested Text Book:

1. "Scilab from Theory to Practice - I. Fundamentals" by Philippe Roux.

Course outcomes:

- 1. Write, Test and Debug Scilab Programs, interpret correct syntax and semantics.
- 2. Implement conditional branching, loop, and iteration.
- 3. Implement matrix and array.
- 4. Apply plotting function and graphics.

Syllabus of IT Workshop - (Python/R/MATLAB/Sci Lab)

Subject Code: PCC CS393	Category: Professional core course
Course Title: IT Workshop -	Semester: III
(Python/R/MATLAB/Sci Lab)	
1L : 0T: 4P	Credits: 3
Pre-requisites: No-prerequisite	

[L= Lecture, T = Tutorials, P = Practicals]

Objectives of the course:

This course will expose students to the following

- 1. Learn python scripting syntax and semantics
- 2. Learn fundamental problem solving and programming techniques.
- 3. Understand the need to work with python data structures and their implementation.
- 4. Develop the concept of working with files, modules, and exceptions handling efficiently.

Laboratory Experiments:

- 1. Familiarization with programming environment.
- 2. Familiarization with variable, data types and operator.
- 3. Problems involving if-else structures.
- 4. Problems involving Loops, Break, Continue, and Pass.
- 5. Problems on String manipulation and Functions.

- 6. Problems using List, Dictionary, and Tuple.
- 7. Problems using files.
- 8. Problems to explore modules.
- 9. Problems to handle exceptions.

Suggested text books:

1. "Introducing Python: Modern Computing in Simple Packages"- O'Reilly Media by Bill Lubanovic.

Suggested reference books:

- 1. "Python Cookbook: Recipes for Mastering Python 3" by David Beazley, Brian K. Jones.
- 2. "Think Python: How to Think Like a Computer Scientist" by Allen B. Downey.

Course outcomes:

- 1. Write, Test and Debug Python Programs, interpret correct syntax and semantics, and implement conditional branching, iteration.
- 2. Implement and handle string efficiently, decompose a problem into functions and implement a program using function efficiently.
- 3. Implement and manipulate a python program using python data structure list, tuple and dictionaries.
- 4. Implement a python program to read and write data from & to files, handle exceptions, and import modules.

Course Code: BS-M301	Category: Professional Core Courses	
Course Title: Mathematics-III	Semester: 4 th Semester	
(Differential Calculus)		
L-T-P: 2-0-0	Credit: 2	
Teaching Scheme	Examination Scheme	
Theory:2 hrs./week	Class Tests & Assignments: 25 marks	
Tutorial: NIL	Attendance: 5 marks	
Practical: NIL	End Semester Exam: 70 marks	

Objective:

Objective:

1 To know Convergence of sequence and series

2 To know Limit, continuity and partial derivatives, Chain rule, Implicit function

3 To know First Order Differential Equation, Exact, Linear and Bernoulli' sequations, Basic Concept of graph, Walk, Path Circuit, Euler and Hamiltonian graph, diagraph.

Pre-requisites:

1 Concept Linear Algebra Determinant and its properties (up to third order)

2 Minor and cofactors, Matrices, addition, multiplication and transpose of a matrix, Symmetric and skew-symmetric

Unit	Content	Hrs/Unit
	Convergence and sequence series, tests for convergence, power	
	series, Taylor's series. Series for exponential trigonometric and	8
1	logarithmic functions.	
	Limit, continuity and partial derivatives, Chain rule, Implicit	
	function, Jacobian, Directional derivatives, Total derivative;	
	Maxima, minima and saddle points; Gradient, curl and divergence	
2	and related problems.	7
	Double and triple integrals (Cartesian and polar), change of order	
	of integration in double integrals, Change of variables (Cartesian	
	to polar). Theorems of Green, Gauss and Stokes (Statement only)	
3	and related problems.	8

	First Order Differential Equation, Exact, Linear and Bernoulli's				
	equations, Equations of first order but not of first degree:				
	equations solvable for p, equations solvable for y, equations				
	solvable for x. Second order linear differential equations with				
	constant coefficients, D-operator method, method of variation of				
4.	parameters, Cauchy-Euler equation. [4L]				
	Basic Concept of graph, Walk, Path Circuit, Euler and				
	Hamiltonian graph, diagraph.				
	Matrix Representation: Incidence & Adjacency matrix. Tree:				
	Basic Concept of tree, Binary tree, Spanning Tree, KrusKal and				
5	Prim's algorithm for finding the minimal spanning tree.				

Text book and Reference books:

- 1. Higher Algebra, S. K. Mapa, Levant Books.
- 2. Advanced Higher Algebra, Chakravorty and Ghosh, U N Dhar Pvt. Ltd.
- 3. Co-ordinate Geometry, S. L. Loney
- 4. Integral Calculus, Das and Mukherjee, U N Dhar Pvt. Ltd.
- 5. Differential Calculus, Das and Mukherjee, U N Dhar Pvt. Ltd.
- 6. Advanced Engineering Mathematics, E Kreyszig
- Advanced Engineering Mathematics, Chandrika Prasad & Reena Garg, Khanna Publishing House (AICTE Recommended Textbook -2018)

On completion of the course students will be able to

BSC-301.1 Express a logic sentence in terms of predicates, quantifiers, and logical connectives.

BSC-301.2 Apply the rules of inference and methods of proof including direct and indirect proof forms, proof by contradiction, and mathematical induction.

BSC-301.3 Use tree and graph algorithms to solve problems BSC-301.4 Evaluate Boolean functions and simplify expressions using the properties of boolean algebra.

YEAR- 2 ND			SEMESTER- III		
PCC-CS 391	Principles Language La	of ab	Programming	0L:0T:4P	Credit 2
Pre-requisites					

<u>Course Code: PCC-CS 391</u> <u>Course Name: Principles of Programming Languages Lab (PPL Lab)</u> <u>Credits:</u> <u>2 (Lab: 4hrs/week)</u>

Course Objectives:

This is the Practical part associated with the PPL course (PCC-CS 301). The objective is to impart a hands on exposure to the key concepts introduced in PCC-CS 301.

Course Outcomes:

After successfull completion of this course, students should be able to

- 1. Write simple programs using an OO programming language such as C++/Python/Ruby
- 2. Write simple programs using a logic programming language such as Prolog/Lisp
- 3. Write simple programs using a functional programming language such Haskell/ML/SML/Scheme/Clojure

Syllabus:

Introduction to OO programming concepts using Python/Ruby/C++ [~4 weeks]

Introduction to Functional programming using SML/Ocaml/Haskell/Scheme [~4 weeks]

Introduction to Logic programming using Prolog/Lisp [~4 weeks]

Textbook:

Programming Language Pragmatics by Michael Scott. Fourth Edition, Morgan Kaufmann Publishers, 2015. ISBN-13: 978-0124104099

Relevant online documentation for the respective programming languages used.

YEAR- 2ND		SEMESTER- III		
ES-CS 391	Digital Electronics I	Laboratory	0L:0T: 4P	Credit 2
Pre-requisites				

List of Experiments

- 1. Realization of basic gates using Universal logic gates.
- 2. Code conversion circuits- BCD to Excess-3 and vice-versa.
- 3. Four-bit parity generator and comparator circuits.
- 4. Construction of simple Decoder and Multiplexer circuits using logic gates.
- 5. Design of combinational circuit for BCD to decimal conversion to drive 7segment display using multiplexer.
- 6. Construction of simple arithmetic circuits- Adder, Subtractor.
- 7. Realization of RS-JK and D flip-flops using Universal logic gates.
- 8. Realization of Universal Register using JK flip-flops and logic gates.
- 9. Realization of Universal Register using multiplexer and flip-flops.
- 10. Realization of Asynchronous Up/Down counter.
- 11.Realization of Synchronous Up/Down counter.
- 12. Realization of Ring counter and Johnson's counter.
- 13.Construction of adder circuit using Shift Register and full Adder.
- 14.Code conversion circuits Binary to Gray & Vice-Versa. (Innovative).
- 15.Design of Sequential Counter with irregular sequences. (Innovative)

YEAR- 2ND		SEMESTER-III		
PCC-CS392	CC-CS392 Data Structure & Algorithms LAB		3L:0T: 4P	Credit: 5
Pre-requisites				

Detailed contents:

Experiments should include but not limited to :

1. Implementation of array operations; Merging of two arrays; Sparse Matrices : Addition, Multiplication.

2.Stacks and Queues: adding, deleting elements; Circular Queue: Adding & deleting elements;

Evaluation of expressions;

3. Implementation of linked lists: inserting, deleting, inverting a linked list; Implementation of stacks & queues using linked lists; Polynomial addition, Polynomial multiplication

4. Recursive and Nonrecursive traversal of binary trees; Threaded binary tree

traversal; AVL tree implementation; Application of Trees.

- 5. Searching & sorting techniques; Application of sorting and searching algorithms
- 6. Hash tables implementation: searching, inserting and deleting,

Semester-IV

Course Code: PCC-CS401	Category: Professional Core Courses		
Course Title: Discrete Mathematics	Semester: 4 th Semester		
L-T-P: 3-1-0	Credit: 4		
Teaching Scheme	Examination Scheme		
Theory: 3hrs/week	Class Tests & Assignments: 25 marks		
Tutorial: 1hr/week	Attendance: 5 marks		
	End Semester Exam: 70 marks		

Objective:

Throughout this course, students will be expected to demonstrate their understanding of Discrete Mathematics by being able to do each of the following:

- 1. Use mathematically correct terminology and notation.
- 2. Construct correct direct and indirect proofs.
- 3. Use division into cases in a proof.
- 4. Use counterexamples.
- 5. Apply logical reasoning to solve a variety of problems.

Pre-requisites: Some concepts from basic math – algebra, geometry, pre-calculus

Detailed Syllabus

Uni	Content	Hrs/Unit	Marks/U
t		(L+T)	nit
1	Sets, Relation and Function: Operations and Laws of Sets,	8+3	
	Cartesian Products, Binary Relation, Partial Ordering Relation,		
	Equivalence Relation, Image of a Set, Sum and Product of		
	Functions, Bijective functions, Inverse and Composite		
	function, Size of a Set, Finite and infinite Sets, Countable and		
	uncountable Sets, Cantor's diagonal argument and The Power		
	Set theorem, Schroeder-Bernstein theorem.		
	Principles of Mathematical Induction: The Well-Ordering		
	Principle, Recursive definition, The Division algorithm: Prime		

	Numbers, The Greatest Common Divisor: Euclidean Algorithm, The Fundamental Theorem of Arithmetic.		
2	Basic Counting Techniques: Inclusion and Exclusion, Pigeon-Hole Principle, Permutation and Combination.	5+1	
3	Propositional Logic: Syntax, Semantics, Validity and Satisfiability, Basic Connectives and Truth Tables, Logical Equivalence: The Laws of Logic, Logical Implication, Rules of Inference, The use of Quantifiers. Proof Techniques: Some Terminology, Proof Methods and Strategies, Forward Proof, Proof by Contradiction, Proof by Contradictic, Proof by Contradiction,	8+3	
4	Algebraic Structures and Morphism: Algebraic Structures with one Binary Operation, Semi Groups, Monoids, Groups, Congruence Relation and Quotient Structures, Free and Cyclic Monoids and Groups, Permutation Groups, Substructures, Normal Subgroups, Algebraic Structures with two Binary Operation, Rings, Integral Domain and Fields. Boolean Algebra and Boolean Ring, Identities of Boolean Algebra, Duality, Representation of Boolean Function, Disjunctive and Conjunctive Normal Form.	7+2	
5	Graphs and Trees: Graphs and their properties, Degree, Connectivity, Path, Cycle, Sub Graph, Isomorphism, Eulerian and Hamiltonian Walks, Graph Colouring, Colouring maps and Planar Graphs, Colouring Vertices, Colouring Edges, List Colouring, Perfect Graph, definition properties and Example, Rooted Trees, Trees and Sorting, Weighted Trees and Prefix Codes, Bi-connected component and Articulation Points, Shortest distances.	8+3	

Suggested Text books

- 1. Kenneth H. Rosen, "Discrete Mathematics and its Applications", Tata McGraw Hill
- 2. Susanna S. Epp, "Discrete Mathematics with Applications", 4th edition, Wadsworth Publishing Co. Inc.

3. C L Liu and D P Mohapatra, "Elements of Discrete Mathematics A Computer Oriented Approach", 3rd Edition, Tata McGraw Hill.

Suggested Reference books

- 1. J.P. Tremblay and R. Manohar, "Discrete Mathematical Structure and It's Application to Computer Science", Tata McGraw Hill
- 2. Norman L. Biggs, Discrete Mathematics, 2nd Edition, Oxford University Press
- 3. Seymour Lipschutz, Marc Lipson, "Schaum's Outline of Theory and Problems of Discrete Mathematics", Tata McGraw Hill

Course Outcomes

On completion of the course students will be able to:

PCC-CS401.1 For a given logic sentence express it in terms of	predicates,
quantifiers, and logical connectives	

- PCC-CS401.2 For a given a problem, derive the solution using deductive logic and prove the solution based on logical inference
- PCC-CS401.3 For a given a mathematical problem, classify its algebraic structure
- PCC-CS401.4 Evaluate Boolean functions and simplify expressions using the properties of Boolean algebra
- PCC-CS401.5 Develop the given problem as graph networks and solve with techniques of graph theory.

Syllabus of Computer Organization & Architecture

Subject Code: PCC-CS402	Category: Professional core course
Course Title: Computer Organization	Semester: IV
& Architecture	
3L : 0T: 4P	Credits: 5
Pre-requisites: ESC 302	

[L= Lecture, T = Tutorials, P = Practicals]

Objectives of the course:

This course will expose students to the following

1. How Computer Systems work & the basic principles.

- 2. Instruction Level Architecture and Instruction Execution.
- 3. The state of art in memory system design.
- 4. How I/O devices are accessed and its principles.
- 5. To provide the knowledge on Instruction Level Parallelism.
- 6. To impart the knowledge on micro programming.
- 7. Concepts of pipelining techniques.

Detailed contents:

Modu	Content	No. of		
le		Lecture		
1	Functional blocks of a computer: CPU, memory, input-output	10		
	subsystems, control unit. Instruction set architecture of CPU-			
	registers, instruction execution cycle, addressing modes,			
	instruction set.			
	Data representation: Signed number representation, fixed and			
	floating point representations, character representation.			
	Computer arithmetic -integer addition and subtraction, ripple			
	carry adder, carry look-ahead adder, etc. multiplication - shift-			
	and add, Booth multiplier, Division restoring and non-restoring			
	techniques, Floating point - IEEE 754 standard, floating point			
	arithmetic.			
2	Memory organization: Memory interleaving, concept of	10		
	hierarchical memory organization, semiconductor memory			
	technologies, cache memory, cache size vs. block size, mapping			
	functions, replacement algorithms, write policies.			
3	Introduction to x86 architecture.	8		
	CPU control unit design: hardwired and micro-programmed			
	design approaches.			
	Peripheral devices and their characteristics: Input-output			
	subsystems, I/O device interface, I/O transfers-program			
	controlled, interrupt driven and DMA, interrupts.			
4	Pipelining: Basic concepts of pipelining, throughput and	8		
	speedup, pipeline hazards.			
	Parallel Processors: Introduction to parallel processors.			

Suggested text books:

 "Computer Organization and Design: The Hardware/Software Interface", 5th Edition by David A. Patterson and John L. Hennessy, Elsevier.

- 2. "Computer Organization and Embedded Systems", 6th Edition by Carl Hamacher, McGraw Hill Higher Education.
- 3. "Computer System Architecture", by M. Morris Mano.
- 4. "Computer Architecture", Oxford University Press by Behrooz Parhami

Suggested reference books:

- 1. "Computer Architecture and Organization", 3rd Edition by John P. Hayes, WCB/McGraw-Hill.
- 2. "Computer Organization and Architecture: Designing for Performance", 10th Edition by William Stallings, Pearson Education.
- 3. "Computer System Design and Architecture", 2nd Edition by Vincent P. Heuring and Harry F. Jordan, Pearson Education.

Course outcomes:

- 1. Draw the functional block diagram of single bus architecture of a computer and describe the function of the instruction execution cycle, addressing modes, instruction set.
- 2. Given a CPU organization and instruction, design a memory module; analyze its operation by interfacing with the CPU and mapping techniques.
- 3. Write assembly language program for specified microprocessor, ability to explain the concept of control unit and I/O operations.
- 4. Given a CPU organization, apply design techniques to enhance performance using pipelining, and understand the concept of parallelism.

B.Tech Computer Science & Engineering PCC-CS403 OPERATING SYSTEMS 3L:0T:4P 5 Credits Total Number of Lectures: 36

	1
Course Code	PCC-CS403
Course Name	OPERATING SYSTEMS
Credits	3L:0T:4P 5 Credits
Pre-Requisites	Basic understanding of Computers, Data structure &
-	Algorithms

Total Number of Lectures: 36

COURSE OBJECTIVES

- 1. To learn the mechanisms of OS to handle processes and threads and their communication
- 2. To learn the mechanisms involved in memory management and virtual memory in contemporary OS

3. To gain knowledge on deadlock related issues

4. To know the concepts of I/O, File and Disk Management

Syllabus:

Module 1:

Introduction: Concept of Operating Systems, Generations of Operating systems, Types of Operating Systems, OS Services, System Calls, Structure of an OS -Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System.

Module 2:

Processes: Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching

Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads.

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF.

Module 3:

Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer-Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc.

Module 4:

Memory Management: Basic concept, Logical and Physical address map, Memory allocation: Contiguous Memory allocation - Fixed and variable partition-Internal and External fragmentation and Compaction; Paging: Principle of operation - Page allocation - Hardware support for paging, Protection and sharing, Disadvantages of paging.
Module 5:

Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU).

Module 6:

Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery.

Module 7:

I/O Management: I/O hardware, polling, interrupts, DMA, application I/O interface (block and character devices, network devices, clocks and timers, blocking and nonblocking I/O), kernel I/O subsystem (scheduling, buffering, caching, spooling and device reservation, error handling), performance.

File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management(bit vector, linked list, grouping), directory implementation (linearlist, hash table),efficiency and performance.

Disk Management: Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks

LECTURE WITH BREAKUP	NO. OF
	LECTU
	RES
Module 1:	
Introduction: Concept of Operating Systems, Generations of	[3]
Operating systems, Types of Operating Systems, OS Services, System	
Calls, Structure of an OS - Layered, Monolithic, Microkernel Operating	
Systems, Concept of Virtual Machine. Case study on UNIX and	
WINDOWS Operating System.	
Module 2:	
Processes: Definition, Process Relationship, Different states of a	[4]
Process, Process State transitions, Process Control Block (PCB), Context	
switching	
Thread: Definition, Various states, Benefits of threads, Types of threads,	
Concept of multithreads,	

Process Scheduling: Foundation and Scheduling objectives, Types of		
Schedulers, Scheduling criteria: CPU utilization, Throughput,		
Turnaround Time, Waiting Time, Response Time; Scheduling		
algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR;		
Multiprocessor scheduling: Real Time scheduling: RM and EDF.		
Module 3:		
Inter-process Communication: Critical Section, Race Conditions,	[4]	
Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's		
Solution, The Producer-Consumer Problem, Semaphores, Event		
Counters, Monitors, Message Passing, Classical IPC Problems:		
Reader's & Writer Problem, Dinning Philosopher Problem etc.		
Module 4:		
Memory Management: Basic concept, Logical and Physical address	[6]	
map, Memory allocation: Contiguous Memory allocation - Fixed and		
variable partition- Internal and External fragmentation and Compaction;		
Paging: Principle of operation – Page allocation – Hardware support		
for paging, Protection and sharing, Disadvantages of paging.		
Module 5:		
	161	
	[1]	
Virtual Memory: Basics of Virtual Memory – Hardware and		
Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set,		
Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms:		
Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently		
Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU).		
Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU). Module 6:	[6]	
 Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU). Module 6: Deadlocks: Definition Necessary and sufficient conditions for 	[6]	
 Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU). Module 6: Deadlocks: Definition, Necessary and sufficient conditions for Deadlock Deadlock Prevention Deadlock Avoidance: Banker's 	[6]	
 Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU). Module 6: Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm Deadlock detection and Recovery 	[6]	
 Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault , Working Set , Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU). Module 6: Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery. 	[6]	
 Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault , Working Set , Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU). Module 6: Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery. Module 7: 	[6]	
 Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault , Working Set , Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU). Module 6: Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery. Module 7: I/O Management: I/O hardware, polling, interrupts, DMA, application 	[6]	
 Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU). Module 6: Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery. Module 7: I/O Management: I/O hardware, polling, interrupts, DMA, application I/O interface (block and character devices, network devices, clocks and 	[6]	
 Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault , Working Set , Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU). Module 6: Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery. Module 7: I/O Management: I/O hardware, polling, interrupts, DMA, application I/O interface (block and character devices, network devices, clocks and timers, blocking and nonblocking I/O), kernel I/O subsystem 	[6]	
 Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault , Working Set , Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU). Module 6: Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery. Module 7: I/O Management: I/O hardware, polling, interrupts, DMA, application I/O interface (block and character devices, network devices, clocks and timers, blocking and nonblocking I/O), kernel I/O subsystem (scheduling, buffering, caching, spooling and device reservation, error 	[6]	
 Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault , Working Set , Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU). Module 6: Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery. Module 7: I/O Management: I/O hardware, polling, interrupts, DMA, application I/O interface (block and character devices, network devices, clocks and timers, blocking and nonblocking I/O), kernel I/O subsystem (scheduling, buffering, caching, spooling and device reservation, error handling), performance. 	[6]	

File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance.

Disk Management: Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks

COURSE OUTCOMES

After completion of course, students would be able to:

CO1: Create processes and threads and analyse the concepts of processes and threads in operating system and illustrate the scheduling of processor for a given problem instance.

CO2: For a given specification of memory organization, develop the techniques for optimally allocating memory to processes by increasing memory utilization and for improving the access time.

CO3: Identify and handle deadlock related issues.

CO4: Understand the implement file systems and directories along with the interfacing of IO devices with the operating system and disk management.

Textbooks/References:

Suggested books:

- 1. Operating System Concepts Essentials, 9th Edition by Avi Silberschatz, Peter Galvin, Greg Gagne, Wiley Asia Student Edition.
- 2. Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice Hall of India.

Suggested reference books:

- Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin Publishing
- 2. Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-Wesley
- 3. Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hall of India
- 4. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates

Course Code	PCC-CS404
Course Name	Design and Analysis of Algorithms 3L:0T: 4P
Credits	5
Pre-Requisites	ESC 201

Total Number of Lectures:36

COU	RSE OBJECTIVE
•	Analyze the asymptotic performance of algorithms.
•	Demonstrate a familiarity with major algorithm paradigms, their analysis and
	applications to different problem domains.
•	To classify problems according to hardness and to solve computationally hard
	problems.

Lecture Distributions	Hours
Unit 1	10
Introduction: Characteristics of algorithm: Correctness and Efficiency: Case	
Study	
Asymptotic analysis, Notations and their properties: Complexity bounds -	
Upper, lower and tight bound: Case Study	
Design Strategy: Sorting by Divide and Conquer: Heap Sort	
Performance measurements of Algorithm: Time complexity analysis:	
Sorting: Lower bound: Matrix Multiplications	
Analysis of recursive algorithms through recurrence relations: Substitution	
method: Case study: Recursion tree method and Masters' theorem: Case	
study	

Unit 2	9	
Fundamental Algorithmic Strategies: Brute-Force: Greedy: Dynamic		
Programming: Branch-and-Bound and Backtracking methodologies for the		
design of algorithms: Illustrations of these techniques for Problem-Solving:		
Bin Packing: Knap Sack: TSP: Heuristics -characteristics and their		
application domains		
Unit 3	9	
Graph and Tree Algorithms: Traversal algorithms: Depth First Search		
(DFS) and Breadth		
First Search (BFS): Shortest path algorithms: Transitive closure: Minimum		
Spanning Tree:		
Topological sorting: Network Flow Algorithms		
Unit 4	4	
Tractable and Intractable Problems: Computability classes - P, NP, NP-		
complete and NP-hard: Cook's theorem: Standard NP-complete problems		
and Reduction techniques		
Unit 5	4	
Advanced Topics: Approximation algorithms: Vertex cover: Set Cover:		
TSP: Randomized algorithms: Class of problems beyond NP – P SPACE		

COURSE OUTCOMES

After completion of course, students would be able to:

1. Analyze the worst-case running times of algorithms based on asymptotic analysis.

2. Model a problem and develop the appropriate algorithm from divide and conquer, greedy, dynamic programming and other paradigms

3. Classify problems in appropriate complexity classes and apply approximation and randomized algorithms in solving computationally hard real life problems

References:

Suggested books:

1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E

Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.

2. Fundamentals of Algorithms – E. Horowitz et al.

Suggested reference books

1. Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson.

2. Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition,

Michael T Goodrich and Roberto Tamassia, Wiley.

3. Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading, MA.

Course Code	HSMC-401	
Course Name	Management1(Organizational	
	Behaviour/Finance & Accounting)	
Credits	3	
Pre-Requisites		

Objective: the objective of this course is to identify and understand the importance and significance of human behaviour in the organizational setting. It also illuminates the philosophy, tools and relevance of organizational behaviour and its role for individual and organizational growth.

Sl.	Contents	Lecture	
		Hour	
1.	OB - Overview - Meaning of OB, Importance of OB, Field of	04	
	OB, Contributing Disciplines, Applications in Industry, Role of		
	Managers in OB- Interpersonal Roles-Informational Roles-		
	Decisional Roles, Challenges and Opportunities for OB		
2.	Personality- Meaning of Personality, Determinants of	04	
	Personality, Theories of Personality, Measurement of		
	Personality, Development of Personality		
	Perception – Process and Principles, Nature and Importance,	04	
3.	Factors Influencing, Perception, Perceptual Selectivity, Social		
	Perception, Fundamentals of Decision making		
	Communication- Meaning and Importance, Process, Function &	04	
	Types of Effective Communication, Interpersonal		
	Communication, Organizational Communication,		
4.	Motivation in OB - Approaches to Work Motivation, Theories		
	of Motivation – Maslow's Hierarchy of Need Theory, Alderfer's		
	ERG Theory, Herzberg's Motivation-Hygiene Theory,		

	McClelland's Achievement - Motivation Theory, McGregor's	
	Theory X & Y, Vroom's Expectancy Theory, Porter Lawler	
	Expectancy Model	
5.	Attitudes and Job Satisfaction – Sources of Attitudes, Types of	02
	Attitudes, Attitudes and Consistency, Cognitive Dissonance	
	Theory, Attitude Surveys.	
6.	Organization - Mission, Goals, Characteristics, Types,	06
	Organizational Theory- Classical Theories: Scientific	
	Management, Administrative Principals, Bureaucracy, Human	
	Relation Approach, Modern Theories: System Approach,	
	Contingency Approach, Quantitative Approach, Behavioural	
	Approach, Managing Organizational Culture.	
7.	Group Behaviour - Characteristics of Group, Types of Groups,	04
	Stages of Development, Group Decision-making, difference	
	work group and work team, Why work Teams, Work Team in	
	Organization, Team Building, Group Dynamics, Organizational	
	Politics.	
8.	Leadership - Leadership Theories, Leadership Styles, Skills and	04
	influence process, Leadership and power, Examples of Effective	
	Organizational Leadership in India, Cases on Leadership,	
	Success stories of today's Global and Indian leaders.	
9.	Conflict in Organization - Sources of Conflict, Types of	04
	Conflict, Conflict Process, Johari Window, Conflict Resolution,	
	Cases on Conflict Resolution.	
10.	Organizational Change - Meaning and Nature of Organizational	06
	Change, Types of Organizational Change, Forces that act as a	
	stimulant to change. Resistance to change, How to overcome	
	resistance to change, Approaches to Managing Organizational	
	Change, Kurt Lewin's three Step model, Action research model,	
	Kotter's Eight Step model.	
	Total	48

Suggested Reading

- 1. Robbins, S.P. Judge, T.A. & Sanghi, S.: Organizational Behaviour, Pearson
- 2. Luthans, Fred: Organizational Behaviour, McGraw Hill
- 3. Newstrom J.W. & Devis K.: Organizational Behaviour, McGraw Hill
- 4. Aswathappa ,K : Organisational Behaviour ,Himalaya Publishing House

- Shukla, Madhukar : Understanding Organizations Organizational Theory & Practice in India, Prentice Hall
- 6. Sekharan, Uma: Organisational Behaviour, The Mc Graw –Hill Companies

Subject Code: PCC-CS492		2	Category: Professional core course
Course Organization	Title: & Architectu	Computer re Lab	Semester: IV
3L : 0T: 4P			Credits: 5

[L= Lecture, T = Tutorials, P = Practicals]

Objectives of the course:

This course will expose students to the following

1. To be able to understand the behavior logic gates, adder, decoder and multiplexer.

2. How Computer Systems work & the basic principles.

Detailed contents: All laboratory assignments are based on Hardware Description Language (VHDL or Verilog) Simulation.

Module	Content
1	HDL introduction.
2	Basic digital logic based programming with HDL.
3	8-bit Addition, Multiplication, Division.
4	Design a BCD adder.
5	Design an 8×1 multiplexer.
6	Design a Decoder.
7	8-bit Register design.

8	Memory unit design and perform memory operations.
9	8-bit simple ALU design.
10	8-bit simple CPU design.
11	Interfacing of CPU and Memory.

Course Outcome:

1.Understand basic logic gates and efficiently verify the behavior of the circuit.

- 2.Acquire in-depth knowledge to implement different arithmetic operations.
- 3. Understand the working principle of the memory system.
- 4. Understand the working principle of CPU, and interfacing of CPU and Memory.

Course Code	PCC-CS493
Course Name	OPERATING SYSTEMS LAB
Credits	0L:0T:4P 2 Credits
Pre-Requisites	Programming for Problem Solving, Data Structure &
	Algorithm

Total Number of Lectures: 48

COURSE OBJECTIVES

- **1.** To write shell scripts, make a script executable, and learn varying shell syntax (variables, conditions, control structures, functions, commands).
- **2.** To create process and handle the concepts of process, signal and semaphore in operating system.
- **3.** To understand how to implement thread and thread synchronization, Interprocess communication

Syllabus:

1. Shell programming [9P]: creating a script, making a script executable, shell syntax (variables, conditions, control structures, functions, commands).

2. Process [6P]: starting new process, replacing a process image, duplicating a process image, waiting for a process, zombie process.

3. Signal [9P]: signal handling, sending signals, signal interface, signal sets.

4. Semaphore [6P]: programming with semaphores (use functions semctl, semget, semop, set_semvalue, del_semvalue, semaphore_p, semaphore_v).

5. POSIX Threads [9P]: programming with pthread functions(viz. pthread_create, pthread_join, pthread_exit, pthread_attr_init, pthread_cancel)

6. Inter-process communication [9P]: pipes(use functions pipe, popen, pclose), named pipes(FIFOs, accessing FIFO)

COURSE OUTCOMES

After completion of course, students would be able to:

CO1: Use a UNIX text editor to create a shell script and run scripts efficiently from the command line and write varying shell syntax.

CO2: Create process and handle the concepts of process, signal and semaphore in operating system.

CO3: Implement thread and thread synchronization, Inter-process communication

Textbooks/References:

- Unix Shell Programming, Yahhwant P. Kanetkar
- Unix and Shell Programming, Sumitabha Das
- Advanced Programming in the UNIX Environment 2nd Edition (English, Paperback, W. Richard Stevens)
- Milenkovie M., "Operating System : Concept & Design", McGraw Hill.
- Tanenbaum A.S., "Operating System Design & Implementation", Practice Hall NJ.
- Silbersehatz A. and Peterson J. L., "Operating System Concepts", Wiley.
- Dhamdhere: Operating System TMH
- Stalling, William, "Operating Systems", Maxwell McMillan International Editions, 1992.
- Dietel H. N., "An Introduction to Operating Systems", Addison Wesley