SEMESTER – III

Digital Electronics Code: ESC-301 Contact: 3L

Name o	of the Course:	Digital Electronics	
Course	Code: ESC-301	Semester: III	
Duratio	on:6 months	Maximum Marks:100	
Teachi	ing Scheme		Examination Scheme
Theory	v:3 hrs./week		Mid Semester exam: 15
Tutoria	al: NIL		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Practic	al:		End Semester Exam :70 Marks
Credit	Credit Points: 3		
Object	ive:		
1	To acquire the ba to understand dig	asic knowledge of digita gital electronics circuits	l logic levels and application of knowledge
2	To prepare stud	ents to perform the an	alysis and design of various digital
	electronic circuits		
Pre-Re	equisite:		
1	Basic Electronics Parts I & II learned in the First year, semesters 1 & 2. Basic BJTs,.		
2	Basic concept of the working of P-N diodes, Schottky diodes,		
3	Basic FETs and O	PAMP as a basic circuit	component. Concept of Feedback

Unit	Content	Hrs/Unit	Marks/Unit
	Different Classes of Amplifiers - (Class-A, B, AB		
1	and C - basic concepts, power, efficiency;	9	
	Recapitulation of basic concepts of Feedback and		
	Oscillation, Phase Shift, Wein Bridge oscillators		
	Astable&MonostableMultivibratorsSchimtt		
	Trigger circuits, 555 Timer.		
	Binary Number System & Boolean Algebra		
2	(recapitulation); BCD, ASCII, EBDIC, Gray codes	11	
	and their conversions; Signed binary number		
	representation with 1's and 2's complement		
	methods, Binary arithmetic, Venn diagram,		
	Boolean algebra (recapitulation); Representation		
	in SOP and POS forms; Minimization of logic		

	expressions by algebraic method. Combinational circuits - Adder and Subtractor circuits (half & full adder & subtractor); Encoder,		
	Multiplexer and Parity Generator		
	Sequential Circuits - Basic Flip-flop & Latch,		
3	Flip-flops -SR, JK, D, T and JK Master-slave Flip	10	
	counter. Johnson counter		
	Basic concept of Synchronousand Asynchronous		
	counters (detail design of circuits excluded),		
	Design of Mod N Counter		1
4.	A/D and D/A conversion techniques – Basic concepts (D/A :R-2-R only [2L]	6	
	A/D: successive approximation [2L])		
	Logic families- TTL, ECL, MOS and CMOS - basic concepts. (2L)		

Text book and Reference books:

- 1. Microelectronics Engineering –Sedra& Smith-Oxford.
- 2. Principles of Electronic Devices & circuits—B L Thereja&Sedha—S Chand
- 3. Digital Electronics Kharate Oxford
- 4. Digital Electronics Logic & Systems by J.Bigmell&R.Donovan; Cambridge Learning.
- 5. Digital Logic and State Machine Design (3rd Edition) D.J.Comer, OUP
- 6. Electronic Devices & Circuit Theory Boyelstad&Nashelsky PHI
- 7. Bell-Linear IC & OP AMP—Oxford
- 8. P.Raja- Digital Electronics- Scitech Publications
- 9. Morries Mano- Digital Logic Design- PHI
- 10. R.P.Jain—Modern Digital Electronics, 2/e ,McGraw Hill
- 11. H.Taub&D.Shilling, Digital Integrated Electronics- McGraw Hill.
- 12. D.RayChaudhuri- Digital Circuits-Vol-I & II, 2/e- Platinum Publishers
- 13. Tocci, Widmer, Moss- Digital Systems,9/e- Pearson
- 14. J.Bignell&R.Donovan-Digital Electronics-5/e- Cenage Learning.
- 15. Leach & Malvino—Digital Principles & Application, 5/e, McGraw Hill
- 16. Floyed& Jain- Digital Fundamentals-Pearson.

Course Outcomes:

On completion of the course students will be able to

ESC-301.1 Realize the basic operations of different analog components.

ESC-301.2 Realize basic gate operations and laws Boolean algebra.

ESC-301.3 Understand basic structure of digital computer, stored program concept and different arithmetic and control unit operations.

Data Structure & Algorithm Code: PCC-IT301 Contacts: 3L

Name	of the Course:	Data Structure &	Algorithm		
Cours	e Code: PCC-IT 301	Semester: III	Semester: III		
Durat	tion: 6 months	Maximum Marks:	100		
Teacl	hing Scheme	·	Examination Scheme		
Theor	ry:3 hrs./week		Mid Semester exam: 15		
Tutor	ial: NIL		Assignment and Quiz: 10 marks		
			Attendance : 5 marks		
Practical:			End Semester Exam :70 Marks		
Credi	t Points:	3			
Objec	Objective:				
1	To learn the basics	of abstract data typ	es.		
2	To learn the principles of linear and nonlinear data structures.				
3	To build an application using sorting and searching				
Pre-Requisite:					
1	CS 201 (Basic Computation and Principles of C				
2	M101 & M201 (Mat	hematics), basics of	f set theory		

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction: Basic Terminologies: Elementary		
1	Data Organizations, Data StructureOperations:	10	
	insertion, deletion, traversal etc.; Analysis of an		
	Algorithm, AsymptoticNotations, Time-Space trade		
	off. Searching: Linear Search and Binary Search		
	Technique sand their complexity analysis.		
	Stacks and Queues: ADT Stack and its operations:		
2	Algorithms and their complexityanalysis,	9	
	Applications of Stacks: Expression Conversion and		
	evaluation – correspondingalgorithms and		
	complexity analysis. ADT queue, Types of Queue:		
	Simple Queue, CircularQueue, Priority Queue;		
	Operations on each types of Queues: Algorithms		
	and their analysis.		

3	Linked Lists: Singly linked lists: Representation in memory, Algorithms of severaloperations: Traversing, Searching, Insertion into, Deletion from linked list; Linkedrepresentation of Stack and Queue, Header nodes, Doubly linked list: operations on it andalgorithmic analysis; Circular Linked Lists: all operations their algorithms and thecomplexity analysis.	10	
	Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded BinaryTree, Binary Search Tree, AVL Tree; Tree operations on each of the trees and theiralgorithms with complexity analysis. Applications of Binary Trees. B Tree, B+ Tree:definitions, algorithms and analysis		
4.	Sorting and Hashing: Objective and properties of different sorting algorithms:Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort;Performance and Comparison among all the methods, Hashing.Graph: BasicTerminologies and Representations, Graph search and traversal algorithms and complexity analysis.	9	

Text book and Reference books:

1. "Data Structures and Program Design In C", 2/E by Robert L. Kruse, Bruce P. Leung.

2. "Fundamentals of Data Structures of C" by Ellis Horowitz, SartajSahni, Susan Andersonfreed.

3. "Data Structures in C" by Aaron M. Tenenbaum.

4. "Data Structures" by S. Lipschutz.

5. "Data Structures Using C" by ReemaThareja.

6. "Data Structure Using C", 2/e by A.K. Rath, A. K. Jagadev.

7. "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein

Course Outcomes:

On completion of the course students will be able to

PCC-IT301.1 Differentiate how the choices of data structure & algorithm methods impact the performance of program.

PCC-IT301.2Solve problems based upon different data structure & also write programs.

PCC-IT301.3Identify appropriate data structure & algorithmic methods in solving problem.

PCC-IT301.4Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing

PCC-IT301.5Compare and contrast the benefits of dynamic and static data structures implementations.

Signals & Systems Code: ESC302 Contacts: 3L

Name of the Course:	Signals & Systems		
Course Code: ESC-302	Semester: III		
Duration: 6 months	Maximum Marks	s: 100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction to Signals and Systems : Signals and systems as seen in everyday life, and in various branches of engineering and science. Signal properties: periodicity, absolute integrability, determinism and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential, some special time-limited signals; continuous and discrete time signals, continuous and discrete amplitude signals. System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability, realizability.Examples.	3	
2	Behavior of continuous and discrete-time LTI systems (8 hours) Impulse response and step response, convolution, input-output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of systems. State-Space Analysis, Multi-input, multi- output representation. State Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response.	8	

	Fourier, Laplace and z- Transforms		
3	Fourier series representation of periodic signals,	10	
	Waveform Symmetries, Calculation of Fourier		
	Coefficients. Fourier Transform,		
	convolution/multiplication and their effect in the		
	frequency domain, magnitude and phase response,		
	Fourier domain duality. The Discrete- Time Fourier		
	Transform (DTFT) and the Discrete Fourier		
	Transform (DFT). Parseval's Theorem. Review of		
	the Laplace Transform for continuous time signals		
	and systems, system functions, poles and zeros of		
	system functions and signals, Laplace domain		
	analysis, solution to differential equations and		
	system behavior. The z-Transform for discrete time		
	signals and systems, system functions, poles and		
	zeros of systems and sequences, z-domain analysis.		
	The Sampling Theorem and its		
4.	implications. Spectra of sampled signals.	9	
	Reconstruction: ideal interpolator, zero-		
	order hold, first-order hold. Aliasing and its		
	effects. Relation between continuous and		
	discrete time systems. Introduction to the		
	applications of signal and system theory:		
	modulation for communication, filtering,		
	feedback control systems.		

Text book and Reference books:

- 1. A. V. Oppenheim, A. S. Willsky and S. H. Nawab, "Signalsand systems", Prentice Hall India,1997.
- 2. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and Applications", Pearson,2006.
- 3. H. P. Hsu, "Signals and systems", Schaum'sseries, McGraw Hill Education, 2010.
- 4. S. Haykinand B. V. Veen, "Signals and Systems", John Wiley and Sons, 2007.
- 5. A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall,2009.
- 6. M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.
- 7. B. P. Lathi, "LinearSystems and Signals", Oxford University Press, 2009.
- 8. A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall,2009.
- 9. M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.
- 10. B. P. Lathi, "LinearSystems and Signals", Oxford University Press, 2009.

Course Outcomes:

- On completion of the course students will be able to
- Understand the concepts of continuous time and discrete time systems.
- Analyse systems in complex frequency domain.
- Understand sampling theorem and its implications.
- Understand the concepts of continuous time and discrete time systems.

Mathematics-III (Differential Calculus) Code: BSC-301 Contacts: 2L

Name of the	Course:	Mathematics-I	II (Differential Calculus)
Course Code	e: BSC-301	Semester: III	
Duration:6	nonths	Maximum Mark	s:100
Teaching S	cheme		Examination Scheme
Theory:2 hr	s./week		Mid Semester exam: 15
Tutorial: NI	L		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Practical: N	IL		End Semester Exam:70 Marks
Credit Point	Credit Points: 2		
Objective:	Objective:		
1 To k	now Convergen	ce of sequence an	d series
2 To k	To know Limit, continuity and partial derivatives, Chain rule, Implicit function		
3 To 1	To know First Order Differential Equation, Exact, Linear and Bernoulli's		
equa	tions, Basic Co	ncept of graph,	Walk, Path Circuit, Euler and Hamiltonian
grap	h, diagraph		
Pre-Requisite:			
1 Conc	Concept Linear Algebra Determinant and its properties (up to third order)		
2 Mino	r and cofactors,	Matrices, additio	n, multiplication and transpose of a matrix,
Sym	netric and skew	-symmetric	

Unit	Content	Hrs/Unit	Marks/Unit
1	Convergence of sequence and series, tests for convergence, power series, Taylor's series. Series for exponential, trigonometric and logarithmic functions.	8	
2	Limit, continuity and partial derivatives, Chain rule, Implicit function, Jacobian, Directional derivatives, Total derivative; Maxima, minima and saddle points; Gradient, curl and divergence and related problems.	7	
3	Double and triple integrals (Cartesian and polar), change of order of integration in double integrals, Change of variables (Cartesian to polar). Theorems of Green, Gauss and Stokes (Statement only) and related problems.	8	

	First Order Differential Equation, Exact, Linear and		
4.	Bernoulli's equations, Equations of first order but	9	
	not of first degree: equations solvable for p,		
	equations solvable for y, equations solvable for x		
	and Clairaut's form, general & singular solution.		
	[5L]		
	Second order linear differential equations with		
	constant coefficients, D-operator method, method of		
	variation of parameters, Cauchy-Euler equation. [4L]		
5	Basic Concept of graph, Walk, Path Circuit, Euler and	8	
	Hamiltonian graph, diagraph.		
	Matrix Representation: Incidence & Adjacency		
	matrix.		
	Tree: Basic Concept of tree, Binary tree, Spanning		
	Tree, KrusKal and Prim's algorithm for finding the		
	minimal spanning tree.		

Text book and Reference books:

- 1. Higher Algebra, S. K. Mapa, Levant Books.
- 2. Advanced Higher Algebra, Chakravorty and Ghosh, U N Dhar Pvt. Ltd.
- 3. Co-ordinate Geometry, S. L. Loney
- 4. Integral Calculus, Das and Mukherjee, U N Dhar Pvt. Ltd.
- 5. Differential Calculus, Das and Mukherjee, U N Dhar Pvt. Ltd.
- 6. Advanced Engineering Mathematics, E Kreyszig,

Course Outcomes:

On completion of the course students will be able to

BSC-301.1 Express a logic sentence in terms of predicates, quantifiers, and logical connectives.

BSC-301.2 Apply the rules of inference and methods of proof including direct and indirect proof forms, proof by contradiction, and mathematical induction.

BSC-301.3 Use tree and graph algorithms to solve problems

BSC-301.4 Evaluate Boolean functions and simplify expressions using the properties of Boolean algebra.

Biology

Code: BSC 302 Contacts: 3L

Name o	of the Course:	Biology		
Course	Code: BSC-302	Semester: III		
Duratio	on:6 months	Maximum Marks:100)	
Teachi	ing Scheme		Examination Scheme	
	0			
Theory	:3hrs./week		Mid Semester exam: 15	
Tutorial:			Assignment and Quiz: 10 marks	
			Attendance: 5 marks	
Practical: NIL			End Semester Exam:70 Marks	
Credit Points:		3		
Objective:				
1	Bring out the fundamental differences between science and engineering			
2	Discuss how biological observations of 18th Century that lead to major			
	discoveries			
Pre-Requisite:				
1	Basic knowledge	e of Physics ,Chemistry	and mathematics	

Unit	Content	Hrs/Unit	Marks/Unit
1	To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology?	2	
	Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of		
	thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlight the fundamental importance of observations in any scientific inquiry.		

	Theunderlying criterion, such as morphological,		
2	biochemical or ecological be highlighted.	3	
	Hierarchy of life forms at phenomenological level.		
	A common thread weaves this hierarchy		
	Classification. Discuss classification based on (a)		
	cellularity- Unicellular or multicellular (b)		
	ultrastructure- prokaryotes or eucaryotes. (c)		
	energy and Carbon utilisation -Autotrophs,		
	heterotrophs, lithotropes (d) Ammonia		
	excretion – aminotelic, uricoteliec, ureotelic (e)		
	Habitata- acquatic or terrestrial (e) Molecular		
	taxonomy- three major kingdoms of life. A		
	given organism can come under different		
	category based on classification. Model organisms		
	for the study of biology come from different		
	groups. E.coli, S.cerevisiae, D. Melanogaster,		
	C. elegance, A. Thaliana, M. musculus		
	To convey that "Genetics is to biology what		
3	Newton's laws are to PhysicalSciences"Mendel's	4	
	laws, Concept of segregation and independent		
	assortment. Concept of allele. Gene		
	mapping, Gene interaction, Epistasis. Meiosis and		
	Mitosis be taught as a part of genetics.		
	Emphasis to be give not to the mechanics of cell		
	division nor the phases but how genetic		
	material passes from parent to offspring.		
	Concepts of recessiveness and dominance.		
	Conceptof mapping of phenotype to genes.		
	Discuss about the single gene disorders in		
	humans.		
	Discuss the concept of complementation using		
	human genetics.		
	Biomolecules: To convey that all forms of life have		
4.	the same building blocks and yet the	4	
	manifestations are as diverse as one can imagine		
	Molecules of life. In this context discuss		
	monomeric units and polymeric structures.		
	Discussabout sugars, starch and cellulose. Amino		
	acids and proteins. Nucleotides and		
	DNA/RNA.Two carbon units and lipids.		
5	Enzymes: To convey that without catalysis life	4	
	would not have existed on earth		

	(
	Enzymology: How to monitor enzyme catalysed		
	reactions. How does an enzyme catalyse		
	reactions? Enzyme classification. Mechanism of		
	enzyme action. Discuss at least two		
	examples. Enzyme kinetics and kinetic		
	parameters. Why should we know these		
	parametersto understand biology? RNA catalysis.		
6	Information Transfer: The molecular basis of	4	
	coding and decoding genetic information is		
	universal		
	Molecular basis of information transfer. DNA as a		
	genetic material. Hierarchy of DNA		
	structure- from single stranded to double belix to		
	nucleosomes. Concept of genetic code		
	Universality and degeneracy of genetic code		
	Define gene in terms of complementation and		
	recombination		
7	Macromolecular analysis: How to analyse	5	
,	hiological processes at the reductionist level		
	Proteins- structure and function Hierarch in		
	protein structure Primary secondary tertiary and		
	quaternary structure. Proteins as enzymes		
	transporters, receptors and structural elements.		
8	Metabolism: The fundamental principles of	4	
U	energy transactions are the same in physical and		
	hiological world		
	Thermodynamics as applied to biological systems		
	Fyothermic and endothermic versus		
	endergonic and evergoinc reactions Concept of		
	K_{og} and its relation to standard free energy		
	Spontaneity ΔTP as an energy currency. This		
	should include the breakdown of glucose to		
	$CO_2 + H_2O$ (Clycolysis and Krebs cycle) and		
	synthesis of glucose from CO_2 and H_2O_2		
	(Photosynthesis) Energy yielding and energy		
	consuming reactions Concent of Energy		
	charge		
9	MicrobiologyConcept of single celled organisms	2	
	Concept of species and strains. Identification and		
	classification of microorganisms. Microscopy		
	Ecological aspects of single colled		
	arganisms Starilization and modia compositions		
	Growth kinetics		
	GIOWHI KIIICHUS.		1

Text books/ reference books:

1. Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M,L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd

2. Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H.John Wiley and Sons

3. Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H. Freemanand Company

4. Molecular Genetics (Second edition), Stent, G. S.; and Calender, R. W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher

5. Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C.Brown Publishers

Course Outcomes:

On completion of the course students will be able to

 $BSC\mathchar`-302.1$ Describe how biological observations of $18\mbox{th}$ Century that lead to major discoveries.

BSC-302.2 Convey that classification *per se* is not what biology is all about but highlight the underlying

criteria, such as morphological, biochemical and ecological

BSC-302.3 Highlight the concepts of recessiveness and dominance during the passage of genetic material

from parent to offspring

BSC-302.4 Convey that all forms of life have the same building blocks and yet the manifestations are as

diverse as one can imagine

BSC-302.5 Classify enzymes and distinguish between different mechanisms of enzyme action.

BSC-302.6 Identify DNA as a genetic material in the molecular basis of information transfer.

BSC-302.7 Analyse biological processes at the reductionistic level

BSC-302.8 Apply thermodynamic principles to biological systems.

BSC-302.9 Identify and classify microorganisms.

Digital Electronics LabCode: ESC-391 Contacts: 4

Name of	the Course:	Digital Electronics Lab
Course C	ode: ESC-391	Semester: III
Duration	:6 months	Maximum Marks:100
Teaching	g Scheme:	
Theory:		Continuous Internal Assessment
Tutorial: NIL		External Assesement:60
Practical: 4 hrs./week		Distribution of marks:40
Credit Points:		2
Course Outcomes:		
1 I	ESC-301.1	
2 I	ESC-301.2	
3 I	3 ESC-301.3	
Pre-Requisite:		
Pre-requisites as in ESC-301		

Labora	Laboratory Experiments:			
Analog	Electronics			
1	Design a Class A amplifier			
2	Design a Phase-Shift Oscillator			
3	Design of a Schmitt Trigger using 555 timer			
Digital	Digital Electronics			
4	Design a Full Adder using basic gates and verify its output / Design a Full			
	Subtractor circuit using basic gates and verify its output.			
5	Construction of simple Decoder & Multiplexer circuits using logic gates.			
6	Realization of RS / JK / D flip flops using logic gates			
7	Design of Shift Register using J-K / D Flip Flop			
8	Realization of Synchronous Up/Down counter			
9	Design of MOD- N Counter			
10	Study of DAC			

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Data Structure & Algorithm Lab Code: PCC-IT391 Contacts: 4

Name of the Course:	Data Structure & Algorithm Lab	
Course Code: PCC-IT391	Somostor: III	
Duration: 6 months	Maximum Marka 100	
	Maximum Marks:100	
Teaching Scheme:		
Theory:	Continuous Internal Assessment	
Tutorial: NIL	External Assesement:60	
Practical: 4 hrs./week	Distribution of marks:40	
Credit Points:	2	
Course Outcomes:		
1 PCC-IT301.1		
2 PCC- IT 301.2		
3 PCC- IT 301.3		
4 PCC- IT 301.4		
5 PCC- IT 301.5		
Pre-Requisite:		
Pre-requisites as in PCC- IT 301		

Lal	Laboratory Experiments:			
Lin	ear Data Structure			
1	Implementation of array operations			
2	Stacks and Queues: adding, deleting elements Circular Queue: Adding & deleting			
	elements			
3	Merging Problem: Evaluation of expressions operations on Multiple stacks			
	&queues:			
4	Implementation of linked lists: inserting, deleting, inverting a linked list.			
	Implementation of stacks &queuesusing linked lists			
5	Polynomial addition, Polynomial multiplication			
No	n Linear Data Structure			
6	Recursive and Non-recursive traversal of Trees			
7	Threaded binary tree traversal. AVL tree implementation			
8	Application of Trees. Application of sorting and searching algorithms			
9	Hash tables implementation: searching, inserting and deleting, searching &			
	sorting techniques.			

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

IT Workshop (Sci Lab/MATLAB/Python/R) Code: PCC-IT 302 Contacts: 4P

Name of the Course:		IT Workshop
Cours	e Code: PCC-IT 302	Semester: III
Durat	ion:6 months	Maximum Marks:100
Teacl	ning Scheme:	
Theor	'y: NIL	Continuous Internal Assessment
Tutor	ial: NIL	External Assesement:60
Practi	ical: 4 hrs./week	Distribution of marks:40
Credit Points:		2
Cours	se Outcomes:	
1	To master an understanding of scripting & the contributions of scripting	
	languages	
2	Design real life problems an	d think creatively about solutions
3	Apply a solution in a program	m using R/Matlab/Python.
4	To be exposed to advanced applications of mathematics, engineering and natural	
	sciences to program real life problems.	
Pre-Requisite:		
1.	Knowledge of Programming Logic	
2.	Experience with a high level language (C/C++,) is suggested.	
3.	Prior knowledge of a scripti	ng language and Object-Oriented concepts is helpful
	but not mandatory.	

Practical Syllabus

Programming in R

1. Introduction to mechanism for statistics, data analysis, and machine learning; Introduction of R Programming, How to install and run R, Use of R help files, R Sessions, R Objects – Vectors, Attributes, Matrices, Array, Class, List, Data Frames etc. Operators in R.

2. R Programming Structures, Control Statements, Loops, Repeat and Break, R-Function, R-Vector Function, Recursive Function in R.

3.R Packages (Install and Use), Input/Output Features in R, Reading or Writing in File. Data Manipulation in R.Rearranging data, Random Number and Simulation, Statistical methods like min, max, median, mean, length, Linear Regression, Normal Distribution, Decision tree

4. Graphics, Creating Graphs, The Workhorse of R Base Graphics, Graphical Functions – Customizing Graphs, Saving Graphs to Files, Pie chart, Bar Chart, Histogram.

Programming in Matlab

Introduction

Why MATLAB?, History, Its strengths, Competitors, Starting MATLAB, Using MATLAB as a calculator, Quitting MATLAB

Basics

Familiar with MATLAB windows, Basic Operations, MATLAB-Data types, Rules about variable names, Predefined variables

Programming-I

Vector, Matrix, Array Addressing, Built-in functions, Mathematical Operations, Dealing with strings (Array of characters), Array of array (cell) concept

Programming-II

Script file, Input commands, Output commands, Structure of function file, Inline functions, Feval command, Comparison between script file and function file

Conditional statements and Loop

Relational and Logical Operators, If-else statements, Switch-case statements, Forloop, While loop, Special commands (Break and continue), Import data from large database, Export data to own file or database

2D Plotting

In-built functions for plotting, Multiple plotting with special graphics, Curve fitting, Interpolation, Basic fitting interface

3D Plotting

Use of meshgrid function, Mesh plot, Surface plot, Plots with special graphics

Programming with Python

Introduction

History,Features,Setting up path,Working with Python,BasicSyntax,Variable and Data Types, Operator

Conditional Statements If,If- else,Nested if-else,Looping,For,While, Nested loops

Control Statements

Break, Continue, Pass

String Manipulation

Accessing Strings, Basic Operations, String slices, Function and Methods

Lists

Introduction, Accessing list, Operations, Working with lists, Function and Methods

Tuple

Introduction, Accessingtuples, Operations, Working, Functions and Methods

Dictionaries

Introduction, Accessing values in dictionaries, Working with dictionaries, Properties

Functions

Defining a function,Calling a function,Types of functions,FunctionArguments,Anonymousfunctions,Global and local variables

Modules

Importing module, Math module, Random module, Packages, Composition, Input-Output Printing on screen, Reading data from keyboard, Opening and closing file, Reading and writing files, Functions

Exception Handling

Exception, Exception Handling, Except clause, Try?finally clause, User Defined Exceptions.

LaboratoryExperiments:1Practical Assignments related with implementation of PCC-CS393

SEMESTER - IV

Discrete Mathematics Code: PCC-IT401 Contacts: 3L+1T

Name of the Course:	Discrete Mathematics		
Course Code: PCC-IT401	Semester: IV		
Duration:6 months	Maximum Marks:	100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: 1 hour/week		Assignment and Quiz : 10 marks	
		Attendance : 5 marks	
Practical: NIL		End Semester Exam :70 Marks	
redit Points: 4			
Objective:			
1 Use mathematically	v correct terminolog	y and notation.	
2 Construct correct d	Construct correct direct and indirect proofs.		
3 To know Syntax, Se	To know Syntax, Semantics, Validity and Satisfiability, Graphs and Trees		
4 Use counterexampl	Use counterexamples. Apply logical reasoning to solve a variety of problems.		
Pre-Requisite:			
1 Some concepts from	Some concepts from basic math – algebra, geometry, pre-calculus		

Unit	Content	Hrs/Unit	Marks/Unit
1	Sets, Relation and Function: Operations and Laws of Sets, Cartesian Products, BinaryRelation, Partial Ordering Relation, Equivalence Relation, Image of a Set, Sum andProduct of Functions, Bijective functions, Inverse and Composite Function, Size of a Set,Finite and infinite Sets, Countable and uncountable Sets, Cantor's diagonal argument andThe Power Set theorem, Schroeder-Bernstein theorem.	8	
	Principles of Mathematical Induction: The Well- Ordering Principle, Recursivedefinition, The Division algorithm: Prime Numbers, The Greatest Common Divisor:Euclidean Algorithm, The Fundamental Theorem of Arithmetic.		
2	Basic counting techniques-inclusion and exclusion, pigeon-hole principle, permutation andcombination	5	

	Propositional Logic: Syntax, Semantics, Validity and		
3	Satisfiability, Basic Connectives and Truth Tables,	8	
	Logical Equivalence: The Laws of Logic, Logical		
	Implication, Rules ofInference, The use of		
	Quantifiers. Proof Techniques: Some Terminology,		
	Proof Methodsand Strategies, Forward Proof, Proof		
	by Contradiction, Proof by Contraposition, Proof		
	ofNecessity and Sufficiency.		
	Algebraic Structures and Morphism: Algebraic		
4.	Structures with one Binary Operation,Semi Groups,	7	
	Monoids, Groups, Congruence Relation and		
	Quotient Structures, Free and Cyclic Monoids and		
	Groups, Permutation Groups, Substructures,		
	NormalSubgroups, Algebraic Structures with two		
	Sinary Operation, Rings, Integral Domainand		
	Identities of Boolean Algebra Duality		
	Representation of Boolean Function Disjunctive		
	and Conjunctive Normal Form		
5	Graphs and Trees: Graphs and their properties,		
	Degree, Connectivity, Path, Cycle,Sub Graph,	8	
	Isomorphism, Eulerian and Hamiltonian Walks,		
	Graph Colouring, Colouring mapsand Planar		
	Graphs, Colouring Vertices, Colouring Edges, List		
	Colouring, Perfect Graph, definition properties and		
	Example, rooted trees, trees and sorting, weighted		
	trees and prefixcodes, Bi-connected component		
	and Articulation Foints, shortest distances.		

Text book and Reference books:

1. Russell Merris, Combinatorics, Wiley-Interscience series in Discrete Mathematics and Optimisation

2. N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI

3. Gary Haggard, John Schlipf and Sue Whitesides, Discrete Mathematics for Computer Science, CENGAGE Learning

4. Gary Chartrand and Ping Zhang – Introduction to Graph Theory, TMH

5. J.K. Sharma, Discrete Mathematics, Macmillan

6. Winfried Karl Grassmann and Jean-Paul Tremblay, Logic and Discrete Mathematics, PEARSON.

7. S. K. Chakraborty and B. K. Sarkar, Discrete Mathematics, OXFORD University Press.

8. Douglas B. West, Introduction to graph Theory, PHI

9. C. L. Liu, Elements of Discrete Mathematics, 2nd Ed., Tata McGraw-Hill, 2000.

10. R. C. Penner, Discrete Mathematics: Proof Techniques and Mathematical Structures, World Scientific, 1999.

11. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd Ed.,

Addison-Wesley, 1994.

12. N. Deo, Graph Theory, Prentice Hall of India, 1974.

13. S. Lipschutz and M. L. Lipson, Schaum's Outline of Theory and Problems of Discrete Mathematics, 2nd Ed., Tata McGraw-Hill, 1999.

14. J. P. Tremblay and R. P. Manohar, Discrete Mathematics with Applications to

Computer Science, Tata McGraw-Hill, 1997.

15. Russell Merris, Combinatorics, Wiley-Interscience series in Discrete Mathematics and Optimisation

16. N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI

17. Gary Haggard, John Schlipf and Sue Whitesides, Discrete Mathematics for Computer Science, CENGAGE Learning

18. Gary Chartrand and Ping Zhang – Introduction to Graph Theory, TMH

Course Outcome(s)

On completion of the course students will be able to

PCC- IT 401.1 Express a logic sentence in terms of predicates, quantifiers, and logicalconnectives

PCC- IT 401.2 Derive the solution for a given problem using deductive logic and prove the solutionbased on logical inference

PCC- IT 401.3Classify its algebraic structure for a given a mathematical problem,

PCC- IT 401.4Evaluate Boolean functions and simplify expressions using the properties of Booleanalgebra

PCC- IT 401.5Develop the given problem as graph networks and solve with techniques of graph theory.

Computer Organization & Architecture Code: PCC-IT402 Contacts: 3L

Name	Name of the Course: Computer Organization & Architecture			
Cours	e Code:PCC-IT402	Semester: IV		
Durat	ion:6 months	Maximum Marks:	100	
Teach	ning Scheme		Examination Scheme	
Theor	y:3 hrs./week		Mid Semester exam: 15	
Tutor	ial: NIL		Assignment and Quiz: 10 marks	
			Attendance: 5 marks	
Practi	cal:		End Semester Exam:70 Marks	
Credit	t Points:	3		
Objective:				
1	1 To learn the basics of stored program concepts.			
2	To learn the princip	oles of pipelining		
3	To learn mechanism	of data storage		

4	To distinguish between the concepts of serial, parallel, pipeline architecture.		
Pre-F	Pre-Requisite:		
1	Basic Structure of Computers, Functional units, software, performance issues		
	software, machine instructions		
2	RAM, ROM, Memory management		

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Review of basic computer architecture (Revisited), Quantitative techniques in computer design,	12	
	measuring and reporting performance. (3L) Pipelining: Basic concepts, instruction and arithmetic pipeline, data hazards, control hazards and structural hazards,techniques for handling hazards. Exception handling. Pipeline optimization techniques; Compiler techniques for improving performance. (9L)		
2	Hierarchical memory technology: Inclusion, Coherence and locality properties; Cache memory organizations, Techniques for reducing cache misses; Virtual memory organization, mapping and management techniques, memory replacement policies. (8L)	8	
3	Instruction-level parallelism: basic concepts, techniques for increasing ILP, superscalar, super- pipelined and VLIWprocessor architectures. Array and vector processors. (6L)	6	
4.	Multiprocessor architecture: taxonomy of parallel architectures; Centralized shared- memory architecture: synchronization, memory consistency, interconnection networks. Distributed shared- memory architecture. Clustercomputers. (8L)	7	
	Non von Neumann architectures: data flow computers, reduction computer architectures, systolic architectures. (4L)		

Text/Reference Books:

1. V. Carl, G. Zvonko and S. G. Zaky, "Computer organization", McGraw Hill, 1978.

2. B. Brey and C. R. Sarma, "The Intel microprocessors", Pearson Education, 2000.

3. J. L. Hennessy and D. A. Patterson, "Computer Architecture A QuantitativeApproach", Morgan Kauffman, 2011.

4. W. Stallings, "Computer organization", PHI, 1987.

5. P. Barry and P. Crowley, "Modern Embedded Computing", Morgan Kaufmann, 2012.

6. N. Mathivanan, "Microprocessors, PC Hardware and Interfacing", Prentice Hall, 2004.

7. Y. C. Lieu and G. A. Gibson, "Microcomputer Systems: The 8086/8088 Family", Prentice Hall India, 1986.

8. J. Uffenbeck, "The 8086/8088 Design, Programming, Interfacing", Prentice Hall, 1987.

9. B. Govindarajalu, "IBM PC and Clones", Tata McGraw Hill, 1991.

10. P. Able, "8086 Assembly Language Programming", Prentice Hall India6. Winfried Karl Grassmann and Jean-Paul Tremblay, Logic and Discrete Mathematics, PEARSON.

Course Outcomes:

On completion of the course students will be able to

PCC- IT 402.1 Learn pipelining concepts with a prior knowledge of stored program methods

PCC- IT 402.2 Learn about memory hierarchy and mapping techniques. PCC- IT 402.3 Study of parallel architecture and interconnection network

Formal Language & Automata Theory Code: PCC-IT403 Contacts: 3L

Name	Name of the Course:Formal Language & Automata Theory		& Automata Theory
Course Code:PCC-IT403 Semester: IV			
Durat	ion:6 months	Maximum Marks:1	00
Teac	hing Scheme		Examination Scheme
Theor	ry:3 hrs./week		Mid Semester exam: 15
Tutor	ial: NIL		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Pract	ical: NIL		End Semester Exam:70 Marks
Credit Points: 3			
Objec	ctive:		
1	Be able to construc	onstruct finite state machines and the equivalent regular expressions.	
2	Be able to prove the	ove the equivalence of languages described by finite state machines	
	and regular express	egular expressions	
3	Be able to construct pushdown automata and the equivalent context free		
	grammars.		
	And Be able to prov	e the equivalence of	languages described by pushdown
	automata and conte	ext free grammars.	
4	Be able to construc	t Turing machines an	d Post machines.
	Be able to prove the equivalence of languages described by Turing machines and		
	Post machines		
Pre-Requisite:			
1	Grammar and its cla	assification (Context	Free Grammar)

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Alphabet, languages and grammars, productions and derivation, Chomsky hierarchy of languages.	6	

2	Regular languages and finite automata: Regular expressions andlanguages, deterministic finite automata (DFA) and equivalence with regular expressions,nondeterministic finite automata (NFA) and equivalence with DFA, regular grammars andequivalence with finite automata, properties of regular languages, pumping lemma forregular languages, minimization of finite automata)	7	
3	Context-free languages and pushdownautomata: Context-free grammars (CFG) and languages (CFL), Chomsky and Greibachnormal forms, nondeterministic pushdown automata (PDA) and equivalence with CFG,parse trees, ambiguity in CFG, pumping lemma for context-free languages, deterministicpushdown automata, closure properties of CFLs.	6	
4.	Context-sensitive languages:Context-sensitive grammars (CSG) and languages, linear bounded automata and equivalence with CSG.	6	
5	Turing machines: The basic model for Turing machines (TM), Turingrecognizable(recursively enumerable) and Turing-decidable (recursive) languages and theirclosure properties, variants of Turing machines, nondeterministic TMs and equivalence withdeterministic TMs, unrestricted grammars and equivalence with Turing machines, TMsas enumerators	6	
6	Undecidability: Church-Turing thesis, universal Turing machine, theuniversal and diagonalization languages, reduction between languages and Rice s theorem,undecidable problems about languages	6	

Text books/ reference books:

1. John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to AutomataTheory, Languages, and Computation, Pearson Education Asia.

2.Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation, Pearson Education Asia.

3.Dexter C. Kozen, Automata and Computability, Undergraduate Texts in ComputerScience, Springer.

4. Michael Sipser, Introduction to the Theory of Computation, PWS Publishing.

5. John Martin, Introduction to Languages and The Theory of Computation, TataMcGraw Hill., PEARSON.

Course Outcomes:

On completion of the course students will be able to

PCC- IT 403.1 Write a formal notation for strings, languages and machines.

PCC- IT 403.2 Design finite automata to accept a set of strings of a language.

PCC- IT 403.3 For a given language determine whether the given language is regular ornot.

PCC- IT 403.4 Design context free grammars to generate strings of context free language.

PCC- IT 403.5 Determine equivalence of languages accepted by Push Down Automataand languagesgenerated by context free grammars

PCC- IT 403.6 Write the hierarchy of formal languages, grammars and machines.

PCC- IT 403.7 Distinguish between computability and non-computability and Decidability and undecidability

Economics for Engineers (Humanities-II) Code: HSMC-401 Contacts: 3L

Name	of the Course:	Economics for	Engineers (Humanities-II)
Cours	e Code: HSMC-401	Semester: IV	
Durat	ion:6 months	Maximum Mark	s:100
Teac	hing Scheme		Examination Scheme
Theor	ry:3 hrs./week		Mid Semester exam: 15
Tutor	ial: NIL		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Pract	ical: NIL		End Semester Exam:70 Marks
Credi	t Points:	3	
Objective:			
1	Understand the role and scope of Engineering Economics and the process of economic		
	decision making		
2	Understand the diffe	rstand the different concepts of cost and different cost estimation techniques	
3	Familiarization with	h the concepts of	cash flow, time value of money and different
	interest formulas		
4	Appreciation of the	role of uncertain	ty in future events and using different concepts
	from probability to o	deal with uncertain	nty
5	Understand the con	cepts of Depreciat	ion and Replacement analysis along with their
(Equilibrication with	011	of inflation and the use of price indices in
0	Familiarization with		of inflation and the use of price mulces in
7	Introduction to basic concents of Accounting and Financial Management		
/ Pre-R	enuisite	e concepts of Acco	unting and i mancial management
1	Mathematics		
T	maintinatics		

Unit	Content	Hrs/Unit	Marks/Unit
	1. Economic Decisions Making – Overview	-,	
1	Problems Role Decision making process	9	
	2 Engineering Costs & Estimation – Fixed Variable	,	
	Marginal & Average Costs Sunk Costs Opportunity		
	Costs Recurring And		
	Nonrocurring Costs, Incromontal Costs, Cash Costs		
	ve Book Costs, Lifo-Cyclo Costs, Typos Of Estimato		
	Fetimating Models - Dor-		
	Unit Model Segmenting Model Cost Indexes		
	Power-Sizing Model Improvements Learning		
	Curve Renefits		
	2 Cash Flow Interest and Equivalence: Cash Flow		
2	5. Cash Flow, interest and Equivalence: Cash Flow –	0	
	Monoy Debt renovment Nominal's Effective	7	
	Interest		
	A Cash Flow & Pate of Poturn Analysis		
	4. Cash Flow & Rate of Return Analysis -		
	Cach Flow Analysis Analysis Dariade:		
	Laternal Date of Deturn Calculating Date of Deturn		
	Incremental Analysis: Bost Alternative Choosing an		
	Analysis Mothod Futuro		
	Worth Analysis Bonofit-Cost Patio Analysis		
	Sonsitivity and Broakeyon Analysis Economic		
	Analysis In The Public Sector - Quantifying And		
	Valuing Benefits & drawbacks		
	5 Inflation and Price Change – Definition Effects		
3	S. Innation and The Change – Definition, Effects,	Q	
5	Composite vs Commodity)	
	Indexes Use of Price Indexes In Engineering		
	Economic Analysis Cash Flows that inflate at		
	different Rates		
	6 Present Worth Analysis: End-Of-Vear Convention		
	Viewpoint Of Economic Analysis Studies Borrowed		
	Money Viewpoint Effect		
	Of Inflation & Deflation Taxes Economic Criteria		
	Annlying Present Worth Techniques Multiple		
	Alternatives		
	7. Uncertainty In Future Events - Estimates and		
	Their Use in Economic Analysis Range Of Estimates		
	Prohability Joint Prohability		
	Distributions, Expected Value Economic Decision		
	Trees, Risk, Risk vs Return Simulation Real		
	Options.		
	options.		

	8. Depreciation - Basic Aspects, Deterioration &		
4.	Obsolescence, Depreciation And Expenses, Types Of	9	
	Property, Depreciation Calculation Fundamentals,		
	Depreciation And Capital Allowance Methods,		
	Straight-Line Depreciation Declining Balance		
	Depreciation, Common Elements Of Tax Regulations		
	For Depreciation And Capital Allowances.		
	9. Replacement Analysis - Replacement Analysis		
	Decision Map, Minimum Cost Life of a New Asset,		
	Marginal Cost, Minimum Cost Life Problems.		
	10. Accounting – Function, Balance Sheet, Income		
	Statement, Financial Ratios Capital Transactions,		
	Cost Accounting, Direct and Indirect Costs, Indirect		
	Cost Allocation.		

Text book and Reference books:

- 1. James L.Riggs, David D. Bedworth, Sabah U. Randhawa : Economics for Engineers 4e , Tata McGraw-Hill
- 2. Donald Newnan, Ted Eschembach, Jerome Lavelle: Engineering Economics Analysis, OUP
- 3. John A. White, Kenneth E.Case, David B.Pratt : Principle of Engineering Economic Analysis, John Wiley
- 4. Sullivan and Wicks: Engineering Economy, Pearson
- 5. R.PaneerSeelvan: Engineering Economics, PHI
- 6. Michael R Lindeburg : Engineering Economics Analysis, Professional Pub

Course Outcome:

On completion of the course students will be able to

HSMC-401.1 Make different economic decisions and estimate engineering costs by applying different cost estimation models.

HSMC-401.2 Create cash flow diagrams for different situations and use different interest formulae to solve associated problems.

HSMC-401.3 Take decisions regarding different engineering projects by using various criteria like rate of return analysis, present worth analysis, cost-benefit analysis etc.

HSMC-401.4 Incorporate the effect of uncertainty in economic analysis by using various concepts like expected value, estimates and simulation.

HSMC-401.5 Understand the concepts of depreciation and replacement analysis and solve associated problems.

HSMC-401.6 Understand the process of inflation and use different price indices to adjust for its effect.

HSMC-401.7 Apply the various concepts of Accounting like balance sheet and ratio analysis.

HSMC-401.8 Understand the scope of Finance and the role of financial planning and management.

Environmental Sciences Code:MC-401 Contacts:1L

Name	of the Course:	Environmental Sciences		
Course Code: MC-401 Semester: IV				
Durat	ion:6 months	Maximum Marks:100		
Teacl	hing Scheme		Examination Scheme	
Theor	ry:1hrs./week		Mid Semester exam: 15	
Tutor	ial: NIL		Assignment and Quiz : 10 marks	
			Attendance : 5 marks	
Practi	ical: NIL		End Semester Exam :70 Marks	
Credit Points: 0				
Objec	ctive:			
1	Be able to under	stand the natural envi	ronment and its relationships with human	
	activities.			
2	Be able to apply	the fundamental know	ledge of science and engineering to assess	
	environmental a	nd health risk.		
3	Be able to understand environmental laws and regulations to develop guidelines			
	and procedures for health and safety issues.			
4	Be able to solve scientific problem-solving related to air, water, noise & land			
	pollution			
Pre-Requisite:				
1	Basic knowledge	of Environmental scien	ce	

Unit	Content	Hrs/Unit	Marks/Unit
1	Basic ideas of environment, basic concepts, man, society & environment, their interrelationship (1L)	6	
	Mathematics of population growth and associated problems, Importance of population study in environmental engineering, definition of resource, types of resource, renewable, non-renewable, potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development. (2L) Materials balance: Steady state conservation system, steady state system with non-conservative pollutants, step function.(1L) Environmental degradation: Natural environmental Hazards like Flood, earthquake, Landslide-causes, effects and control/management; Anthropogenic degradation like Acid rain-cause, effects and control. Nature and scope of Environmental Science and		
	Engineering. (2L)		

2	Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem- components types and function. (1L) Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain	6	
	[definition and one example of each food chain], Food web.(2L) Biogeochemical Cycle- definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur].(1L) Biodiversity- types, importance, Endemic species,		
	Biodiversity Hot-spot, Threats to		
3	Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesonause (11)	11	
	Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model[Earth as a black body, earth as albedo], Problems.(1L) Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level,agriculture and marine food.Global warming and its consequence, Control of Global warming. Earth's heat budget.(1L) Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).(2L) Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L) Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant.Sources and effect of different air pollutants- Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN. (2L) Smog, Photochemical smog and London smog.Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification.(1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP.cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement		

	with brief reference). (1L)		
4.	Hydrosphere, Hydrological cycle and Natural water.Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application,heavy metals, pesticides, volatile organic compounds. (2L)	9	
	River/Lake/ground water pollution: River: DO, 5-day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river		
	[deoxygenation, reaeration], COD, Oil, Greases, pH. (2L)		
	Lake: Eutrophication [Definition, source and effect]. (1L)		
	Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only)(1L)		
	Standard and control: Waste water standard [BOD, COD, Oil, Grease],		
	Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening] Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor,Activated sludge, sludge treatment, oxidation ponds] tertiary treatment definition. (2L)		
	Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic (1L)		
5	Lithosphere; Internal structure of earth, rock and soil (1L)	3	
	Solid Waste: Municipal, industrial, commercial, agricultural, domestic, pathological and hazardous solid wastes; Recovery and disposal method- Open dumping, Land filling, incineration, composting, recycling. Solid waste management and control (hazardous and biomedical waste).(2L)		

6	Definition of noise, effect of noise pollution, noise classification [Transport noise, occupational noise, neighbourhood noise] (1L) Definition of noise frequency, noise pressure, noise intensity, noise threshold limit value, equivalent noise level, L10 (18hr Index), <i>n Ld</i> .Noise pollution control. (1L)	3	
7	Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/ agreement/ protocol. (2L)	2	

Text books/ reference books:

1. Masters, G. M., "Introduction to Environmental Engineering and Science", Prentice-Hall of India Pvt. Ltd., 1991.

2. De, A. K., "Environmental Chemistry", New Age International

Course Outcomes:

On completion of the course students will be able to

MC-401.1To understand the natural environment and its relationships with human activities.

MC-401.2To apply the fundamental knowledge of science and engineering to assess environmental and health risk.

MC-401.3To develop guidelines and procedures for health and safety issues obeying the environmental laws and regulations.

MC-401.4Acquire skills for scientific problem-solving related to air, water, noise& land pollution.

Code: PCC-IT404 Contacts: 3L Name of the Course: **Communication Engineering** Course Code: PCC-IT404 Semester: IV Duration:6 months Maximum Marks:100 **Teaching Scheme Examination Scheme** Theory: 3 hrs./week Mid Semester exam: 15 Tutorial: NIL Assignment and Quiz: 10 marks Attendance: 5 marks Practical: -End Semester Exam:70 Marks Credit Points: 3 **Objective:** To comprehend basics of communication system 1 2 To apply the basic concept of PCM systems and baseband transmission schemes To develop a fundamental understanding on Communication Systems with 3 emphasis on analog modulation techniques and noise performance

Communication Engineering

4	To analyze, evaluate and produce spectral characteristics of band pass signaling schemes
5	To understand the key modules of digital communication systems with emphasis
	on digital modulation techniques
6	To get introduced to the basics of Spread Spectrum Modulation
7	To asses noise issues

Unit	t Content		Marks/Unit
1	Elements of Communication system, Analog Modulation & Demodulation, Noise, SNR Analog-to-Digital Conversion. (Basic ideas in brief) :Details: Introduction to Base Band transmission & Modulation (basic concept); Elements of Communication systems (mention of transmitter, receiver and channel); origin of noise and its effect, Importance of SNR in system design; Basic principles of Linear Modulation (Amplitude Modulation); Basic principles of Linear Modulator & Demodulator circuits (Amplitude Modulation); Basic principles of Non-linear modulation (Angle Modulation - FM, PM); Basic principles of Non- linear modulator (Angle Modulation – FM, PM) & Demodulator circuits; Sampling theorem, Sampling rate, Impulse sampling, Reconstruction from samples, Aliasing; Analog Pulse Modulation - PAM (Natural & flat topped sampling), PWM, PPM; Basic concept of Pulse Code Modulation, Block diagram of PCM; Multiplexing - TDM, FDM;	14	
2	Digital Transmission: Details: Concept of Quantisation & Quantisation error, Uniform Quantiser; Non-uniform Quantiser, A-law & law companding (mention only); Encoding, Coding efficiency; Line coding & properties, NRZ & RZ, AMI, Manchester coding PCM, DPCM; Baseband Pulse Transmission, Matched filter (mention of its importance and basic concept only), Error rate due to noise; ISI, Raised cosine function, Nyquist criterion for distortion- less base-band binary transmission, Eye pattern, Signal power in binary digital signals.	10	
3	Digital Carrier Modulation & Demodulation Techniques: Details: Bit rate, Baud rate; Information capacity, Shanon's limit; M-ary encoding, Introduction to the different digital modulation techniques - ASK, FSK, PSK, BPSK, QPSK, mention of 8 BPSK, 16 BPSK; Introduction to QAM, mention of 8QAM, 16 QAM without elaboration; Delta modulation, Adaptive delta modulation (basic concept and importance only, no details; Introduction to	12	
	the concept of DPCM, Delta Modulation, Adaptive Delta modulation and their relevance; Spread Spectrum Modulation - concept only, Introduction to different digital modulator like ASK, FSK, PSK, BPSK, QPSK, 8 BPSK, 16 BPSK modulator & Demodulator; Introduction to QAM, 8QAM, 16 QAM, Delta & Adaptive delta Modulator and Demodulator.		

Text books/ reference books:

1. An Introduction to Analog and Digital Communications by Simon Haykin; Publishedby Wiley India.

2. Modern Digital & Analog Communication Systems, B.P. Lathi, 3rd Edn, OxfordUniversity Press, Chennai, 1998.

Data Communication and Networking by Behrouz A. Forouzan, Published by TataMcGraw-Hill
Principle of Communication Systems by Herbert Taub and D.L.Schilling

5. J. G. Proakis, "Digital Communication", Tata McGraw - Hill, (4/e), 2001.

Course Outcomes

On completion of the course students will be able to

СО	STATEMENT
1	To understand the fundamentals of radio communication system and analog modulation and demodulation techniques applying the basic knowledge of signals and systems and will be able to understand the concept of Frequency modulation.
2	To apply the basic knowledge of electronic circuits and understands the effect of Noise incommunication system and noise performance of AM & FM systems
3	To understand TDM and Pulse Modulation techniques and baseband transmission schemes
4	To apply the knowledge of statistical theory of communication and signals and system and to explain and evaluate the performance of digital communication system in the presence of noise
5	To describe and analyze the digital communication system with spread spectrum modulation.
6	To design as well as conduct experiments, analyze and interpret the results to provide valid conclusions for analog & digital modulators and demodulators using hardware components and communication systems using CAD tool.

PRACTICAL SYLLABUS Semester IV

Communication Engineering Lab

Code: PCC-IT494		
Contacts: 4P		
Name of the Course:	Communication Engineering Lab	
Course Code: PCC-IT494	Semester: IV	
Duration: 6 months	Maximum Marks:100	
Teaching Scheme:		
Theory: -	Continuous Internal Assessment	
Tutorial: NIL	External Assessment: 60	
Practical: 4 hrs./week	Distribution of marks: 40	
Credit Points:	2	
Objectives:		
1 To visualize the effects of sampling		
2 To implement AM & FM modulatio	To implement AM & FM modulation and demodulation	
3 To implement PAM, PWM and PPM	I schemes	
Pre-Requisite:		

1	Knowledge in Fourier Analysis and Basic Electronics
Labor	atory Experiments:
1	Design and Generation of Amplitude Modulation
2	Design and Generation of Amplitude Demodulation using Envelope Detection
3	Design and Generation of Narrow Band Frequency Modulation (NBFM) signal
4	Design and Generation of Wide Band Frequency Modulation (WBFM) signal
5	Design and Generation of Frequency Demodulation
6	Design and Generation of PAM, PWM and PPM signal

Any experiment specially designed based on the theory syllabus will be followed (Detailed instructions for Laboratory Manual to be followed for further guidance)

Course Outcomes:

On completion of the course students will be able to

CO	STATEMENT
1	Understand the generation of AM signals and its performance
2	Study the amplitude demodulation techniques
3	Understand the generation of FM signals and its performance
4	Study the frequency demodulation techniques
5	Perform signal sampling by determining the sampling rates for baseband signals & to generate digital modulation signals for PAM
6	Understand the generation of PWM & PPM schemes and estimate their outputperformance

Computer Organization & Architecture Lab Code: PCC-IT492 Contacts: 4

Name of the Course:		Computer Architecture Lab
Course	Code: PCC-IT492	Semester: IV
Duratio	on:6 months	Maximum Marks:100
Teachi	ng Scheme:	
Theory	:	Continuous Internal Assessment
Tutorial: NIL		External Assesement:60
Practical: 4 hrs./week		Distribution of marks:40
Credit Points:		2
Course Outcomes:		
1	PCC- IT 402.1	
2	PCC- IT 402.2	

3	PCC- IT 402.3
Pre-Re	quisite:
1	The hardware based design has been done in 1.the Analog& Digital
	Electronics laboratory
2	Computer Organisation laboratory
Labora	itory Experiments:
1	HDL introduction.
2	Basic digital logic base programming with HDL
3	8-bit Addition, Multiplication, Division
4	8-bit Register design
5	Memory unit design and perform memory operations.
6	8-bit simple ALU design
7	8-bit simple CPU design
8	Interfacing of CPU and Memory.

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Semester-V

Design and Analysis of Algorithms Code: PCC-IT 501 Contacts: 3L

Name of the Course:	Design and Analysis of Algorithms		
Course Code: PCC-IT 501	Semester: V		
Duration:6 months	Maximum Marks	s:100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: End Semester Exam:70 Marks		End Semester Exam:70 Marks	
Credit Points:	3		
Objective:			
1 The aim of this module is to learn how to develop efficient algorithms for simple			
computational tasks and reasoning about the correctness of them			
2 Through the comp	2 Through the complexity measures, different range of behaviors of algorithms		
and the notion of tractable and intractable problems will be understood.			
Pre-Requisite:			
1 To know data-struct	1 To know data-structure and basic programming ability		

Unit Content	Hrs/Unit	Marks/Unit
--------------	----------	------------

4.	of Algorithms, Computability classes – P,NP, NP- complete and NP-hard. Cook's theorem, Standard NP-complete problems and Reduction techniques.	10		
5	Randomized algorithms, Class of problemsbeyond NP – P SPACE	т		
1	Introduction: Characteristics of algorithm. Analysi algorithm: Asymptotic analysis of complexity bound best, average and worst- case behavior; Performa measurements of Algorithm, Time and space trade- Analysis of recursive algorithms through recurre relations: Substitution method, Recursion tree met and Masters' theorem	is of ds – ance ∙offs, ence thod	8	
2	Fundamental Algorithmic Strategies: Brute-Fo Greedy,Dynamic Programming, Branchand-Bound Backtracking methodologies for the design algorithms; Illustrationsof these techniques for Prob Solving, Bin Packing, Knap Sack TSP. Heuristic characteristics and their application domains.	orce, and of lem- cs –	8	
3	Graph and Tree Algorithms: Traversal algorithms: D First Search (DFS) and BreadthFirst Search (E Shortest path algorithms, Transitive closure, Minin Spanning Tree,Topological sorting, Network E Algorithm.	epth 3FS); num Flow	6	
	Tractable and Intractable Problems: Computabilit	y		

Text books/ reference books:

1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.

L Rivest and Clifford Stein, MIT Press/McGraw-Hill

2. Fundamentals of Algorithms – E. Horowitz et al.

4. Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson.

5. Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.

6. Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading, MA

Course Outcomes

On completion of the course students will be able to

PCC- IT 501.1 For a given algorithms analyze worst-case running times of algorithmsbased onasymptotic analysis and justify the correctness of algorithms.

PCC- IT 501.2 Describe the greedy paradigm and explain when an algorithmic designsituation callsfor it. For a given problem develop the greedy algorithms.

PCC- IT 501.3 Describe the divide-and-conquer paradigm and explain when an
algorithmic designsituation calls for it. Synthesize divide-and-conquer algorithms. Derive and solverecurrence relation.

PCC- IT 501.4 Describe the dynamic-programming paradigm and explain when an algorithmicdesign situation calls for it. For a given problems of dynamic-programming and

PCC- IT 501.5 develop the dynamic programming algorithms, and analyze it to determineits computational complexity.

PCC- IT 501,6 For a given model engineering problem model it using graph and write the corresponding algorithm to solve the problems.

PCC- IT 501.7 Explain the ways to analyze randomized algorithms (expected runningtime, probability of error).

PCC- IT 501.8 Explain what an approximation algorithm is. Compute the approximation factor of an approximation algorithm (PTAS and FPTAS).

Design & Analysis Algorithm Lab Code: PCC-IT591 Contact: 4

Name of the Course:		Design & Analysis Algorithm Lab	
Course C	Code: PCC-IT591	Semester: V	
Duratior	n:6 months	Maximum Marks:100	
Teachin	ng Scheme:		
Theory:		Continuous Internal Assessment	
Tutorial: NIL		External Assesement:60	
Practical: 4 hrs./week		Distribution of marks:40	
Credit Points:		2	
Course Outcomes:			
1	PCC- IT 501.1		
2	PCC- IT 501.2		
3	PCC- IT 501.3		
Pre-Requisite:			
Pre-Requisite as in : PCC- IT 501			

Laborat	ory Experiments:		
Divide a	nd Conquer:		
1	Implement Binary Search using Divide and Conquer approach		
	Implement Merge Sort using Divide and Conquer approach		
2	Implement Quick Sort using Divide and Conquer approach		
	Find Maximum and Minimum element from a array of integer using Divide		
	and Conquer approach		
3	Find the minimum number of scalar multiplication needed for chain of		
	matrix		
4	Implement all pair of Shortest path for a graph (Floyed- Warshall Algorithm)		
	Implement Traveling Salesman Problem		
5	Implement Single Source shortest Path for a graph (Dijkstra , Bellman Ford Algorithm		
Brunch	and Bound:		
6	Implement 15 Puzzle Problem		
Backtra	cking:		
7	Implement 8 Queen problem		
8	Graph Coloring Problem		
	Hamiltonian Problem		
Greedy	Greedy method		
9	Knapsack Problem		
	Job sequencing with deadlines		
10	Minimum Cost Spanning Tree by Prim's Algorithm		
	Minimum Cost Spanning Tree by Kruskal's Algorithm		
Graph T	raversal Algorithm:		

11	Implement Breadth First Search (BFS)
	Implement Depth First Search (DFS)

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Database Management Systems Code: PCC-IT502 Contact: 3L

Name of the Course: Database M		Database Manage	ement Systems		
Course Code: PCC-IT502		Semester: V	Semester: V		
Durat	ion:6 months	Maximum Marks:	100		
Teach	ning Scheme		Examination Scheme		
Theor	y:3 hrs./week		Mid Semester exam: 15		
Tutor	ial: NIL		Assignment and Quiz: 10 marks		
			Attendance: 5 marks		
Practi	cal:		End Semester Exam:70 Marks		
Credi	t Points:	3			
Objec	Objective:				
1	To understand the different issues involved in the design and implementation of a				
	database system.	system.			
2	To study the physical and logical database designs, database modeling, relational,				
	hierarchical, and network models				
3	To understand and use data manipulation language to query, update, and manage a				
	database				
4	To develop an understanding of essential DBMS concepts such as: database security,				
	integrity, concurrency, distributed database, and intelligent database, Client/Server				
	(Database Server), Data Warehousing.				
5	To design and build a	simple database syst	tem and demonstrate competence with the		
	fundamental tasks involved with modeling, designing, and implementing a DBMS.				
6	To understand the different issues involved in the design and implementation of a				
	database system.				

Unit	Content	Hrs/Unit	Marks/Unit
------	---------	----------	------------

		/	
	Database system architecture:		
1	Data Abstraction, Data	9	
	Independence, Data Definition		
	Language(DDL),Data Manipulation		
	Language(DML).		
	Data models: Entity-relationship		
	model, network model, relational and		
	object oriented data models, integrity		
	constraints, data manipulation		
	operations.		
	Relational query languages: Relational	13	
2	algebra, Tuple and domain relational		
	calculus, SQL3, DDL and DML		
	constructs, Open source and Commercial		
	DBMS - MYSQL, ORACLE, DB2,		
	SQLserver.		
	Relational database design:		
	Domain and data dependency,		
	Armstrong's axioms, Normal forms,		
	Dependency preservation,		
	Losslessdesign.		
	Query processing and		
	optimization: Evaluation of		
	relational algebra expressions,		
	Query equivalence, Join		
	strategies, Query optimization		
	algorithms.		
3	Storage strategies: Indices, B-trees, hashing.	3	
	Transaction processing: Concurrency	5	
4.	control, ACID property, Serializability		
	of scheduling, Locking and timestamp		
	based schedulers, Multi-version and		
	optimistic Concurrency Control schemes,		
	Database recovery.		
5	Database Security: Authentication,	3	
	Authorization and access control,		
	DAC, MAC and KBAC models,		
-	Intrusion detection, SQL injection.		
6	Advanced topics: Object oriented and	3	
	object relational databases, Logical		
	databases, Web databases, Distributed		
	databases, Data warehousing and data		
	mining.		

Text book and Reference books:

1."Database System Concepts", 6th Edition by Abraham Silberschatz, Henry

F. Korth, S. Sudarshan, McGraw-Hill.

2. "Principles of Database and Knowledge – Base Systems", Vol 1 by J. D. Ullman, Computer SciencePress.

3. "Fundamentals of Database Systems", 5th Edition by R. Elmasri and S. Navathe,

4. Pearson Education "Foundations of Databases", Reprint by Serge Abiteboul,

Richard Hull, Victor Vianu, Addison-Wesley

Course Outcomes:

On completion of the course students will be able to

- 1. For a given query write relational algebra expressions for that query and optimize the developed expressions
- 2. For a given specification of the requirement design the databases using E R method and normalization.
- 3. For a given specification construct the SQL queries for Open source and Commercial DBMS -MYSQL, ORACLE, andDB2.
- 4. For a given query optimize its execution using Query optimizationalgorithms
- 5. For a given transaction-processing system, determine the transaction atomicity, consistency, isolation, and durability.
- 6. Implement the isolation property, including locking, time stamping based on concurrency control and Serializability of scheduling.

Database Management System Lab

Code: PCC-IT592 Contacts: 4P

Name of the Course:		Database Management System Lab
Course Code: PCC-IT592		Semester: V
Duration:6 months		Maximum Marks:100
Teaching Scheme:		
Theory: Continu		uous Internal Assessment
Tutorial: NIL Externa		al Assesement:60
Practical: 4 hrs./week Distrib		ution of marks:40
Credit Points:	2	

Laboratory Experiments: Structured Query Language 1. Creating Database

- Creating a Database
- Creating a Table
- Specifying Relational Data Types

- Specifying Constraints
- Creating Indexes

2. Table and Record Handling

- INSERT statement
- Using SELECT and INSERT together
- DELETE, UPDATE, TRUNCATE statements
- DROP, ALTER statements

3. Retrieving Data from a Database

- 1. The SELECT statement
- 2. Using the WHERE clause
- 3. Using Logical Operators in the WHERE clause
- 4. Using IN, BETWEEN, LIKE, ORDER BY, GROUP BY and HAVING

Clause

- 5. Using Aggregate Functions
- 6. Combining Tables Using JOINS
- 7. Subqueries

4. Database Management

- Creating Views
- Creating Column Aliases
- Creating Database Users
- Using GRANT and REVOKE

Cursors in Oracle PL / SQL

Writing Oracle PL / SQL Stored Procedures

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Operating Systems Code: PCC-IT503 Contacts: 3L

Name	of the Course:	Operating System	S		
Course Code: PCC-IT503 Semester: V		Semester: V			
Durati	ion: 6 months	Maximum Marks:1	00		
Teach	ning Scheme		Examination Scheme		
Theor	y:3 hrs./week		Mid Semester exam: 15		
Tutori	al: NIL		Assignment and Quiz: 10 marks		
			Attendance : 5 marks		
Practi	cal:		End Semester Exam :70 Marks		
Credit Points: 3		3			
Objective:					
1	To learn the mech communication	earn the mechanisms of OS to handle processes and threads and their nunication			

2	To learn the mechanisms involved in memory management in contemporary OS
3	To gain knowledge on distributed operating system concepts that includes architecture,
	Mutual exclusion algorithms, deadlock detection algorithms and agreement protocols
4	To know the components and management aspects of concurrency management
Pre-R	lequisite:
1	Computer Organization & Architecture

Unit	Content	Hrs/U	Marks/
		nit	Unit
1	Introduction: Concept of Operating Systems, Generations of Operating systems, Types of Operating Systems, OS Services, System Calls, Structure of an OS - Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System.	3	
2	 Processes: Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads, Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF. 	10	
3.	Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problemetc.	5	
4.	Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery.	5	

		1	
5.	Memory Management: Basic concept, Logical and	8	
	Physical address map, Memory allocation: Contiguous		
	Memory allocation– Fixed and variable partition–		
	Internal and External fragmentation and Compaction;		
	Paging: Principle of operation –Page allocation		
	Hardware support for paging, Protection and		
	sharing, Disadvantages of paging.		
	Virtual Memory: Basics of Virtual Memory –		
	Hardware and control structures – Locality of		
	reference, Page fault, Working Set, Dirty page/Dirty		
	bit – Demand paging, Page Replacement algorithms:		
	Optimal, First in First Out (FIFO), Second Chance		
	(SC), Not recently used (NRU) and Least Recently		
	used(LRU).		
6.	I/O Hardware: I/O devices, Device controllers, Direct	6	
	memory access Principles of I/O Software: Goals of		
	Interrupt handlers, Device drivers, Device independent		
	I/O software, Secondary-Storage Structure: Disk		
	structure, Disk scheduling algorithms		
	File Management: Concept of File, Access methods,		
	File types. File operation. Directory structure. File		
	System structure. Allocation methods (contiguous.		
	linked, indexed). Free-space management (bit vector.		
	linked list, grouping), directory implementation		
	(linear list, hash table), efficiency and performance.		
	Disk Managamant: Disk structure Disk schoduling		
	ECES SSTE SCAN C SCAN Disk reliability Disk		
	formatting Dest black Ded blacks		
	ioimating, Doot-block, Dat blocks		

Text book and Reference books:

- 1. Operating System Concepts Essentials, 9th Edition by AviSilberschatz, Peter Galvin, Greg Gagne, Wiley Asia Student Edition.
- 2. Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice Hall of India.
- 3. Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin Publishing
- Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-Wesley
- 5. Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hall of India
- 6. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates

Course Outcomes:

On completion of the course students will be able to

- 1. Create processes and threads.
- 2. Develop algorithms for process scheduling for a given specification of CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time.
- 3. For a given specification of memory organization develop the techniques for optimally allocating memory to processes by increasing memory utilization and for improving the access time. Design and implement file management system.
- 4. For a given I/O devices and OS (specify) develop the I/O management functions in OS as part of a uniform device abstraction by performing operations for synchronization between CPU and I/O controllers.

Object Oriented Programming Code: PCC-IT504 Contacts: 3L

Name of the Course:	Computer Orga	nization
Course Code: PCC-IT504	Semester: V	
Duration:6 months	Maximum Marks	s:100
Teaching Scheme	·	Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz : 10 marks
		Attendance: 5 marks
Practical:		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Abstract data types and their specification. How to implement an ADT. Concrete state space, concrete invariant, abstraction function. Implementing operations, illustrated by the Text example.	8	
2	Features of object-oriented programming. Encapsulation, object identity, polymorphism – but not inheritance.	8	
3	Inheritance in OO design. Design patterns. Introduction and classification. The iterator pattern.	6	

4	Model-view-controller pattern. Commands as methods and as objects. Implementing OO language features. Memory management.	6	
5	Generic types and collections GUIs. Graphical programming with Scale and Swing . The software development process	6	

Text book and Reference books:

1. Rambaugh, James Michael, Blaha – "Object Oriented Modelling and Design" – Prentice Hall, India

- 2. Ali Bahrami "Object Oriented System Development" Mc Graw Hill
- 3. Patrick Naughton, Herbert Schildt "The complete reference-Java2" TMH
- 4. R.K Das "Core Java For Beginners" VIKAS PUBLISHING
- 5. Deitel and Deitel "Java How to Program" 6th Ed. Pearson
- 6. Ivor Horton's Beginning Java 2 SDK Wrox
- 7. E. Balagurusamy " Programming With Java: A Primer" 3rd Ed. TMH

Course Outcomes:

On completion of the course students will be able to

- 1. Specify simple abstract data types and design implementations, using abstraction functions to document them.
- 2. Recognise features of object-oriented design such as encapsulation, polymorphism, inheritance, and composition of systems based on object identity.
- 3. Name and apply some common object-oriented design patterns and give examples of their use.
- 4. Design applications with an event-driven graphical user interface.

Introduction to Industrial Management (Humanities III) Code: HSMC-501 Contacts: 3L

Name of the Course:	Introduction to	Industrial Management (Humanities III)
Course Code: HSMC-501	Semester: V	
Duration:6 months	Maximum Marks	s:100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz : 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points: 3		

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction	6	
1	System- concept, definition, types,		
_	parameters, variables and behavior.		
	1.2 Management – definition and		
	functions.		
	1.3 Organization structure:		
	i. Definition.		
	ii. Goals.		
	iii. Factors considered in formulating		
	structure.		
	iv. Types.		
	v. Advantages and disadvantages.		
	vi. Applications.		
	1.4 Concept, meaning and importance of		
	division of labor, scalar & functional		
	processes, span of control, delegation of		
	authority, centralization and		
	decentralization in industrial		
	management.		
	1.5 Organizational culture and climate –		
	meaning, differences and factors		
	affecting them.		
	1.6 Moral-factors affecting moral.		
	1.7 Relationship between moral and		
	productivity.		
	1.8 Job satisfaction- factors influencing		
	job satisfaction.		
	1.9 Important provisions of factory act		
	and labor laws.		

	(Effective from academic session	2020-21)	
2	Critical Path Method (CPM) and	8	
-	Drogramma Evaluation Daviaw		
	Technique (PERT):		
	2.1 CPM & PERT-meaning, features,		
	difference applications 22 Understand		
	different terms used in network discrem		
	different terms used in network diagram.		
	2.3 Draw network diagram for a real life		
	project containing 10-15 activities,		
	computation of LPO and EPO (Take		
	minimum three exemples)		
	2 4 Determinetien efemitien hetter		
	2.4 Determination of critical path on		
	network.		
	2.5 Floats, its types and determination of		
	floats		
	2.6 Crashing of notwork underling and		
	its applications.		
3	Materials Management:	6	
	3.1 Material management-definition.		
	functions importance relationship with		
	ath an damantus anta		
	other departments.		
	3.2 Purchase - objectives, purchasing		
	systems, purchase procedure, terms and		
	forms used in purchase department.		
	3 3 Storekeeping- functions		
	classification of stores as centralized and		
	decentralized with their advantages,		
	disadvantages and application in actual		
	practice.		
	3.4 Functions of store, types of records		
	maintained by store various types and		
	annianted by store, various types and		
	applications of storage equipment, need		
	and general methods for codification of		
	stores.		
	3.5 Inventory control:		
	i. Definition.		
	ii Objectives		
	iii Derivation for expression for		
	III. Derivation for expression for		
	Economic Order Quantity (EOQ) and		
	numeric examples. iv. ABC analysis and		
	other modern methods of analysis.		
	v. Various types of inventory models		
	such as Wilson's inventory model		
	replenishment model and two bin model.		
	(Only sketch and understanding, no		
	derivation.).		
	3.6 Material Requirement Planning		
	(MRP)- concept applications and brief		
	details about as furger as leaves are '1-11.		
	details about software packages available		
	ın market.		

4		8	
	Production planning and Control		
	(PPC):		
	4.1 Types and examples of production.		
	4.2 PPC : i. Need and importance. ii.		
	Functions, iii. Forms used and their		
	importance, iv. General approach for		
	each type of production.		
	4.3 Scheduling-meaning and need for		
	productivity and utilisation		
	4 4 Gantt chart- Format and method to		
	prepare.		
	4.5 Critical ratio scheduling-method and		
	numeric examples		
	4.6 Scheduling using Gantt Chart (for at		
	least 5-7 components having 5-6		
	machining operations with processes		
	setting and operation time for each		
	component and process resources		
	available quantity and other necessary		
	data) At least two examples		
	4.7 Bottlenecking- meaning effect and		
	ways to reduce		
5	Value Analysis (VA) and Cast Control.	Λ	
5	5.1 VA-definition terms used process and		
	importance 5.2 VA flow diagram		
	5.2 DARSIPI method of VA		
	5.5 DARSIRI method of VA. 5.4 Case study of VA-at least two		
	5.5 Waste types, sources and ways to reduce them		
	5.6 Cost control-methods and important guide lines		
6	B asant Trands in IM :	4	
0	6.1 ERP (Enterprise resource planning) - concept	4	
	features and applications		
	6.2 Important features of MS Project		
	6.3 Logistics concept need and benefits		
	6.4 Just in Time (IIT)-concent and benefits		
	6.5 Supply chain management concept and benefits		
	0.5 Suppry chain management-concept and benefits.		

Text book and Reference books:

- 1. L.S.Srinath- "CPM & PERT principles and Applications".
- 2. Buffa "Modern Production Management".
- 3. N. Nair "Materials Management".
- 4. O. P. Khanna "Industrial Engineering & Management".
- 5. Mikes "Value Analysis".

Course Outcomes:

On completion of the course students will be able to

1. Interpret given organization structure, culture, climate and major provisions of factory

acts and laws.

- 2. Explain material requirement planning and store keeping procedure.
- 3. Plot and analyze inventory control models and techniques.
- 4. Prepare and analyze CPM and PERT for given activities.
- 5. List and explain PPC functions.

Human Computer Interaction

Code: PEC-IT501A Contacts: 3L

Name	of the Course:	Human Computer Interaction	
Cours	e Code: PEC-IT501A	Semester: V	
Durati	ion: 6 months	Maximum Marks	:100
Teach	ning Scheme		Examination Scheme
Theor	y:3 hrs./week		Mid Semester exam: 15
Tutori	ial: NIL		Assignment and Quiz: 10 marks
			Attendance : 5 marks
Practical: NIL			End Semester Exam :70 Marks
Credit Points: 3			
Objec	Objective:		
1	Learn the foundations	of Human Comput	er Interaction
2	Be familiar with the de	esign technologies	for individuals and persons with disabilities
3	Be aware of mobile Human Computer interaction		
4	Learn the guidelines for user interface.		
Pre-Requisite:			
1	Computer Organization & Architecture		

Unit	Content	Hrs/U	Marks/
		nit	Unit
		9	
1	Human: I/O channels – Memory – Reasoning and problem solving;		
	The computer: Devices – Memory – processing and networks;		
	Interaction: Models – frameworks – Ergonomics – styles – elements –		
	interactivity- Paradigms.		
	Interactive Design basics – process – scenarios – navigation – screen	11	
2	design –		
	Iteration and prototyping. HCI in software process – software life		
	cycle –		
	usability engineering – Prototyping in practice – design rationale.		
	Design rules		
	- principles, standards, guidelines, rules. Evaluation Techniques -		
	Universal		
	Design.		

3.	Cognitive models –Socio-Organizational issues and stake holder requirements –Communication and collaboration models-Hypertext, Multimedia and WWW.	8	
4.	Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.	8	
5.	Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Case Studies.	8	
6.	Recent Trends: Speech Recognition and Translation, Multimodal System	3	

Text book and Reference books:

1. Theodor Richardson, Charles N Thies, Secure Software Design, Jones & Bartlett

2. Kenneth R. van Wyk, Mark G. Graff, Dan S. Peters, Diana L. Burley, Enterprise Software Security,

Addison Wesley.

Course Outcomes:

On completion of the course students will be able to

- 1. Differentiate between various software vulnerabilities.
- 2. Software process vulnerabilities for an organization.
- 3. Monitor resources consumption in a software.
- 4. Interrelate security and software development process.

Advanced Computer Architecture Code: PEC-IT501B

Contacts: 3L

Name of the Course:	Advanced Compu	ter Architecture
Course Code: PEC-IT501B	Semester: V	
Duration: 6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance : 5 marks
Practical: NIL		End Semester Exam :70 Marks
Credit Points: 3		

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Computer Architecture and Organization-Review, Fundamentals of	6	
1	Computer Design, Technology Trends Cost Performance		
	Analysis (3L)		
	Parallel Processing Architectures- Taxonomy- SISD, MISD,		
	SIMD, MIMD, PRAM models (3L)		
2.	Data and Resource Dependencies, Program Partitioning and	10	
	Scheduling, Control Flow vs. Data Flow (3L)		
	Network topologies-Static, Dynamic, Types of Networks (3L)		
	RISC vs. CISC, Memory Hierarchy, Virtual Memory (4L)		
3	Concepts of Pipelining, Instruction Pipelining, dynamic pipelining,	12	
	arithmetic pipelines. (4L)		
	Multiprocessors- Multistage Networks, Cache Coherence,		
	Synchronization, Message- passing (4L)		
	Vector Processing Principles- Instruction types, Compound, Vector		
	Loops, Chaining (4L)		
4	Array Processors- Structure, Algorithms (3L)	11	
	Data Flow Architecture- Graphs. Petri Nets, Static and Dynamic DFA,		
	VLSI Computations (4L)		
	Parallel Programming Models, Languages, Compilers (4L)		

Text book and Reference books:

1. Computer Architecture and Parallel Processing- Kai Hwang and A. .Brigggs International Edition, McGraw Hill

2. Advanced Computer Architecture: D. Sima, T. fountain, P. Kacsuk, Pearson

3. Parallel Computer Architecture: D. Culler, J.P.Singh, A.Gupta, Elsevier

Computer Graphics Code: PEC-IT501D Contacts: 3L

Name of the Course: Computer Graph		ics
Course Code: PEC-IT501D	Semester: V	
Duration: 6 months	Maximum Marks:	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance : 5 marks
Practical: NIL		End Semester Exam :70 Marks
Credit Points: 3		

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Introduction to computer graphics & graphics systems [6L]:	14	
1	Overview of computer graphics,		
	representing pictures, preparing, presenting & interacting with pictures		
	for presentations; Visualization & image processing; RGB color		
	model, direct coding, lookup table; storage tube		
	graphics display, Raster scan display, 3D viewing devices, Plotters,		
	printers, digitizers, Light pens etc.; Active & Passive graphics devices;		
	Computer graphics software.		
	Scan conversion [8L]: Points & lines, Line drawing algorithms; DDA		
	algorithm, Bresenham's line algorithm, Circle generation algorithm;		
	Ellipse generating algorithm; scan line polygon, fill algorithm,		
	boundary fill algorithm, flood fill algorithm.		
	2D transformation & viewing [15L]: Basic transformations:	20	
2	translation, rotation, scaling; Matrix representations & homogeneous		
	coordinates, transformations between coordinate systems;		
	reflection shear; Transformation of points, lines, parallel lines,		
	intersecting lines. Viewing		
	pipeline, Window to view port co-ordinate transformation, clipping		
	operations, point clipping,		
	line clipping, clipping circles, polygons & ellipse. Cohen and		
	Sutherland line clipping,		
	Sutherland-Hodgeman Polygon clipping, Cyrus-beck clipping method		
	3D transformation & viewing [5L]: 3D transformations: translation,		
	rotation, scaling & other		
	transformations. Rotation about an arbitrary axis in space, reflection		
	through an arbitrary plane; general parallel projection transformation;		
	clipping, view port clipping, 3D viewing.		

	Curves [3L]: Curve representation, surfaces, designs, Bezier curves,		
3.	B-spline curves, end	6	
	conditions for periodic B-spline curves, rational B-spline curves.		
	Hidden surfaces [3L]: Depth comparison, Z-buffer algorithm, Back		
	face detection, BSP tree		
	method, the Painter's algorithm, scan-line algorithm; Hidden line		
	elimination, wire frame		
	methods, fractal - geometry.		
	Color & shading models [2L]: Light & color model; interpolative		
	shading model; Texture.		
	Introduction to Ray-tracing: [3L]		
	Human vision and color, Lighting, Reflection and transmission models.		

Text book and Reference books:

Hearn, Baker – "Computer Graphics (C version 2nd Ed.)" – Pearson education
 Z. Xiang, R. Plastock – "Schaum's outlines Computer Graphics (2nd Ed.)" – TMH
 D. F. Rogers, J. A. Adams – "Mathematical Elements for Computer Graphics (2nd Ed.)" – TMH

Constitution of India
Code: MC-IT501
Contacts: 3L

Name of the Course:	Constitution of In	dia
Course Code: MC-IT501	Semester: V	
Duration: 6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance : 5 marks
Practical: NIL		
Credit Points: 1		

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Introduction:	3	
1	Constitution' meaning of the term,, Indian Constitution: Sources and		
	constitutional history, Features: Citizenship, Preamble, Fundamental		
	Rights and Duties, Directive Principles of State Policy		

	(
	Union Government and its Administration :	6	
2	Structure of the Indian Union: Federalism, Centre- State relationship,		
	President: Role, power and position, PM and Council of ministers,		
	Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha		
	State Government and its Administration Governor:		
3.	Role and Position, CM and Council of ministers, State Secretariat:	6	
	Organisation, Structure and Functions		
4.	Local Administration District's Administration head:	8	
	Role and Importance, Municipalities: Introduction, Mayor and role of		
	Elected Representative, CEO of Municipal Corporation, Pachayati raj:		
	Introduction, PRI: Zila Pachayat, Elected officials and their roles, CEO		
	Zila Pachayat: Position and role, Block level: Organizational Hierarchy		
	(Different 4.departments), Village level: Role of Elected and		
	Appointed officials, Importance of grass root democracy		
5.	Election Commission Election Commission:		
	Role and Functioning, Chief Election Commissioner and Election		
	Commissioners, State Election Commission: Role and Functioning,		
	Institute and Bodies for the welfare of SC/ST/OBC and women		

Text book and Reference books:

- 1. 'Indian Polity' by Laxmikanth
- 2. 'Indian Administration' by Subhash Kashyap
- 3. 'Indian Constitution' by D.D. Basu
- 4. 'Indian Administration' by Avasti and Avasti

Object Oriented Programming Lab Code: PCC-IT594 Contacts: 4P

Name of the Course:	Object Oriented Programming Lab
Course Code: PCC- IT594	Semester: V
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory:	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

Laboratory Experiments:

- 1. Assignments on class, constructor, overloading, inheritance, overriding
- 2. Assignments on wrapper class, arrays
- 3. Assignments on developing interfaces- multiple inheritance, extending interfaces
- 4. Assignments on creating and accessing packages
- 5. Assignments on multithreaded programming
- 6. Assignments on applet programming

Note: Use Java for programming

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

Operating System Lab Code: PCC-IT593 Contacts: 4P

Name of the Course:	Operating System Lab
Course Code: PCC- IT593	Semester: V
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory:	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

Laboratory Experiments:

1 1. Managing Unix/Linux Operating System [8P]:

Creating a bash shell script, making a script executable, shell syntax (variables, conditions, control structures, functions,

commands). Partitions, Swap space, Device files, Raw and Block files, Formatting disks, Making file systems, Superblock, I-nodes, File system checker, Mounting file systems, Logical Volumes, Network File systems, Backup schedules and

methods Kernel loading, init and the inittab file, Run-levels, Run level scripts. Password file management, Password

security, Shadow file, Groups and the group file, Shells, restricted shells, user-management commands, homes and

permissions, default files, profiles, locking accounts, setting passwords, Switching user, Switching group, Removing users &user groups.

2. **Process [4P]**: starting new process, replacing a process image, duplicating a process image, waiting for a process,

zombie process.

3. Signal [4P]: signal handling, sending signals, signal interface, signal sets.

4. **Semaphore [6P]**: programming with semaphores (use functions semctl, semget, semop, set_semvalue, del_semvalue, semaphore_p, semaphore_v).

5. **POSIX Threads [6P]**: programming with pthread functions (viz. pthread_create, pthread_join, pthread_exit,

pthread attr init, pthread cancel)

6. Inter-process communication [6P]: pipes(use functions pipe, popen, pclose), named pipes(FIFOs, accessing FIFO),

message passing & shared memory(IPC version V).

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

SEMESTER-VI (Third Year)

Software Engineering Code: PCC-IT601

Contacts: 3L

Name of the Course:		Software Engineer	ing		
Course Code: PCC-IT601		Semester: VI			
Duration: 6 months		Maximum Marks:10	00		
Teac	hing Scheme		Examination	Scheme	
Theor	y:3 hrs./week		Mid Semester ex	xam: 15	
Tutori	al: NIL		Assignment and	Quiz: 10 ma	arks
			Attendance: 5 m	narks	
Practi	cal: -		End Semester E	xam:70 Mar	ks
Credit	t Points:		3		
Objec	ctive:				
1	This course introduc	es the concepts and	methods required	for the con	struction
	of large software int	ensive systems			
2	It aims to develop	o a broad understa	unding of the o	discipline o	f software
	engineering.				
3	It seeks to compleme	ent this with a detaile	d knowledge of te	chniques for	theanalysis and
	design of complex s	oftware intensive syst	ems.		
4	It aims to set these	techniques in an app	ropriate engineer	ing and man	agement
	context.				
5	It provides a brief a	ccount of associated	professional and	legal issues	
Pre-R	lequisites:				
I Basic knowledge of Data structure, database and programming					
		~			
Unit		Content		Hrs/Unit	Marks/Unit
	Overview of System A	Analysis & Design , I	Business System		
1	Concept, System D	Ecosibility Analysis	ycle, Waterfall	(
1	Toobnical Eassibility	Cost Ponofit Analysis	s,	0	
	model	Cost- Dellent Allar	ysis, cocomo		
	System Design C	antaxt diagram and	DED Brohlom		
	Partitioning Ton-Dou	in And Bottom-Un	DFD, Flotieni		
2	tree decision table an	d structured English	iesign, Decision	6	
	Functional vs Object-	Oriented approach	riented approach		
	Coding & Documenta	tion - Structured Pr	ogramming OO		
3	Programming Infor	mation Hiding I	Reuse System		
	Documentation. Testi	ng – Levels of Tes	ting. Integration	10	
	Testing, Test case S	pecification, Reliabil	ity Assessment,	10	
	Validation & Verifica	ation Metrics,	•		
	Monitoring & Control	•			
4	Software Project Management - Project Scheduling,		Scheduling,	4	

	Staffing, Software Configuration Management, Quality Assurance, Project Monitoring.		
5	Static and dynamic models, why modeling, UML diagrams: Class diagram, interaction diagram: collaboration diagram, sequence diagram, state chart diagram, activity diagram, implementation diagram.	10	

Text book and Reference books:

- 1. Pressman, Software Engineering : A practitioner's approach- (TMH
- 2. Pankaj Jalote, Software Engineering- (Wiley-India)
- 3. Rajib Mall, Software Engineering- (PHI)
- 4. Agarwal and Agarwal, Software Engineering (PHI)
- 5. Sommerville, Software Engineering Pearson
- 6. Martin L. Shooman, Software Engineering TMH

Course Outcomes:

On completion of the course students will be able to

CO	STATEMENT
1	Identify software Engineering problem specification, performance, maintenance and quality requirements
2	Select modern engineering tools necessary for software project management, time management and software reuse.
3	Analyze, elicit and specify software requirements through a productive working relationship with various stakeholders of the project.
4	Distinguish different testing strategies and it's working.
5	Design applicable solutions in one or more application domains using software engineering approaches that integrates ethical, social, legal and economic concerns.
6	Develop the code from the design and effectively apply relevant standards and perform testing, and quality management and practice.

Software Engineering

LabCode: PCC-IT691

Contacts: 4P

Name of the Course:		Software Engineering Lab			
Course Code: PCC-IT691		Semester: VI			
Dura	ation:6 months	Maximum Marks:100			
Teac	hing Scheme:				
Theory: -		Continuous Internal Assessment			
Tutorial: NIL		External Assesement:60			
Practical: 4 hrs./week		Distribution of marks:40			
Credit Points:		2			
Obj	Objective				
1	To impart state-of-the-art knowledge on Software Engineering and UML in an interactive manner through the Web				

2	To present case studies to demonstrate the practical applications of different
2	concepts
3	To provide a scope to the students where they can solve small, real life problems
Lab	oratory Experiments:
1	Problem Analysis and Project Planning -Thorough study of the problem -
1.	Identify Project scope, Objectives and Infrastructure.
	Software Requirement Analysis - Describe the individual Phases/modules of the
2.	project and Identify deliverables. Identify functional and non-functional
	requirements.
3	Data Modeling – Use work products – data dictionary.
1	Software Designing - Develop use case diagrams and activity diagrams, build andtest
4	class diagrams, sequence diagrams and add interface to class diagrams.
5	Prototype model – Develop the prototype of the product.
5	The SRS and prototype model should be submitted for end

Any experiment specially designed based on the theory syllabus will be followed (Detailed instructions for Laboratory Manual to be followed for further guidance)

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN
	Т
1	To handle software development models through rational method.
2	To prepare SRS document, design document, test cases and software configuration management
	and risk management related document
3	To Develop function oriented and object oriented software design using tools like rational rose.
4	To perform unit testing and integration testing.
5	To apply various white box and black box testing techniques.
6	Able to Plan a software engineering process life cycle.

Computer Networks Code: PCC-IT602

Contacts: 3L

Name of the Course:	Computer Netwo	rks
Course Code: PCC-IT602	Semester: VI	
Duration: 6 months	Maximum Marks:	100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: -		End Semester Exam:70 Marks
Credit Points:		3
Objective:		
1 To develop an und	To develop an understanding of modern network architectures from a designand	
performance perspective.		

2	To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs)			
3	To provide an opportunity to do network programming			
4	To provide a WLAN measurement ideas			
Pre-R	equisites:			
1	Basic knowledge of fundamentals of computers			
Unit	Content	Hrs/Unit	Marks/Unit	
1	Data communication Components: Representation of data and its flow Networks, Various Connection Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless LANs, Connecting LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing - Frequency division, Time division and Wave division, Concepts on spread spectrum	8		
2	Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back – N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA,CSMA/CD,CDMA/CA	6		
3	Network Layer: Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols	8		
4	Transport Layer: Process to Process Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.	7		
5	Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography.	7		

Text book and Reference books:

- 1. "Computer Networks", by Andrew S. Tanenbaum, David J.Wetherall, Pearson Education, 5th ed., ISBN 978-81-317-8757-1
- 2. "Data Communications and Networking", by Behrouz A. Forouzan, McGraw Hill Education, 5th ed., ISBN 978-1-25-906475-3.
- 3. "Computer Networks", by Peterson, Davie 5th ed., Elsevier.

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN	
	Т	
1	Explain the basics of computer networking, different network model and architecture	
2	Analyze different networking functions and features for identifying optimal solutions	
3	Apply different networking concepts for implementing network solution	
4	Evaluate and implement routing algorithms for implanting solution for the real life problems	
5	Develop implement model of fault tolerant computer networks	

Computer Networking Lab Code: PEC-IT692

Contacts: 4P

Name of the Course:		Computer Networking Lab	
Course Code:PEC-IT692		Semester: VI	
Duratio	n: 6 months	Maximum Marks:100	
Teachi	ng Scheme:		
Theory:	-	Continuous Internal Assessment	
Tutoria	: NIL	External Assessment: 60	
Practica	l: 4 hrs./week	Distribution of marks:40	
Credit I	Points:	2	
Objecti	ves:		
1	To learn about simul	ation tools	
2	To study networking	device, command and configuration	
3	Study of IP addresses	5	
4	To learn configure of	f the network topology using Packet tracer software	
5	To learn about socket programming		
Pre-Requisite:			
1	Knowledge of C programming		
Laboratory Experiments:			
1) Cisco Packet Tracer installation.			
2) To s	2) To study basic networking devices, commands and configuration		

- 3) Familiarization with
 - a) Networking cables (CAT5, UTP)
 - b) Connectors (RJ45, T-connector)
 - c) Hubs, Switches
- 4) Simulation of basic Networking Commands
- 5) Understanding of IP addresses and subnet mask
- 6) Configuration of the network topology using packet tracer software
- 7) TCP/UDP Socket Programming
- a) Simple, TCP based, UDP based
- b) Implementation of a Prototype Multithreaded Server

Any experiment specially designed based on the theory syllabus will be followed

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN
	T
1	Understanding of network simulation tool
2	Ability to understanding the networking device, network command and configuration
3	Ability to simulate network topology using packet tracer software
4	The ability to do socket programming

Compiler Design Code: PEC-T601A Contacts: 3L

Name of the Course: **Compiler Design** Course Code: PEC-IT601A Semester: VI Maximum Marks:100 Duration: 6 months **Teaching Scheme Examination Scheme** Theory: 3 hrs./week Mid Semester exam: 15 Tutorial: NIL Assignment and Quiz: 10 marks Attendance: 5 marks Practical: -End Semester Exam:70 Marks Credit Points: 3 **Objective:** To understand and list the different stages in the process of compilation. 1 2 Identify different methods of lexical analysis 3 Design top-down and bottom-up parsers 4 Identify synthesized and inherited attributes 5 Develop syntax directed translation schemes Develop algorithms to generate code for a target machine 6 **Pre-Requisites:** Basic knowledge of data structure and programming 1 Unit Hrs/Unit Marks/Unit Content Introduction to Compiling 1 Compilers, Analysis of the source program, The phasesof 2 the compiler, Cousins of the compiler Lexical Analysis The role of the lexical analyzer, Tokens, Patterns, Lexemes, Input buffering, Specifications of a token, Recognition of a 2 tokens, Finite automata, From a regular expression to an 5 NFA, From a regular expression to NFA, From a regular expression to DFA, Design of a lexical analyzer generator (Lex).

3	Syntax Analysis The role of a parser, Context free grammars, Writing a grammar, Top down Parsing, Non-recursive Predictive parsing (LL), Bottom up parsing, Handles, Viable prefixes, Operator precedence parsing, LR parsers (SLR, LALR), Parser generators (YACC). Error Recovery strategies for different parsing techniques.	6	
4	Syntax directed translation Syntax director definitions, Construction of syntax trees, Bottom-up evaluation of S attributed definitions, L attributed definitions, Bottom-up evaluation of inherited attributes.	5	
5	Type checking Type systems, Specification of a simple type checker, Equivalence of type expressions, Type conversions	2	
6	Run time environments Source language issues (Activation trees, Control stack, scope of declaration, Binding of names), Storage organization (Subdivision of run-time memory, Activation records), Storage allocation strategies, Parameter passing (call by value, call by reference, copy restore, call by name), Symbol tables, dynamic storage allocation techniques.	5	
7	Intermediate code generation Intermediate languages, Graphical representation, Three- address code, Implementation of three address statements (Quadruples, Triples, Indirect triples)	4	
8	Code optimization Introduction, Basic blocks & flow graphs, Transformation of basic blocks, Dag representation of basic blocks, The principle sources of optimization, Loops in flow graph, Peephole optimization.	4	
9	Code generations Issues in the design of code generator, a simple code generator, Register allocation & assignment	3	

Text book and Reference books:

- 1. Aho, Sethi, Ullman "Compiler Principles, Techniques and Tools" Pearson Education.
- 2. Holub "Compiler Design in C" PHI.

Course Outcomes:

On completion of the course students will be able to

CO	STATEMENT
1	Illustrate the fundamental idea of compiler and the constituent as well as the different phases of
	designing a compiler with compile time error handling.
2	Understand a given grammar specification to develop the lexical analyzer

	3	To compare syntactic and semantic analysis process of designing compilers.
	4	Design a given parser specification design top-down and bottom-up parsers
ſ	5	Develop syntax directed translation schemes and the intermediate code generation principles

6 Apply optimization algorithms to generate code for a target machine

Compiler Design Lab Code: PEC-IT691A

Contacts: 4P

Name of the Course:		Compiler Design Lab
Course Code:PEC-IT691A		Semester: VI
Duratio	n: 6 months	Maximum Marks:100
Teachi	ng Scheme:	
Theory:	-	Continuous Internal Assessment
Tutoria	l: NIL	External Assesement:60
Practica	ıl: 4 hrs./week	Distribution of marks:40
Credit I	Points:	2
Objecti	ves:	
1	To be exposed to	compiler writing tools.
2	To learn to impler	nent the different Phases of compiler
3	To familiar with c	ontrol flow and data flow analysis
4	To learn simple optimization techniques	
Pre-Requisite:		
1 Knowledge of C programming		
Laboratory Experiments:		
1. Implementation of Symbol Table		

2. Develop a lexical analyzer to recognize a few patterns in C. (Ex. identifiers,

constants, comments, operators etc.)

3. Implementation of Lexical Analyzer using Lex Tool

4. Generate YACC specification for a few syntactic categories.

a) Program to recognize a valid arithmetic expression that uses operator +, -, * and /.

b) Program to recognize a valid variable which starts with a letter followed by any number of letters or digits.

c) Implementation of Calculator using LEX and YACC

5. Convert the BNF rules into Yacc form and write code to generate Abstract Syntax Tree.

6. Implement type checking

7. Implement control flow analysis and Data flow Analysis

8. Implement any one storage allocation strategies (Heap,Stack,Static)

9. Construction of DAG

10. Implement the back end of the compiler which takes the three address code and produces the 8086 assembly language instructions that can be assembled and run using a 8086 assembler. The target assembly instructions can be simple move, add, sub, jump. Also simple addressing modes are used.

11. Implementation of Simple Code Optimization Techniques (Constant Folding., etc.)

Any experiment specially designed based on the theory syllabus will be followed (Detailed instructions for Laboratory Manual to be followed for further guidance)

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN T	
1	Apply the knowledge of lex tool & yacc tool to develop a scanner & parser.	
2	Design & conduct experiments for NFA and DFA from a given regular expression	
3	Develop program for implementing symbol table and parser problems	
4	Create program for intermediate code generation	
5	Learn & use the new tools and technologies used for designing a compiler	
6	Apply the knowledge of patterns, tokens & regular expressions in programming for solving a problem in the field of data mining	

Distributed Systems Code: PEC-IT601B

Contacts: 3L

Name of the Course: Distributed Systems		Systems		
Course Code: PEC-IT601B	Semester: V	Ι		
Duration: 6 months	Maximum N	Iarks:100		
Teaching Scheme		Examination Scheme		
Theory:3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance: 5 marks		
Practical: -		End Semester Exam:70 Marks		
Credit Points: 3		3		
Objective:				
1 To introduce the fundamen	To introduce the fundamental concepts and issues of managing large volume of shared			
data in a parallel and dis	data in a parallel and distributed environment, and to provide insight into related			
research problems				
Pre-Requisite:				

1	1 Database Management Systems				
Unit	Content	Hrs/Unit	Marks/Unit		
1	INTRODUCTION Distributed data processing; What is a DDBS; Advantages and disadvantages of DDBS; Problem areas; Overview of database and computer network concepts DISTRIBUTED DATABASE MANAGEMENT SYSTEM ARCHITECTURE Transparencies in a distributed DBMS; Distributed DBMS architecture; Global directory issues	6			
2	DISTRIBUTED DATABASE DESIGN Alternative design strategies; Distributed design issues; Fragmentation; Data allocation SEMANTICS DATA CONTROL View management; Data security; Semantic IntegrityControl QUERY PROCESSING ISSUES Objectives of query processing; Characterization of query processors; Layers of query processing; Query decomposition; Localization of distributed data	8			
3	DISTRIBUTED QUERY OPTIMIZATION Factors governing query optimization; Centralized query optimization; Ordering of fragment queries;Distributed query optimization algorithms TRANSACTION MANAGEMENT The transaction concept; Goals of transaction management; Characteristics of transactions; Taxonomy of transaction models CONCURRENCY CONTROL Concurrency control in centralized database systems; Concurrency control in DDBSs; Distributed concurrency control algorithms; Deadlockmanagement	8			
4	Reliability issues in DDBSs; Types of failures; Reliability techniques; Commit protocols; Recovery protocols Algorithm	5			
5	PARALLEL DATABASE SYSTEMS Parallel architectures; parallel query processing	5			
6	ADVANCED TOPICS Mobile Databases, Distributed Object Management, Multi-databases	4			

Text book and Reference books:

- 1. Principles of Distributed Database Systems, M.T. Ozsu and PValduriez, Prentice-Hall, 1991.
- 2. Distributed Database Systems, D. Bell and J. Grimson, Addison-Wesley, 1992

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN
	l
1	Explain the distributed systems architecture.
2	Outline the inter process communication in distributed systems.
3	Explain the file accessing model and various services in distributed system.
4	Demonstrate concurrency control and properties of transaction in Distributed systems.
5	Discuss resource and process management in distributed system
6	

Distributed System Lab

Code: PEC-IT691B

Contacts: 4P

Name of the Course:		Distributed System Lab		
Course Code: PEC-IT691B		Semester: VI		
Dura	ation:6 months	Maximum Marks:100		
Tea	ching Scheme:			
The	ory: -	Continuous Internal Assessment		
Tuto	orial: NIL	External Assesement:60		
Prac	tical: 4 hrs./week	Distribution of marks:40		
Crec	lit Points:	2		
Obj	ective:			
1	To experience with basi	c techniques in the design and development of Distributed		
1	Systems			
	To understanding solution	ons of the fundamental problems in distributed systems		
2	like mutual exclusion, de	eadlock detection, termination detection, RPC, RMI, OPENMP,		
MPI and CORBA				
Laboratory Experiments:				
1.	To Simulate the functioning of Lamport's Logical clock in 'c'.			
2.	To Simulate the functioning of Lamport's Vector clock in 'c'.			
	To Simulate the Distributed Mutual exclusion in 'c'.			
	To Simulate the Non Token/ Token based algorithm in Distributed system.			
	To Simulate the Distributed Deadlock Detection algorithm-Edge chasing			
	To Implement 'RPC' mechanism for accessing methods of remote systems.			
	To Implement 'Java RMI' mechanism for accessing methods of remote systems.			
	To implement CORBA 1	nechanism by using C++ program at one end and JavaProgram		
	on the other			
	Experiment with the app	blication programming interface OpenMP which supports		
	multi-platform shared-memory and multiprocessing programming in C			
	Experiment with Message Passing Interface Standard (MPI).			

Any experiment specially designed based on the theory syllabus will be followed (Detailed instructions for Laboratory Manual to be followed for further guidance)

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN T		
1	Apply knowledge of distributed systems techniques and methodologies.		
2	Explain the design and development of distributed systems and distributed systems applications.		
3	Use the application of fundamental Computer Science methods and algorithms in the development of distributed systems and distributed systems applications.		
4	Discuss the design and testing of a large software system, and to be able to communicate that design to others.		

Image Processing Code: PEC-IT601C Contacts: 3L

Name of the Course: Image Processing					
Cours	e Code: PEC-IT601C Semester: VI				
Durat	Duration: 6 months Maximum Marks:100				
Teac	hing Scheme		Examination	Scheme	
Theor	y: 3 hrs./week		Mid Semester ex	xam: 15	
Tutori	al: NIL		Assignment and Quiz: 10 marks		
			Attendance: 5 m	narks	
Practi	cal: -		End Semester E	xam:70 Mar	ks
Credit	Points:		3		
Objec	ctive:				
1	To become familiar with	digital image fu	indamentals		
2	To get exposed to simple	image enhancer	nent techniques in	n Spatial and	Frequency
	domain.				
3	To learn concepts of degradation function and restoration techniques.				
4	To study the image segmentation and representation techniques.				
5	5 To become familiar with image compression and recognition methods				
Pre-R	lequisite:				
1	Basic knowledge of math	nematics and pro	gramming		
Unit	0	Content		Hrs/Unit	Marks/Unit
	Introduction: Background	l, Digital Image	Representation,		
	Fundamental steps in Image Processing, Elements of				
1	Digital Image Processing -	Image	Acquisition,	6	
	Storage,	Processing,			
	Communication, Display.				
Digital Image Formation: A Simple Image Model,					
2	Geometric Model- Basic T	ransformation (7	ranslation,	4	
	Scaling, Rotation), Perspective Projection, Sampling &				

	Quantization - Uniform & Non uniform.		
3	Mathematical Preliminaries: Neighbour of pixels, Connectivity, Relations, Equivalence & Transitive Closure; Distance Measures, Arithmetic/Logic Operations, Fourier Transformation, Properties of The Two Dimensional Fourier Transform, Discrete Fourier Transform, Discrete Cosine & SineTransform.	6	
4	Image Enhancement: Spatial Domain Method, Frequency Domain Method, Contrast Enhancement - Linear & Nonlinear Stretching, Histogram Processing; Smoothing - Image Averaging, Mean Filter, Low-pass Filtering; Image Sharpening. High-pass Filtering, High- boost Filtering, Derivative Filtering, Homomorphic Filtering; Enhancement in the frequency domain - Low pass filtering, High pass filtering.	8	
5	ImageRestoration:DegradationModel,DiscreteFormulation,AlgebraicApproachtoRestoration-Unconstrained & Constrained;Constrained LeastSquareRestoration,RestorationbyHomomorphicFiltering,Geometric Transformation - SpatialTransformation,Gray LevelInterpolation.	7	
6	Image Segmentation: Point Detection, Line Detection, Edge detection, Combined detection, Edge Linking & Boundary Detection - Local Processing, Global Processing via The Hough Transform; Thresholding - Foundation, Simple Global Thresholding, Optimal Thresholding; Region Oriented Segmentation - Basic Formulation, Region Growing by Pixel Aggregation, Region Splitting & Merging.	7	

Text book and Reference books:

- 1. Gonzalez & Woods, -Digital Image Processing, 3rd ed., Pearson education, 2008
- 2. Jain Anil K., -Fundamentals Digital Image Processing, Prentice Hall India, 2010
- 3. Milan Sonka, Vaclav Hlavav, Roger Boyle, —Image Processing, Analysis and Machine Vision^{II}, 2nd ed., Thomson Learning, 2001
- 4. Rangaraj M. Rangayyan, -Biomedical Image Analysis, CRC Press, 2005
- 5. Pratt W.K, —Digital Image Processingl, 3rd ed., John Wiley & Sons, 2007
- 6. Digital Image Processing, 3rd Edition, by Rafael C Gonzalez and Richard E Woods. Publisher: Pearson Education

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN
	I
1	Define the fundamentals of digital image processing terminologies and features of images
2	Relate the mathematical foundations with image transformation, enhancement, segmentation and analysis.
3	Implement algorithms on enhancement and restoration on image data

4	Measure performance of image processing algorithms in providing solutions to real life problems
5	Build image processing systems to solve real world problems of image processing
6	Design solutions for various applications in different subject domains

Image Processing Lab

Code: PEC-IT691C

Contacts: 4P

Nam	e of the Course:	Image Processing Lab		
Course Code: PEC-IT691C		Semester: VI		
Dura	ation:6 months	Maximum Marks:100		
Tea	ching Scheme:			
Theo	pry: -	Continuous Internal Assessment		
Tuto	orial: NIL	External Assesement:60		
Prac	tical: 4 hrs./week	Distribution of marks:40		
Crec	lit Points:	2		
Obj	ective:			
1	To understand the fundame	ntal concepts of digital signal processing and Image		
	processing.			
2	To explore DFT for 1-D and	1 2-D signal and FFT for 1-D signal		
3	To apply processing techniq	ues on 1-D and Image signals.		
4	To apply digital image proc	essing techniques for edge detection		
Lab	Laboratory Experiments:			
1	Simulation and Display of an Image, Negative of an Image(Binary & Gray Scale)			
2	Implementation of Relations	ships between Pixels		
3	Implementation of Transformations of an Image			
4	Contrast stretching of a low contrast image, Histogram, and HistogramEqualization			
5	Display of bit planes of an I	mage		
6	Display of FFT(1-D & 2-D)	of an image		
7	Computation of Mean, Star	ndard Deviation, Correlation coefficient of the given		
/ Image				
8	Implementation of Image S	moothening Filters(Mean and Median filtering of an		
0	Image)			
9	Implementation of image sharpening filters and Edge Detection using GradientFilters			
10	Image Compression by DC	Г,DPCM, HUFFMAN coding		
11	Implementation of image re	storing techniques		
12	Implementation of Image Intensity slicing technique for image enhancement			
13	Canny edge detection Algorithm			

Any experiment specially designed based on the theory syllabus will be followed (Detailed instructions for Laboratory Manual to be followed for further guidance)

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN		
	Т		
1	Illustrate the fundamental concepts of image processing		
2	Identify image transformation to transform images into different domains		
3	Apply image enhancement and restoration in images of different domains		
4	Implement image segmentation and classification for automated identification of objects		
5	Categorize different feature extraction techniques for image analysis and recognition		
6	Design image processing systems to solve real world problems of image processing		

Artificial Intelligence

Code: PEC-IT602A

Contacts: 3L

Name of the Course: Artificial Intelligence					
Course	e Code: PEC-IT602A	Semester: VI			
Durati	on: 6 months	Maximum Mar	ks:100		
Teac	hing Scheme		Examination	Scheme	
Theor	y:3 hrs./week		Mid Semester ex	kam: 15	
Tutori	al: NIL		Assignment and	Quiz: 10 ma	arks
			Attendance: 5 marks		
Practio	cal: NIL		End Semester E	xam:70 Marl	KS
Credit	Points:		3		
Objec	tive:				
1	To understand the definit	tion of artificial i	intelligence		
2	To understand the different	ent faculties invo	lved with intellig	ent behavior	•
3	To examine the different	ways of approac	ching AI		
4	To look at some example systems that use AI				
5	To have a fair idea of the types of problems that can be currently solved by				
computers and those that are as yet l		are as yet beyon	yond its ability.		
Pre-R	equisite:				
1	Basic knowledge of Prob	ability, statistics,	automata and lan	guages, and	programming
					I
Unit	0	Content		Hrs/Unit	Marks/Unit
	Introduction: Overview of Artificial intelligence-Problems				
	of AI, AI technique, Tic - Tac - Toe problem. Intelligent				
Agents: Agents & environment, nature of env		nvironment,			
	structure of agents, goal based agents, utility based agents,				
1 learning agents.				6	
	Problem Solving: Problems, Problem Space & search:				
	Defining the problem as	state space sea	rch, production		

system, problem characteristics, issues in the design of

Search techniques: Solving problems by searching:

search programs.

2

13
	problem solving agents, searching for solutions; uniform search strategies: breadth first search, depth first search, depth limited search, bidirectional search, comparing uniform search strategies. Heuristic search strategies: Greedy best-first search, A* search, memory bounded heuristic search: local search algorithms & optimization problems: Hill climbing search, simulated annealing search, local beam search, genetic algorithms; constraint satisfaction problems. Adversarial search: Games, optimal decisions & strategies in games, the minimax search procedure, alpha-beta pruning, additional refinements, iterative deepening.		
3	Knowledge & reasoning: Knowledge representation issues, representation & mapping, approaches to knowledge representation, issues in knowledge representation.	3	
4	Using predicate logic: Representing simple fact in logic, representing instant & ISA relationship, computable functions & predicates, resolution, natural deduction. Probabilistic reasoning: Representing knowledge in an uncertain domain, the semantics of Bayesian networks, Dempster-Shafer theory, Fuzzy sets & fuzzy logics.	6	
5	 Natural Language processing: Introduction, Syntactic processing, semantic analysis, discourse & pragmatic processing. Learning: Forms of learning, inductive learning, learning decision trees, explanation based learning, learning using relevance information, neural net learning & genetic learning. Expert Systems: Representing and using domain knowledge, expert system shells, knowledge acquisition. 	8	

Text book and Reference books:

- 1. Artificial Intelligence, Ritch & Knight, TMH
- 2. Artificial Intelligence A Modern Approach, Stuart Russel Peter Norvig Pearson
- 3. Introduction to Artificial Intelligence & Expert Systems, Patterson, PHI
- 4. Poole, Computational Intelligence, OUP
- 5. Logic & Prolog Programming, Saroj Kaushik, New Age International
- 6. Expert Systems, Giarranto, VIKAS

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN		
	Т		
1	Understand knowledge of the building blocks of AI as presented in terms of intelligent agents.		
2	Analyze and formalize the problem as a state space, graph, design heuristics and select amongst different search or game based techniques to solve them.		
3	Understand and Develop intelligent algorithms for constraint satisfaction problems and also design intelligent systems for Game Playing.		
4	Understand and Attain the capability to represent various real life problem domains using logic based techniques and use this to perform inference or planning.		
5	Formulate and solve problems with uncertain information using Bayesian approaches.		
6	Apply concept Natural Language processing to problems leading to understanding of cognitive computing.		

Internet of Things Code: PEC-IT602B Contacts: 3L

Name of the Course:		Internet of T	Things		
Course Code: PEC-IT602B		Semester: VI			
Durati	on: 6 months	Maximum M	Maximum Marks:100		
Teac	hing Scheme		Examination S	cheme	
Theor	y:3 hrs./week		Mid Semester example	m: 15	
Tutori	al: NIL		Assignment and Q	uiz: 10 marl	KS
			Attendance: 5 mar	ks	
Practio	cal: NIL		End Semester Exa	m:70 Marks	
Credit	Points:		3		
Objec	tive:				
1	To understand the applic	ation areas of	IOT		
2	To realize the revolution	of Internet in N	Mobile Devices, Cl	oud & Sens	orNetworks
3	To understand building b	olocks of Intern	net of Things and cl	haracteristics	5
Pre-R	equisite:				
1	1 Basic knowledge of computer networking, data processing		ing, data processing	and electron	nics
	sensors				
Unit	0	Content		Hrs/Unit	Marks/Unit
	Internet: An Overview: In	troduction, H	istory of Internet,		
	Internet Technology, Towards the IoT Universe(s),				
	Classification of Internet, Topologies, Applications, Basics				
1	of Internet, Internet of Thirds Tak	igs v ision,		6	
	Internet of Things 100	lay nd Deleted	Eutura Internat		
	Tachnologias	nu Kelaleu	ruture internet		
	reemologies				
2	Flements of IoT. Commu	nication Sens	sing Actuation	6	
4	Liemento or 101. Commu	mg, Actuation,	U		

	I/O interfaces.		
	Internet of Things: An overview, Introduction,		
	Characteristics, Smart devices, IoT as a Network of		
	Networks, IoT architecture, IoT developments, Smart		
	Technology, Smart environment.		
	loT Components, Basic Principles, Embedded		
	technology Vs IoT, Sensors, Wireless sensor networks,		
	Aurdino, Rasberry Pi		
	Internet Communication Technologies, Networks and		
	Communication, Current trends in Internet: Internet of		
	everything, Internet of everything, Internet of things,		
	Storage, Databases		
	Data Management, IoT Related Standardization, Protocol		
	M2M Service Layer Standardization, OGC Sensor Web		
3	for IoT, IEEE and IEIF, ITU-T, Communication	8	
	protocols, Types of communication protocols,		
	Communication Protocols-MQ11, ZigBee,		
	Bluetooth, Communication Protocols-CoAP, UDP, ICP		
	Addressing Schemes, M2M Service Layer		
	Cloud Technology: Introduction Overview Why cloud		
	2		
	How to implement cloud?	_	
4	Usage of cloud. Scalable Computing. Cloud computing.	6	
	Characteristics of cloud computing.		
	Classifications, Virtual machines,		
	Virtualization technology,		
	Models of distributed and cloud computing,		
5	Distributed computing, Clustering computing Grid	4	
	computing, Service oriented Architecture.		
	Implementations of Cloud computing.		
	Protection & Security: Goals of protection and security,		
	security attacks		
6	Device data storage- Unstructured data storage oncloud/local	3	
	server, Authentication, authorization of		
	devices		
	IoT Case Studies: IoT case studies based on Industrial		
7	automation, Transportation	3	
	IoT Case Studies: Agriculture, Healthcare, Home	5	
	Automation		

Text book and Reference books:

- 1. Yasuura, H., Kyung, C.-M., Liu, Y., Lin, Y.-L., Smart Sensors at the IoT Frontier, SpringerInternational Publishing
- 2. Kyung, C.-M., Yasuura, H., Liu, Y., Lin, Y.-L., Smart Sensors and Systems, Springer International Publishing

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN
	Т
1	Define basic topology of IoT
2	Analyze the components and methods of data acquiring, organizing and analytics for IoT applications
3	Interpret models of distributed and cloud computing.
4	Compare different Application protocols for IoT.
5	Infer the role of Security in IoT.
6	Judge the applications of IoT.

Natural Language Processing Code: PEC-IT602C Contacts: 3L

Name of the Course:	Natural Language Processing	
Course Code: PEC-IT602C	Semester: VI	
Duration: 6 months	Maximum Marks	s:100
Teaching Scheme	·	Examination Scheme
_		
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance : 5 marks
Practical: NIL		End Semester Exam :70 Marks
Credit Points: 3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Regular Expressions and AutomataRecap) -Introduction to NLP, Regular Expression, Finite StateAutomata [2L]Tokenization - Word Tokenization, Normalization,Sentence Segmentation, Named Entity Recognition,Multi Word Extraction, Spell Checking – BayesianApproach, Minimum Edit Distance [5L]Morphology - Morphology – Inflectional andDerivational Morphology, Finite State MorphologicalParsing, The Lexicon and Morphotactics,Morphological Parsing with Finite State Transducers,Orthographic Rules and Finite State Transducers,	11	Marks/ Onit
	Porter Stemmer [4L]		
	Language Modeling Introduction to N-grams, Chain	0	
2	Rule, Smoothing – Add-One Smoothing, Witten-Bell	8	
	Discounting; Backoff, Deleted Interpolation, N-grams for Spelling and Word Prediction, Evaluation of		

	language models. [4L]		
	Hidden Markov Models and POS Tagging Markov		
	Chain, Hidden Markov Models, Forward Algorithm,		
	Viterbi Algorithm, Part of Speech Tagging - Rule		
	based and Machine Learning based approaches,		
	Evaluation. [4L]		
	Text Classification Text Classification, Naïve Bayes'		
3	Text Classification, Evaluation, Sentiment Analysis -	9	
	Opinion Mining and Emotion Analysis, Resources and		
	Techniques. [4L]		
	Context Free Grammar Context Free Grammar and		
	Constituency, Some common CFG phenomena for		
	English, Top-Down and Bottom-up parsing,		
	Probabilistic Context Free Grammar, Dependency		
	Parsing [4L]		
	Computational Lexical Semantics Introduction to		
4.	Lexical Semantics – Homonymy, Polysemy,	9	
	Synonymy, Thesaurus – WordNet, Computational		
	Lexical Semantics – Thesaurus based and		
	Distributional Word Similarity [4L]		
	Information Retrieval Boolean Retrieval, Term-		
	document incidence, The Inverted Index, Query		
	Optimization, Phrase Queries, Ranked Retrieval -		
	Term Frequency – Inverse Document Frequency based		
	ranking, Zone Indexing, Query term proximity, Cosine		
	ranking, Combining different features for ranking,		
	Search Engine Evaluation, Relevance Feedback [5L]		

Text book and Reference books:

 Speech and Language Processing, Jurafsky and Martin, Pearson Education
 Foundation of Statistical Natural Language Processing, Manning and Schutze, MIT Press 3.Multilingual Natural Language Processing Applications from Theory to Practice: Bikel, Pearson.

Machine Learning Code: PEC-IT602D Contacts: 3L

Name of the Course:		Machine Learn	ing		
Course Code: PEC-IT602C		Semester: VI			
Durat	ion: 6 months	Maximum Mark	s:100		
Teac	hing Scheme		Examination Scheme		
Theor	y:3 hrs./week		Mid Semester exam: 15		
Tutori	al: NIL		Assignment and Qu	uiz: 10 marks	5
			Attendance: 5 mark	KS .	
Practi	cal: NIL		End Semester Exar	n:70 Marks	
Credit	t Points:		3		
Objec	ctive:				
1	To learn the concept being explicitly prog	t of how to learn rammed	patterns and concep	ots from data	u without
2	To design and anal	yze various mach	nine learning algori	thms and te	echniques
	with a modern outlo	ok focusing on red	cent advances.		
3	To explore supervise	d and unsupervise	ed learning paradigm	ns of machin	elearning.
4	To explore Deep lea	rning technique ai	nd various feature ex	straction stra	tegies.
Pre-R	lequisite:				
1	Must be comfortabl	e with variables	, linear equations,	graphs of	functions,
1	histograms, and statistical means.				
2	Should have some ex	xperience program	nming in Python		
3	Basic knowledge of	statistics and matl	nematics		
	1			1	I
Unit	iit Content Hrs/Unit Marks/Unit				Marks/Unit
	Supervised Learning	(Regression/Clas	sification) Basic		
	methods: Distance-bas	ed methods, Near	est-Neighboures,		
1	Linear models. Linear	istia Decreasion	7		
1	Conoralized Linear	/			
	Nonlinearity and Kern	Generalized Linear Models, Support Vector Machines,			
	Classification: Multi-c	Classification, Multi class/Structured Outputs, Benling			
	Unsupervised Learni		diputs, Ranking		
	Clustering: K-means	ng Kernel K-mean	s Dimensionality		
2	Reduction: PCA and k	ernel PCA Matri	x Factorization and	4	
2	Matrix Completion G	enerative Models	(mixture	-	
	models and latent factor	models and latent factor models)			
	Evaluating Machine I	earning algorithm	ns and Model		
	Selection. Introduction	to Statistical Lea	rning Theory.		
3	Ensemble Methods	(Boosting, B	usting. Bagging. Random 6		
	Forests)	(8,			
	Sparse Modeling	and Estimat	tion, Modeling		
4	Sequence/Time-Series	Data, Deep	Learning and	6	
	Feature Representation	Learning	U		

5	Scalable Machine Learning (Online and Distributed Learning) A selection from some other advanced topics, e.g., Semi-supervised Learning, Active Learning, Reinforcement Learning, Inference in Graphical Models, Introduction to Bayesian Learning and Inference	8	
6	Recent trends in various learning techniques of machine learning and classification methods	5	

Text book and Reference books:

- 1. Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012
- 2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer 2009 (freely available online)
- 3. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007

Course Outcomes:

CO	STATEMENT
1	Develop an appreciation for what is involved in Learning models from data
2	Understand a wide variety of learning algorithms
3	Understand how to evaluate models generated from data
4	Apply the algorithms to a real problem, optimize the models learned and report on the expected
	accuracy that can be achieved by applying the models

Big Data Analytics Code: OEC-IT601A

Contacts: 3L

Name of the Course:		Big Data Analytics			
Course Code: OEC-IT601A		Semester: VI			
Durati	on: 6 months	Maximum M	arks:100		
Teac	hing Scheme		Examination	Scheme	
Theor	y:3 hrs./week		Mid Semester ex	xam: 15	
Tutori	al: NIL		Assignment and	Quiz: 10 ma	arks
			Attendance: 5 m	narks	
Practi	cal: NIL		End Semester E	xam:70 Marl	KS
Credit	Points:		3		
Objec	tive:				
1	To understand the big data	for business in	ntelligence.		
2	To Learn business case stu	dies for big da	ta analytics.		
3	To understand Nosql big d	ata manageme	nt.		
4	To perform map-reduce an	alytics using H	ladoop and relate	d tools	
Pre-R	equisite:				
1	Should have knowledge of	one Programn	ning Language, S	QL (queries	and sub
	queries), exposure to Linux	k Environment	•		
Ilm:4	Ca	ntont		II.u.a /II.u.:4	Manla/Unit
Unit	Ul What is his data why his da		a of lease tran da	HFS/Unit	Marks/Unit
1	what is big data, why big data, convergence of key trends, unstructured data, industry examples of big data, web analytics, big data and marketing, fraud and big data, risk and big data, credit risk management, big data and algorithmic trading, big data and healthcare, big data in medicine, advertising and big data, big data technologies, introduction to Hadoop, open source technologies, cloud and big data, mobile business intelligence, Crowd sourcing analytics, inter and trans firewall analytics			6	
2	Introduction to NoSQL, aggregate data models, aggregates, key-value and document data models, relationships, graph databases, schemaless databases, materialized views, distribution models, sharding, master-slave replication, peer-peer replication, sharding and replication, consistency, relaxing consistency, version stamps, map- reduce, partitioning and combining, composing map-reduce calculations.			6	
3	Data format, analyzing data with Hadoop, scaling ou Hadoop streaming, Hadoop pipes, design of Hadoo distributed file system (HDFS), HDFS concepts, Jav interface, data flow, Hadoop I/O, data integrity, compression, serialization, Avro, file-based datastructures		op, scaling out, gn of Hadoop concepts, Java grity, datastructures	7	

4	MapReduce workflows, unit tests with MRUnit, test data and local tests, anatomy of MapReduce job run, classic Map-reduce, YARN, failures in classic Map- reduce and YARN, job scheduling, shuffle and sort, task execution, MapReduce types, input formats, outputformats	8	
5	Hbase, data model and implementations, Hbase clients, Hbase examples, praxis.Cassandra, Cassandra data	5	
	model, Cassandra examples, Cassandra clients, Hadoop integration.		
6	Pig, Grunt, pig data model, Pig Latin, developing and testing Pig Latin scripts. Hive, data types and file formats, HiveQL data definition, HiveQL data manipulation, HiveQL queries.	4	

Text book and Reference books:

- 1. Michael Minelli, Michelle Chambers, and AmbigaDhiraj, "Big Data, Big Analytics: Emerging
- 2. Business Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013.
- 3. P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World of
- 4. Polyglot Persistence", Addison-Wesley Professional, 2012.
- 5. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- 6. Eric Sammer, "Hadoop Operations", O'Reilley, 2012.
- 7. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 8. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 9. Eben Hewitt, "Cassandra: The Definitive Guide", O'Reilley, 2010. 10. Alan Gates, "Programming Pig", O'Reilley, 2011.

Course Outcomes:

CO	STATEMEN T
1	Identify Big Data and its Business Implications.
2	List the components of Hadoop and Hadoop Eco-System
3	Access and Process Data on Distributed File System
4	Manage Job Execution in Hadoop Environment
5	Develop Big Data Solutions using Hadoop Eco System
6	Analyze Infosphere BigInsights Big Data Recommendations.

Cyber Law & Ethics

Code: OEC-IT601B

Contacts: 3L

Name	of the Course:	Cyber Law & Ethics				
Course Code: OEC-IT601B Semester: VI			Ι			
Durat	uration: 6 months Maximum Marks:100					
Teac	hing Scheme		Examination Scheme			
Theor	y:3 hrs./week		Mid Semester exam	: 15		
Tutori	al: NIL		Assignment and Qu	iz: 10 marks		
			Attendance: 5 marks	3		
Practi	cal: NIL		End Semester Exam	:70 Marks		
Credit	Points:		3			
Objec	tive:					
1	To explore the technica Cyber Ethics.	al, legal, and	social issues related	to cybercrii	nes, Laws	
2	It is also required to	have know	ledge of Cyber Eth	ics and its	role and	
	significance					
Pre-R	equisite:	4 6 1	4.1.0.4	1.1		
1	Basic knowledge of inte	ernet, fundam	entals of computer an	d laws		
Unit		Contont		Urs/Unit	Marks/Unit	
Unit	Introduction of Cyber	content	at is cybercrime?	111 S/ U IIIt	Ivial KS/ Unit	
1	Forgery, Hacking, Softwintrusion. Category of Cy attacks, passive attack, A	vare Piracy, ybercrime: ho ctive attacks,	Computer Network w criminals plan cyber stalking.	8		
2	Cybercrime Mobile & Wireless devices : Security challenges posted by mobile devices, cryptographic security for mobile devices, Attacks on mobile/cell phones, Theft, Virus, Hacking. Bluetooth; Different views on lanton			8		
3	Tools and Methods used in Cyber crime: Proxyservers, panword checking, Random checking, Trojan Horses and Backdoors; DOS & DDOS attacks; SQL injection: buffer over flow.			8		
4	Phishing & Identity Theft: Phising methods, ID Theft; Online identity method. Cybercrime & Cybersecurity:Legal aspects, Indian laws, IT act, Public key certificate.			8		
5	International Laws governing Cyber Space : Introduction to International Cyber Law, UNCITRAL, and Cyber Laws: Legal Issues and Challenges in India, Net neutrality, Role of INTERPOL.		4			
6	Net neutrality, Role of INTERPOL.Cyber Ethics: The Importance of Cyber Law, Significance of cyber Ethics, Need for Cyber regulations and Ethics.Ethics in Information society, Introduction to Artificial Intelligence Ethics: Ethical Issues in AI and core Principles, Introduction to Block chain Ethics.			4		

Text book and Reference books:

- 1. Cyber security by Nina Gobole & Sunit Belapune; Pub: Wiley India
- 2. Cyber Laws: Intellectual property & E Commerce, Security- Kumar K, dominant Publisher
- 3. Cyber Ethics 4.0, Christoph Stuckelberger, Pavan Duggal, by Globethic
- 4. Information Security policy & Implementation Issues, NIIT, PHI
- 5. Computers, Internet and New Technology Laws, Karnika Seth, Lexis Nexis Butterworths Wadhwa Nagpur.
- 6. Legal Dimensions of Cyber Space, Verma S, K, Mittal Raman, Indian Law Institute, New Delhi,
- 7. Cyber Law, Jonthan Rosenoer, Springer, New York, (1997).
- 8. The Information Technology Act, 2005: A Handbook, OUP Sudhir Naib, NewYork, (2011)
- 9. Information Technology Act, 2000, S. R. Bhansali, University Book House Pvt.Ltd., Jaipur (2003).
- 10. Cyber Crimes and Law Enforcement, Vasu Deva, Commonwealth Publishers, New Delhi, (2003)

Course Outcomes:

CO	STATEMEN T
1	Identify and analyze statutory, regulatory, constitutional, and organizational laws that affect the
	information technology professional.
2	Locate and apply case laws and common laws to current legal dilemmas in the technology field
3	Apply diverse viewpoints to ethical dilemmas in the information technology field and recommend
	appropriate actions.
4	Regulation of cyber space at national and international level.
5	Upholding ethical standards in cyber laws and intellectual property issues118

Mobile Computing Code: OEC-IT601C

Contacts: 3L

Name of the Course:		Mobile Computing						
Course Code: OEC-IT601C		Semester: VI						
Duration: 6 months Maximum Marks:100								
Teac	Teaching SchemeExamination Scheme							
Theor	y:3 hrs./week		Mid Semester ez	xam: 15				
Tutori	al: NIL		Assignment and	Quiz: 10 ma	arks			
			Attendance: 5 m	narks				
Practi	cal: NIL		End Semester E	xam:70 Mar	ks			
Credit	Points:		3					
Objec	ctive:							
1	Discuss different QoS factor mobile Computing	ors over wired	and wireless cha	nnels in resp	ect to the			
2	Illustrate the basic archited	ture of cellula	r communication					
3	Explain different factors to generations.	enhance the o	capacity of the ce	llular networ	k indifferent			
4	Explain the issues related t	o Satellite syst	tems, Virtual Net	works like B	luetooth			
5	Discuss the security issues	and protection	techniques in dif	ferent Mobil	eNetworks			
Pre-R	Requisite:							
1 Concept of Computer Networks								
-	1 1							
Unit	Co	ntent		Hrs/Unit	Marks/Unit			
Unit 1	Co Introduction to Personal Co PCS Architecture, Mobil signaling. Global System (GSM) system overview: management, Network signaling.	ntent mmunications ity managen for Mobile GSM Archite	Services (PCS): nent, Networks Communication ecture, Mobility	Hrs/Unit	Marks/Unit			
Unit 1 2	Co Introduction to Personal Co PCS Architecture, Mobil signaling. Global System (GSM) system overview: management, Network signaling. General Packet Radio Architecture, GPRS Netw Communication: WLANs (V standard, Mobile IP.	ntent mmunications ity managem for Mobile GSM Archite Services ((vork Nodes. Wireless LANs	Services (PCS): nent, Networks Communication ecture, Mobility GPRS): GPRS Mobile Data s) IEEE 802.11	Hrs/Unit 5	Marks/Unit			
Unit 1 2 3	Co Introduction to Personal Co PCS Architecture, Mobil signaling. Global System (GSM) system overview: management, Network signaling. General Packet Radio Architecture, GPRS Netw Communication: WLANs (V standard, Mobile IP. Wireless Application Protoco standard, WAP Gateway and Languages (WML). Wireless Loop(WLL): Introduction to Local Loop Technologies.	ntent mmunications ity managem for Mobile GSM Archite Services ((vork Nodes. Wireless LANs bl (WAP): The l Protocols, w s Local b WLL Archi	Services (PCS): nent, Networks Communication ecture, Mobility GPRS): GPRS Mobile Data s) IEEE 802.11 Mobile Internet rireless mark up tecture, wireless	Hrs/Unit 5 5 7	Marks/Unit			

5	Global Mobile Satellite Systems; case studies of the IRIDIUM and GLOBALSTAR systems. Wireless Enterprise Networks: Introduction to Virtual Networks, Blue tooth technology, Blue tooth Protocols.	7	
6	Server-side programming in Java, Pervasive web application architecture, Device independent example application	5	

Text book and Reference books:

- 1. Pervasive Computing, Burkhardt, Pearson
- 2. Mobile Communication, J. Schiller, Pearson
- 3. Wireless and Mobile Networks Architectures, Yi-Bing Lin & Imrich Chlamtac, John Wiley& Sons, 2001
- 4. Mobile and Personal Communication systems and services, Raj Pandya, Prentice Hall of India, 2001.
- 5. Guide to Designing and Implementing wireless LANs, Mark Ciampa, Thomson learning, Vikas Publishing House, 2001
- 6. Wireless Web Development, Ray Rischpater, Springer Publishing,
- 7. The Wireless Application Protocol, Sandeep Singhal, Pearson .
- 8. Third Generation Mobile Telecommunication systems, by P.Stavronlakis, Springer Publishers

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN
	Т
1	Discuss different QoS factors over wired and wireless channels in respect to mobile computing
2	Illustrate the basic architecture of cellular communication
3	Demonstrate the different technologies behind mobility in Cellular Communication
4	Understand the characteristics and limitations of mobile hardware devices including their user-
	interface modalities
5	Analyze the security issues in different Mobile Networks

Bioinformatics Code: OEC-IT601D

Contacts: 3L

Name of the Course:	Bioinformat	ics
Course Code: OEC-IT601D Semester: VI		
Duration: 6 months Maximum		arks:100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:		3
Objective:		

1	To provide the basic knowledge of molecular biology, interdisciplinary knowledge required in bioinformatics to the students having background incomputer science and engineering				
2	To make the students familiar with the use of a wide variety of biological databases/structures and to enable them to extract relevant information using appropriate algorithms				
3	To equip the students with computational intelligence tec able to do research in computational biology and R&D industry and medicine.	chniques so in biotechno	that they are logical		
Pre-R	equisite:				
1	Design & of Analysis of Algorithms, Data Structure, Mac	hine Learnin	g		
	~				
Unit	Content	Hrs/Unit	Marks/Unit		
1	INTRODUCTION TO MOLECULAR BIOLOGY Concepts of Cell, tissue, types of cell, components of cell, organelle. Functions of different organelles. Concepts of DNA: Basic Structure of DNA; Double Helix structure; Watson and crick model. Exons and Introns and Gene Concept. Concepts of RNA : Basic structure, Difference between RNA and DNA. Types of RNA. Concept of Protein: Basic components and structure. Introduction to Central Dogma: Transcription and Tranlation Introduction to Metabolic Pathways	5			
2	Sequence Databases Introduction to Bioinformatics. Recent challenges in Bioinformatics. Protein Sequence Databases, DNA sequence databases. sequence database search programs like BLAST and FASTA. NCBI different modules: GenBank; OMIM, Taxonomy browser, PubMed;	2			
3	DNA SEQUENCE ANALYSIS DNA Mapping and Assembly: Size of Human DNA ,Copying DNA: Polymerase Chain Reaction (PCR), Hybridization and Microarrays, Cutting DNA into Fragments, Sequencing Short DNA Molecules, Mapping Long DNA Molecules. DeBruijn Graph. Sequence Alignment: Introduction, local and global alignment, pair wise and multiple alignment, Dynamic Programming Concept. Alignment algorithms: Needleman and Wunsch algorithm, Smith-Waterman.	14			
4	IntroductionProbabilisticmodelsusedinComputational BiologyProbabilistic Models; Hidden Markov Model : Concepts,Architecture,Transitionmatrix,estimationofHMMinBioinformatics :Genefinding,profilesearches,multiplesequencealignmentandregulatorysiteidentification.BayesiannetworksModel:Architecture,Principle,ApplicationinBioinformatics	9			

5	Biological Data Classification and Clustering Assigning protein function and predicting splice sites:	6	
	Decision Tree		

Text book and Reference books:

- 1. Claverie, J.M. and Notredame C. 2003 Bioinformatics for Dummies. Wiley Editor
- 2. Letovsky, S.I. 1999 Bioinformatics. Kluwer Academic Publishers.
- 3. Baldi, P. and Brunak, S. 2001 Bioinformatics: The machine learning approach, The MIT Press
- 4. Fogel, G.B. and Corne, D.W., 1997 Evolutionary Computation in Bioinformatics.
- 5. Rastogi et al 2003. Bioinformatics: Concepts, Skills and Applications. CBS
- 6. Rashidi and Buchler 2000. Bioinformatics Basics. CRC Press

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN		
	Т		
1	Understanding the methodologies used for database searching, and determining the accuracies of		
	database search.		
2	Application of probabilistic model to determine important patterns.		
3	Determine the protein function from sequence through analyzing data		
4	Optimization of weights in a supervised and unsupervised neural network, and application of		
	supervised learning to predict sub- cellular localization of a protein.		
5	Analysis and development of models for better interpretation of biological data to extract		
	knowledge.		
6	Application of stochastic context-free grammar (SCFG) to predict RNA secondary structure.		

Robotics Code: OEC-IT601E

Contacts: 3L

Name of the Course:	Robotics		
Course Code: OEC-IT601E	Semester: VI	Ι	
Duration: 6 months	Maximum M	Iarks:100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points:		3	
Objective:			
1 To impart knowledge abo application	To impart knowledge about the engineering aspects of Robots and their application		
Pre-Requisite:			
1 Basic knowledge on AI, mathematics and programming			
Unit Cor	Content Hrs/Unit Marks/Unit		

	Introduction Brief history types classification and usage		
	(have support). Solaroo and Tashralagy of robota		
1	(basic concept), Science and Technology of robots,	2	
	Interdisciplinary Areas in robotics, Applications and		
	advantages of Robots		
	Various components of Robotic System: Links and		
	Joints, End-effecter/Gripper, Drive/Actuator, Controller,		
	Sensor, Connectivity/degrees of freedom of a joint, Joints		
	with one, two and three Degrees of freedom: Prismatic joint,		
2	Revolute joint, spherical Joint/Ball and Socket joint,	3	
	Hooke/Universal Joint, Linear Joint and Rotary joint,	-	
	Representation of joints, Degrees of freedom (DOF) of a		
	System, Finding mobility/DOF of spatial and planar		
	manipulators, Serial and Parallel manipulators, Grubler's		
	criteria, numerical examples		
	Classification of Robot: Point-to-point robots and Continuous		
	Path robots, Non-servo controlled robots and servo controlled		
2	robots, Cartesian coordinate robots, cylindrical coordinate	5	
3	robots, polar coordinate robots and articulated coordinate	5	
	of manipulators. Definition of Resolution accuracy and		
	repeatability Types of robot and effectors/grippers: single and		
	double gripper internal and external grippers. Single and		
	gripper, active and passive gripper Robot teaching. Online and		
	offline method. Specification of a Robot. Economic Analysis:		
	Pay-back period, rate of return or investment. Numerical		
	examples		
	Representation of an object in 3d space, position, orientation,		
	Frame Transformations: Translation and rotation of a frame,		
	Homogeneous transformation, Roll, pitch and yaw angles,		
	Euler angles, numerical examples, Denavit-Hartenberg		
1	Notations and rules to assign coordinate system at different	8	
т	joints, Link and joint parameters, Offset of link and joint angle,	0	
	Rules for coordinate assignment, Forward and inverse		
	kinematics problems, examples of Kinematics, Link		
	representation using D-H parameters, Examples of D-H		
	parameters and link transforms		
	Trajectory Planning: cartesian scheme, Joint Space Scheme,		
5	Polynomial and Linear Trajectory functions with numerical	3	
	examples, angular velocity, Singularity checking through		
	Jacobian		
	Forward and inverse Dynamics, inertia tensor, Moment of		
6	and kinetic energy of the manipulator. Determination of	4	
	Robotic joint torques		
	Partitioned control scheme, control of motor, control		
	architecture.Classical control concepts using the example		
7	of control of a single link. Independent joint PID control	4	
,	Control of a multi-link manipulator Non-	·	
	linear model based control schemes		
	Robot vision: Steps to be followed frame grabbing methods of		
	pre-processing: masking, neighborhood averaging median	-	
8	filtering, edge detection, boundary descriptors. Robot motion	5	
	planning: visibility graph, Voronoi Diagram, Intelligent robot		

Text book and Reference books:

- 1. King Sun Fu, Ralph Gonzalez, and CS George Lee. Robotics: Control Sensing. Vis. Tata McGraw-Hill Education, 1987.
- 2. Mark W.Spong, Seth Hutchinson, and MathukumalliVidyasagar. Robot modelingand control. Vol. 3. New York: Wiley, 2006.
- 3. H. R. Everett, Sensors for mobile robots. AK Peters/CRC Press, 1995.
- 4. UlrichNehmzow, Mobile robotics: a practical introduction. Springer Science & Business Media, 2012.
- 5. Ashitava Ghosal, Robotics: fundamental concepts and analysis. Oxford universitypress, 2006.
- 6. Subir KumarSaha, Introduction to robotics. Tata McGraw-Hill Education, 2014.
- 7. R. K.Mittal, and I. J. Nagrath. Robotics and control. Tata McGraw-Hill, 2003.

Course Outcomes:

On completion of the course students will be able to

CO	STATEMENT
1	Illustrate the importance of robotics, and comprehend the basic terminologies in robotics
2	Comprehend and evaluate the forward and inverse kinematics of robots
3	Comprehend and evaluate the differential motion and velocity relationships for robots
4	Develop dynamic equations of motion and discuss methods of trajectory planning.

Project-I Code: PROJ-IT691 Contacts: 6L

Name of the Course:	Project-I		
Course Code: PROJ-IT691	Semester: VI		
Duration: 6 months	Maximum Marks:1	00	
Teaching Scheme		Examination Scheme	
Theory: NIL		Mid Semester exam:	
Tutorial: NIL		Assignment and Quiz:	
		Attendance:	
Practical: 6Hrs./week		End Semester Exam:	
Credit Points:		3	
Objectives and detailed pro	cess:		
1 The object of Projec	t Work I is to enable	the student to take up investigative study in	
the broad field of	f Electronics & (Communication Engineering, either fully	
theoretical/practical	or involving both the	coretical and practical work to be assigned by	
the Department on	the Department on an individual basis or two/three students in a group, under the		
guidance of a Super	guidance of a Supervisor. This is expected to provide a good		
initiation for the stud	initiation for the student(s) in R&D work.		

2	 The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up under EC P1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include: 1. In depth study of the topic assigned in the light of the Report prepared underEC P1; 2. Review and finalization of the Approach to the Problem relating to theassigned topic; 3. Preparing an Action Plan for conducting the investigation, including teamwork; 4. Detailed Analysis/ Modeling/ Simulation/ Design/ Problem Solving/Experiment as needed; 5. Final development of product/process, testing, results, conclusions and future directions;
	6. Preparing a paper for Conference presentation/Publication in Journals, if
	possible; 7. Preparing a Dissertation in the standard format for being evaluated by the Department.

Course Outcomes:

On completion of the course students will be able to

CO	STATEMENT
1	Identify the problem
2	Compare existing literature.
3	Design experimental set-up and methodology
4	Apply modern tools
5	Analyze data
6	Develop valid conclusions & recommendations

8. Final Seminar Presentation before a Departmental Committee.

SEMESTER-VII (Fourth Year)

Internet & Web Technology Code: PCC-IT701

Contacts: 3L

Name of the Course:		Internet & Web T	echnology		
Course	Course Code: PCC-IT701 Semester: VII				
Durati	ion: 6 months	Maximum Marks:1	00		
Teac	hing Scheme		Examination	Scheme	
Theor	y: 3 hrs./week		Mid Semester ex	xam: 15	
Tutori	al: NIL		Assignment and	Quiz: 10 ma	arks
			Attendance: 5 m	narks	
Practio	cal: -		End Semester E	xam:70 Marl	KS
Credit	Points:		3		
Objec	tives:				
1	Describe the concept	ts of WWW includin	g browser and H	TTP protocol	
2	List the various HTM	ML tags and use them	n to develop the u	ser friendly	webpages.
3	Define the CSS with pages at various level	th its types and use els.	them to provide	the styles to	the web
4	Develop the modern layouts as per need of	web pages using the of applications.	e HTML and CSS	5 features wit	th different
5	Use the JavaScript to develop the dynamic web pages.				
6	Use server side scripting with PHP to generate the web pages dynamically using the database connectivity.				
7	7 Develop the modern Web applications using the client and server side technologies and the web design fundamentals.				erver side
Pre-R	Pre-Requisites:				
1	Basic knowledge of	data structure, databa	ase and programn	ning	
Unit		Content		Hrs/Unit	Marks/Unit
1	Introduction to Inter of Networks, Intranet Web: Domain and Su Telnet, FTP, HTTP. Review of TCP/IP Handshaking, Flow control, IP Datagram, IP Subnetting and Addressing, Subnettin Internet Routing Proto Routing, Unicast an Electronic Mail POP3, SMTP.	net Technology: Ove , Extranet and Intern b domain, Address R Control, Error Cont IPv4 and IPv6. addressing: Classfu g. NAT, IP masquera ocol .Routing -Intra a nd Multicast Rout	erview, Network eet, World Wide esolution, DNS, ent, Three-Way rol, Congestion l and Classless ading, IP tables, nd Inter Domain ing, Broadcast.	6	

2	HTML, Image Maps, XML, CGI Scripts: Introduction, Editors, Elements, Attributes, Heading, Paragraph. Formatting, Link, Head, Table, List, Block, Layout, CSS. Form, Iframe, Colors, Color name, Color value, map, area, attributes of image area. Extensible Markup Language, Introduction, Tree, Syntax, Elements, Attributes, Validation, Viewing. XHTML in brief. Introduction, Environment Variable, GET and POST Methods	9	
3	Perl, Java Script, Java applets: Introduction, Variable, Condition, Loop, Array, Implementing data structure, Hash, String, Regular Expression, File handling, I/O handling. Basics, Statements, comments, variable, comparison, condition, switch, loop, break. Object – string, array, Boolean, reg-ex. Function, Errors, Validation. Definition of cookies, Create and Store a cookie with example. Container Class, Components, Applet Life Cycle, Update method; Parameter passing applet, Applications.	10	
4	Client-Server programming In Java Threats, Network Security techniques: Java Socket, Java RMI, Malicious code-viruses, Trojan horses, worms; eavesdropping, spoofing, modification, denial ofservice attacks. Password and Authentication; VPN, IP Security, security in electronic transaction, Secure Socket Layer (SSL), Secure Shell (SSH), Introduction, Packet filtering, Stateful, Application layer, Proxy	4	
5	Internet Telephony, Multimedia Applications, Multimedia Applications: Introduction, VoIP. Multimedia Applications Multimedia over IP: RSVP, RTP, RTCP and RTSP. Streaming media, Codec and Plugins, IPTV. Definition, Meta data, Web Crawler, Indexing, Page rank, overview of SEO.	5	

Text book and Reference books:

- 1. Web Technology: A Developer's Perspective, N.P. Gopalan and J. Akilandeswari, PHI Learning, Delhi, 2013. (Chapters 1-5,7,8,9).
- 2. Internetworking Technologies, An Engineering Perspective, Rahul Banerjee, PHI Learning, Delhi, 2011. (Chapters 5,6,12)

Course Outcomes:

CO	STATEMEN
	Т
1	Define the principal of Internetworking, TCP/IP protocols, World Wide Web, client-serverarchitecture, IP addressing, routing etc.

2	Explain the need for secured web application development with client-side, server-side scripting
	languages.
3	Construct web programs using the web languagesHTML, XML, JavaScript, Applet, Perl, etc.
4	Design and Develop small interactive websites using modern tools following the professional
	web based engineering solutions, ethics and management techniques.
5	Explain the advanced technologies like network security, multimedia applications, search engine,
	web crawler, etc with the websites.

Multimedia Technology Code: PEC-IT702A Contacts: 3L

Name of the Course:		Multimedia Tec	hnology		
Course Code: PEC-IT702A		Semester: VII			
Duration: 6 months		Maximum Marks	:100		
Teach	ing Scheme		Examination Sche	eme	
Theory	:3 hrs./week		Mid Semester exam: 1	5	
Tutoria	l: NIL		Assignment and Quiz:	10 mark	S
			Attendance: 5 marks	Attendance: 5 marks	
Practic	al: NIL		End Semester Exam:7	0 Marks	
Credit	Points:		3		
Object	ive:				
1	To enable graduates to	excel in multi	media technology an	d infor	nation
	technology profession by ad	lapting to rapid ad	vances in newer techno	logies.	
2	To provide graduates a pro-	per foundation in	mathematical, scientific	c, multin	nediaand
	engineering fundamentals to	solve real world p	oroblems.		
3 To train graduates with good scientific, mult		l scientific, multin	nedia technologies and	solve rea	ltime
	problems.				
Pre-Re	Pre-Requisite:				
1	The fundamentals of compu	ter			
Unit		Content		Hrs/	Marks/
Chit				Unit	Unit
1	Introduction: Multimed Multimedia Systems, Compor	a today, Impact o ents and Its Appli	f Multimedia, cations	2	
	Text and Audio, Image and	Video: Text: Ty	pes of Text, Ways to		
	Present Text, Aspects of T	ext Design, Chai	racter, Character Set,		
	Codes, Unicode, Encryption;	Audio: Basic Sour	nd Concepts, Types of		
	Sound, Digitizing Sound,	Computer Repre	esentation of Sound		
2	(Sampling Rate, Sampling Siz	ze, Quantization), 2	Audio Formats, Audio	14	
2	tools, MIDI			17	
	Image: Formats, Image Colo	r Scheme, Image	Enhancement; Video:		
	Analogue and Digital Vide	o, Recording Fo	rmats and Standards		
	(JPEG, MPEG, H.261) Tr	ansmission of V	ideo Signals, Video		
	Capture, and Computer based	Animation.			

3	Synchronization, Storage models and Access Techniques: Temporal relationships, synchronization accuracy specification factors, quality of service, Magnetic media, optical media, file systems (traditional, multimedia) Multimedia devices – Output devices, CD-ROM, DVD, Scanner, CCD, Producer\ Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc.	8	
4	 Image and Video Database, Document Architecture and Content Management: Image representation, segmentation, similarity based retrieval, image retrieval by color, shape and texture; indexing- k-d trees, R-trees, quad trees; Case studies- QBIC, Virage. Video Content, querying, video segmentation, indexing, Content Design and Development, General Design Principles Hypertext: Concept, Open Document Architecture (ODA), Multimedia and Hypermedia Coding Expert Group (MHEG), Standard Generalized Markup Language (SGML), Document Type Definition (DTD), Hypertext Markup Language (HTML) in Web Publishing. Case study of Applications of Producer\ Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc. 	8	
5	Multimedia Applications: Interactive television, Video-on- demand, Video Conferencing, Educational Applications, Industrial Applications, Multimedia archives and digital libraries, media editors	4	

Text book and Reference books:

- 1. Ralf Steinmetz and Klara Nahrstedt , Multimedia: Computing, Communications & Applications , Pearson Ed.
- 2. Nalin K. Sharda, Multimedia Information System, PHI.
- 3. Zred Halsall, Multimedia Communications, Pearson Ed.
- 4. Koegel Buford, Multimedia Systems, Pearson Ed.
- 5. Fred Hoffstetter, Multimedia Literacy, McGraw Hill.
- 6. Ralf Steinmetz and Klara Nahrstedt , Multimedia Fundamentals: Vol. 1- MediaCoding and Content Processing , PHI.
- 7. J. Jeffcoate, Multimedia in Practice: Technology and Application, PHI.

Course Outcomes:

CO	STATEMEN
	Т
1	Understand the policy issues related to privacy, intellectual property rights, and establishing
	identity those are germane to electronic commerce along with the Internet and related technologies
2	Comprehend the underlying economic mechanisms and driving forces of E-Commerce
3	Analyse the impact that electronic commerce is facing and outlines the different digital transaction

	process and basic concepts of e-commerce
4	Identify the importance of digital library and specify the development of electronic commerce
	capabilities in a company
5	Appraise the opportunities and potential to apply and synthesize a variety of e Commerce concepts
	and solutions to create business value for organizations, customers, and business partners.
6	To gain knowledge of the ethical, social, and security issues of information systems

Information Theory and Coding Code: PEC-IT702B Contacts: 3L

Name	of the Course:	Information Theory	and Coding		
Course Code: PEC-IT702B Semester: VII					
Durati	on: 6 months	Maximum Marks:100			
Teaching Scheme Examination Scheme			;		
Theory	y:3 hrs./week		Mid Semester ex	am: 15	
Tutori	al: NIL		Assignment and	Quiz: 10	marks
			Attendance: 5 ma	arks	
Practic	cal: NIL		End Semester Ex	am:70 M	larks
Credit	Points:		3		
Objec	tive:				
1	To develop an understandin	g of modern network	architectures from	a design	and
	performance perspective.				
2	To introduce the student to	o the major concepts i	involved in wide-a	area netw	vorks
	(WANs), local area networl	s (LANs) and Wireles	s LANs (WLANs)).	
3	To provide an opportunity t	o do network program	ming		
4	To provide a WLAN measu	rement ideas.			
Pre-R	equisite:				
1	Basic knowledge of statistics and mathematics				
					1
Unit		Content		Hrs/ Unit	Marks/ Unit
	Source Coding				
1	Uncertainty and information, entropy, information measure source coding theorem, Huffm	average mutual infor s for continuous rando an codes	rmation and m variables,	5	
2	Channel Capacity And Cod Channel models, channel capa capacity theorem, The Shanno	i ng icity, channel coding, in n limit	nformation	5	
3	Linear And Block Codes Fo Matrix description of linear check matrix, decoding of Hamming codes	r Error Correction block codes, equival a linear block code	ent codes, parity e, perfect codes,	8	
	Cyclic Codes				

5	BCH Codes Primitive elements, minimal polynomials, generator polynomials in terms of minimal polynomials, examples of BCH codes.	6	
6	Convolutional Codes Tree codes, trellis codes, polynomial description of convolutional codes, distance notions for convolutional codes, the generating function, matrix representation of convolutional codes, decoding of convolutional codes, distance and performance bounds for convolutional codes, examples of convolutional codes, Turbo codes, Turbo decoding	7	

Text book and Reference books:

- 1. Information theory, coding and cryptography Ranjan Bose; TMH.
- 2. Information and Coding N Abramson; McGraw Hill.
- 3. Introduction to Information Theory M Mansurpur; McGraw Hill.
- 4. Information Theory R B Ash; Prentice Hall.
- 5. Error Control Coding Shu Lin and D J Costello Jr; Prentice Hall.

Course Outcomes:

CO	STATEMEN
	Т
1	Design the channel performance using Information theory.
2	Comprehend various error control code properties
3	Apply linear block codes for error detection and correction
4	Apply convolution codes for performance analysis & cyclic codes for error detection and correction.
5	Design BCH & RS codes for Channel performance improvement against burst errors

Cyber Security Code: PEC-IT702C Contacts: 3L

Name of the Course: Cyber Security					
Course Code: PEC-IT702C Semester: VII					
Duration: 6 months Maximum Marks:100					
Teac	hing Scheme		Examination Sche	me	
Theory	/:3 hrs./week		Mid Semester exam: 1:	5	
Tutoria	al: NIL		Assignment and Quiz:	10 marks	
			Attendance: 5 marks		
Practic	cal: NIL		End Semester Exam:70) Marks	
Credit	Points:		3		
Objec	tive:				
1	To introduce the fundamen	tals of science and	d engineering concepts of	essential	for a
-	computer engineer.	1 0 1			
2	To inculcate the knowle principles for effective prob	edge of mathem olem solving.	natical foundations ar	id algor	ithmic
3	To provide knowledge in c investigation and alleviate t	omputer systems he cyber-attacks.	and professional skills	in prever	ition,
4	To impart knowledge to an various applications.	alyze, design, test	and implement softwar	e required	l for
5	5 To hone personality skills, trigger social commitment; inculcate societalresponsibilities			nsibilities	
Pre-R	equisite:	security practices.	•		
1	Basic knowledge of comput	er networking and	d security		
			<u> </u>		
Unit		Content		Hrs/ Unit	Marks/ Unit
	Introduction: Introduction	to Cyber Secu	rity, Importance and		
	challenges in Cyber Securi	ty, Cyberspace,	Cyber threats, Cyber	6	
1	warfare, CIA Triad, Cyber To	errorism, Cyber S	ecurity of Critical	6	
	Infrastructure. Cyber security	- Organizational	Implications.		
	Hackers and Cyber Crin	es: Types of H	Jackers Hackers and		
	Crackers, Cyber-Attacks a	nd Vulnerabilitie	es. Malware threats.		
2	Sniffing, Gaining Access	. Escalating H	Privileges, Executing	7	
	Applications, Hiding Files,	Covering Trac	ks, Worms, Trojans,		
	Viruses, Backdoors.				
	Ethical Hacking and Social	Engineering: Eth	ical Hacking Concepts		
	and Scopes, Threats and Attack Vectors, Information Assurance,				
3	Threat Modeling, Enterprise Information Security Architecture,			8	
	Vulnerability Assessment an	d Penetration Tes	sting, Types of Social	-	
	Engineering, Insider Attack, I	Preventing Insider	Sturte size		
	Inreats, Social Engineering T	argets and Defen	se Strategies.	10	
4	Cyber Forensics and	Auditing: Intro	duction to Cyber	10	

	Forensics, Computer Equipment and associated storage media, Role of		
	forensics Investigator, Forensics Investigation Process, and		
	Collecting Network based Evidence, Writing Computer Forensics		
	Reports, and Auditing; Plan an audit against a set of		
	audit criteria, Information Security Management System Management.		
	Introduction to ISO 27001:2013		
	Cyber Ethics and Laws: Introduction to Cyber Laws, E- Commerce		
	and E-Governance, Certifying Authority and Controller, Offences		
5	under IT Act, Computer Offences and its	5	
	penalty under IT Act 2000, Intellectual Property Rights in Cyberspace.		
	at Network Layer-IPSec.		

Text book and Reference books:

- 1. Cyber security, Nina Gobole & Sunit Belapune; Pub: Wiley India.
- 2. Information Security and Cyber Laws, Pankaj Agarwal
- 3. Donaldson, S., Siegel, S., Williams, C.K., Aslam, A., Enterprise Cybersecurity -How to Build a Successful Cyberdefense Program Against Advanced Threats, A-press
- 4. Nina Godbole, SumitBelapure, Cyber Security, Willey
- 5. Hacking the Hacker, Roger Grimes, Wiley
- 6. Cyber Law By Bare Act, Govt Of india, It Act 2000

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN T
1	Identify vulnerabilities critical to the information assets of an organization
2	Analyze and resolve security issues in networks and computer systems to secure an IT infrastructure.
3	Apply critical thinking and problem-solving skills to detect current and future attacks on an organization's computer systems and networks.
4	Develop policies and procedures to manage enterprise security risks
5	Evaluate and communicate the human role in security systems with an emphasis on ethics, social engineering vulnerabilities and training
6	Apply business principles to analyze and interpret data for planning, decision-making, and problem solving in an information security environment

Cloud Computing Code: PCC-IT702D Contacts: 3L

Name of the Course:	Cloud Comp	outing
Course Code: PCC-IT702D Semester: VI		Ι
Duration: 6 months Maximum M		arks:100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks

Attendance: 5 ma		arks		
Practical: NIL		End Semester Exam:70 Marks		
Credit	Points:	3		
Objec	tive:			
1	The course provides a unified and fun computer networks.	damental view o	of the broad	l field of
2	The easy to understand and extremely rel introduced in a top down Approach.	evant world of Co	omputer Net	workingis
3	Introduction to intranets and intranet servers, LANs/WANs, internetworking to model for networking protocols, CSMA/0	vers and browsers echnologies, the C CD, TCP/IP imple	, networks a DSI referenc ementation	indnetwork e
Pre-R	equisite:			
1	Basic knowledge of computer networking	5		
Unit	Content		Hrs/Unit	Marks/Unit
1	Definition of Cloud Computing and its I a Cloud, Cloud Types – NIST model, Clo Deployment models (Public , Private Community Clouds), Service Platform Software as a Service with examples of se providers, models – Infrastructure as a Reference model, Characteristics of Cloud shift in paradigm Benefits and advant Computing, A brief introduction on Infrastructure, Platforms, Virtual Communication Protocols, Applications, C Cloud by Clients, IaaS – Basic cond partitioning of virtual private server is aggregations, silos PaaS – Basic cond development environment with examples SaaS - Basic concept and characteristics, and SOA, examples of SaaS platform Ident (IDaaS) Compliance as a Service (CaaS)	Basics: Defining and Cube model, e, Hybrid and as a Service, services/ service Service, Cloud Computing – a ages of Cloud Composability, Appliances, onnecting to the cept, Workload, nstances, Pods, cept, tools and , Open SaaS ity as a Service	9	
2	Use of Platforms in Cloud Computing Concepts of Abstraction and Virtualization technologies : Types of virtualization(acces CPU, storage), Mobility patterns(P2V, V2 P2P, D2C, C2C, C2D, D2D) Load Balancing and Virtualization: Basic Con- resources for load balancing, Advanced (including Application Delivery Controller Delivery Network), Mention of The Goog Cloud as an example of use of load balancing Virtual machine technology and types,	Virtualization s, application, 2V, V2P, accepts, Network load balancing and Application le ang Hypervisors:	12	

	VMware vSphere Machine Imaging (including mention of Open Virtualization Format – OVF) Porting of applications in the Cloud: The simple Cloud API and AppZero Virtual Application appliance,Concepts of Platform as a Service, Definition of services, Distinction between SaaS and PaaS (knowledge of Salesforce.com and Force.com), Application development Use of PaaS Application frameworks, Discussion of Google Applications Portfolio – Indexed search, Dark Web, Aggregation and disintermediation, Productivity applications and service, Adwords, Google Analytics, Google Translate, a brief discussion on Google Toolkit (including introduction of Google APIs in brief), major features of Google App Engine service., Discussion of Google Applications Portfolio – Indexed search, Dark Web, Aggregation and disintermediation, Productivity applications and service, Adwords, Google Toolkit (including introduction of Google APIs in brief), major features of Google App Engine service., Discussion of Google Applications Portfolio – Indexed search, Dark Web, Aggregation and disintermediation, Productivity applications and service, Adwords, Google Analytics, Google Translate, a brief discussion on Google Toolkit (including introduction of Google APIs in brief), major features of Google App Engine service, Windows Azure platform: Microsoft's approach, architecture, and main elements, overview of Windows Azure AppFabric, Content Delivery Network, SQL Azure, and Windows Live services,		
3	Cloud Infrastructure: Cloud Management: An overview of the features of network management systems and a brief introduction of related products from large cloud vendors, Monitoring of an entire cloud computing deployment stack – an overview with mention of some products, Lifecycle management of cloud services (six stages of lifecycle). Concepts of Cloud Security: Cloud security concerns, Security boundary, Security service boundary Overview of security mapping Security of data: Brokered cloud storage access, Storage location and tenancy, encryption, and auditing and compliance Identity management (awareness of Identity protocol standards)	7	
4	Concepts of Services and Applications : Service Oriented Architecture: Basic concepts of message-based transactions, Protocol stack for an SOA architecture, Event-driven SOA, Enterprise Service	8	

Bus, Service catalogs,	
Applications in the Cloud: Concepts of cloud transactions functionality mapping, Application attributes, Cloud servic attributes, System abstraction and Cloud Bursting Applications and Cloud APIs	e 5,
Cloud-based Storage: Cloud storage definition – Manner and Unmanned	1
Webmail Services: Cloud mail services including Googl Gmail, Mail2Web, Windows Live Hotmail, Yahoo mail concepts of Syndication services	e ,

Text book and Reference books:

- 1. Cloud Computing Bible by Barrie Sosinsky, Wiley India Pvt. Ltd, 2013
- Mastering Cloud Computing by Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, McGraw Hill Education (India) Private Limited, 2013
- 3. Cloud computing: A practical approach, Anthony T. Velte, Tata Mcgraw-Hill
- 4. Cloud Computing, Miller, Pearson
- 5. Building applications in cloud:Concept, Patterns and Projects, Moyer, Pearson
- 6. Cloud Computing Second Edition by Dr. Kumar Saurabh, Wiley India

Course Outcomes:

CO	STATEMEN
	L T
1	Articulate the main concepts, key technologies, strengths and limitations of cloud computing.
2	Explain the key and enabling technologies that help in the development of cloud.
3	Apply NIST cloud computing architecture to solve architecture design challenges
4	Explain the core issues of cloud computing such as resource management and security.
5	Apply current cloud technologies.
6	Illustrate and choose the appropriate technologies, algorithms and approaches for implementation and use of cloud.

Operations Research

Code: OEC-IT701A

Contacts: 3L

Name of the Course:		Operation R	lesearch		
Course Code: OEC-IT701A Semester: V		Semester: VI	Ι		
Durati	Duration: 6 months Maximum Marks:100				
Teaching SchemeExamination Scheme			e		
Theory	y:3 hrs./week		Mid Semester exam: 15		
Tutori	al: NIL		Assignment and Quiz: 10	marks	
			Attendance: 5 marks		
Practic	cal: NIL		End Semester Exam:70 N	larks	
Credit	Points:		3		
Objec	tive:				
1	This module aims to int techniques for effective deci used in solving business dec	troduce stude sions–making; ision problems	nts to use quantitative model formulation and a	methods pplication	and nsthat are
2	Analytic techniques and con	mputer packag	es will be used to solve p	roblems f	acing
D. D	business managers in decisi	on environmer	nts.		
Pre-K	equisite:	ation			
1	Basic knowledge of mathem	latics			
Unit	Content			Hrs/ Unit	Marks/ Unit
1	Basic LPP and Applications; Various Components of LP Problem Formulation. Solution of Linear Programming Problems: Solution of LPP: Using Simultaneous Equations and Graphical Method; Definitions: Feasible Solution, Basic and non-basic Variables, Basic Feasible Solution, Degenerate and Non- degenerate Solution, Convex set and explanation with examples Solution of LPP by Simplex Method; Charnes' Big-M Method; Duality Theory. Transportation Problems and Assignment			17	
2	Network Analysis: Shortest Path: Floyd Algorithm; Maximal Flow Problem (Ford-Fulkerson); PERT-CPM (Cost Analysis, Crashing, Resource Allocation excluded). Inventory Control: Introduction to EOQ Models of Deterministic and Probabilistic ; Safety Stock; Buffer Stock		9		
3	Game Theory: Introduction; 2-Person Zero-sum Game; Saddle Point; Mini-Max and Maxi-Min Theorems (statement only) and problems; Games without Saddle Point; Graphical Method; Principle of Dominance			5	
4	Queuing Theory: Introduction; Basic Definitions and Notations; Axiomatic Derivation of the Arrival & Departure (Poisson Queue). Poisson Queue Models: $(M/M/1)$: $(\infty / FIFO)$ and (M/M/1: N / FIFO) and problems.			5	

Text book and Reference books:

- 1. H. A. Taha, "Operations Research", Pearson
- 2. P. M. Karak "Linear Programming and Theory of Games", ABS Publishing House
- 3. Ghosh and Chakraborty, "Linear Programming and Theory of Games", CentralBook Agency
- 4. Ravindran, Philips and Solberg "Operations Research", WILEY INDIA

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN
	Т
1	Solve Linear Programming Problems
2	Identify and develop operational research models from the verbal description of the real system
3	Solve Transportation and Assignment Problems
4	Understand the usage of game theory and Simulation for Solving Business Problems
5	Develop operational research models from the verbal description of the real system.

Introduction to Philosophical Thoughts Code: OEC-IT701B Contacts: 3L

Name of the Course:		Introduction to P	hilosophical Though	its	
Course	se Code: OEC-IT701AB Semester: VII				
Duration: 6 months N		Maximum Marks:100			
Teach	ing Scheme		Examination Scheme		
Theory:	3 hrs./week		Mid Semester exam: 15		
Tutorial	: NIL		Assignment and Qu	iz: 10 ma	rks
			Attendance: 5 marks	8	
Practica	l: NIL		End Semester Exam	:70 Mark	S
Credit F	oints:		3		
Objecti	ve:				
	After taking this class, the s	tudents should have	a good preliminary u	Inderstan	ding of the
1	scope and method of academic analytic philosophy, and they should also have a		ive a basic		
	understanding of what make	es for a good philoso	ophical argument.		
	This class also fulfills a writ	ing requirement, so	the students should co	ome out o	f ithaving
2	improved their understanding	ng of what makes fo	or clear and convincin	ıg	
	writing.				
	Students in this particular co	ourse will explore fu	ndamental philosophi	cal conce	ptsand
3	learn to deploy a variety of	philosophical meth	ods to resolve issues	that arise	
	in thinking about reality, knowledge, morality, religion, and logic.				
Pre-Ree	Pre-Requisite:				
1	Basic knowledge of human	thoughts and philos	ophy		
Unit	Unit Content Hrs/ M		Marks/		
				Unit	Unit

1	 Nature of Indian Philosophy: Plurality as well as common concerns. 2. Basic concepts of the Vedic and Upanisadic views : Atman, Jagrata, Svapna, Susupti, Turiya, Brahman, Karma, Rta,Rna 	13	
2	Carvaka school: its epistemology, metaphysics and ethics.Mukti	8	
3	Jainism: Concepts of sat, dravya, guna, paryaya, jiva, ajiva,	5	
	anekantavada, syadvada, and nayavada ; pramanas, ahimsa, bondage and liberation.		
4	Buddhism: theory of pramanas, theory of dependent origination, the four noble truths; doctrine of momentaryness; theory of no soul. The interpretation of these theories in schools of Buddhism : Vaibhasika, Sautrantrika, Yogacara, Madhyamika	5	
5	Nyaya: theory of Pramanas; the individual self and its liberation; the idea of God and proofs for His existence.	5	

Text book and Reference books:

- 1. M. Hiriyanna: Outlines of Indian Philosophy.
- 2. C.D.Sharma: A Critical Survey of Indian Philosophy.
- 3. S.N.Das Gupta: A History of Indian Philosophy Vol I to V.
- 4. S.Radhakrishnan: Indian Philosophy Vol I & II.
- 5. T.R.V.Murti: Central Philosophy of Buddhism.
- 6. J.N.Mahanty: Reason and Tradition of Indian Thought.
- 7. R.D.Ranade: A Constructive Survey of Upanisadic Philosophy.
- 8. P.T.Raju: Structural Depths of Indian Thought.
- 9. K.C.Bhattacharya: Studies in Philosophy Vol 1.
- 10. Datta and Chatterjee: Introduction of Indian Philosophy

Course Outcomes:

CO	STATEMEN T
1	Describe and distinguish key ethical concepts.
2	Read and comprehend philosophical texts, classical or contemporary, in the area of ethics.
3	Discuss core ethical problems, such as whether religion is a source of values
4	Write clear and concise explanations and arguments about basic ethical problems.
5	Distinguish the basic ethical theories and approaches
6	Apply basic ethical concepts and approaches to solving practical problems in ethics

Soft Skill & Interpersonal Communication Code: OEC-IT701C Contacts: 3L

Name	of the Course:	Soft Skill & Interpersonal Commu	ication		
Course Code: OEC-IT701C		Semester: VII			
Duration: 6 months		Maximum Marks:100			
Teaching Scheme Examination		Examination	n Scheme	Scheme	
Theory	y:3 hrs./week	Mid Semester	exam: 15		
Tutoria	al: NIL	Assignment an	d Quiz: 10	marks	
		Attendance: 5	narks		
Practic	cal: NIL	End Semester	Exam:70 M	larks	
Credit	Points:	3			
Objec	tive:				
1	To acquire the knowledge of	of Phonetics and Phonemic sounds.			
2	To learn Word stress, Acce	nt and Intonation.			
3	To study the techniques of strengthen the Learner's Sp	f day to day conversation and Group eaking skills.	Discussio	ns to	
4	To enhance the confidence and Group Discussions.	e levels by acquiring knowledge of Ro	le-plays, D	Debates	
5	To present various aspects Transformation.	of writing by the means of Interpreting	and Data		
Pre-R	equisite:				
1	Basic knowledge of English	1 language			
Unit		Content	Hrs/ Unit	Marks/ Unit	
1	 Soft Skills: An Introductio Skills; Process, Importanc Development. Self-Discovery: Discover Values, Attitude, Virtue. Positivity and Motivation Attitude: Driving out Negativ 	n – Definition and Significance of So e and Measurement of Soft Ski ing the Self; Setting Goals; Beliefs n: Developing Positive Thinking an	t 1 , 12		
1	Motivation; Enhancing Motiv	vity; Meaning and Theories of vation Levels.			

	1. Interview Skills: Interviewer and Interviewee – in-depth		
	perspectives. Before, During and After the Interview. Tips for		
	Success.		
	2. Presentation Skills: Types, Content, Audience Analysis, Essential		
3	Tips – Before, During and After, Overcoming Nervousness.	12	
	3. Etiquette and Manners – Social and Business.	12	
	4. Time Management – Concept, Essentials, Tips.		
	5. Personality Development – Meaning, Nature, Features, Stages,		
	Models; Learning Skills; Adaptability Skills.		

Text book and Reference books:

- 1. Managing Soft Skills for Personality Development edited by B.N.Ghosh, McGraw Hill India, 2012.
- 2. English and Soft Skills S.P.Dhanavel, Orient Blackswan India, 2010

Course Outcomes:

CO	STATEMEN T
1	Exhibit effective interpersonal communication in a different contextual environment with proper
	body language.
2	Effectively apply active listening skills for better perception and information
3	Exhibit de-escalatory behaviors in situations of conflict.
4	Give critical feedback effectively (non-threatening).
5	Receive, and reflect on, critical feedback from others.
6	Demonstrate acknowledgment and validation of the feelings, viewpoints, and contributions of others.

Numerical Methods

Code: OEC-IT701D

Contacts: 3L

Name of the Course:		Numerical Methods			
Course Code: OEC-IT701D Semester: VII					
Duration: 6 months		Maximum Marks:100			
Teach	ing Scheme	Ex	amination Scl	heme	
Theory	y:3 hrs./week	Mi	d Semester exa	am: 15	
Tutoria	al: NIL	As	signment and	Quiz: 10	marks
		Att	endance: 5 ma	urks	
Practic	cal: NIL	Ene	d Semester Ex	am:70 M	larks
Credit	Points:	3			
Objec	tive:				
1	To introduce the basic con	ncepts of solving algebraic	and transcend	entalequ	ations.
2	To introduce the numerical life	techniques of interpolation	in various int	ervals in	real
3	To acquaint the student w and situations.	th understanding of numer	rical technique	es ofdiffe	erentiation
4	To acquaint the knowledge of various techniques and methods of solving ordinary deferential integration which plays an important role in engineering and technology disciplines.			inary	
5	To understand the knowled	ge of various techniques a	nd methods o	f solving	various
types of partial deferential equations.					
Pre-Requisite:					
1 Basic knowledge of mathematics					
Unit		Content		Hrs/ Unit	Marks/ Unit
1	Approximation in numeric rounding errors, Fixed Propagation of errors.	al computation: Truncat and floating-point	tion and arithmetic,	4	
2	Interpolation: Newton forward/backward interpolation, Lagrange's and Newton's divided difference Interpolation.		terpolation,	10	
3	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for corresponding error terms.		1/3 rule,	5	
4	Numerical solution of a system of linear equations: Gausselimination method, Matrix inversion, LU Factorization method, Gauss-Seidel iterative method.		selimination	8	
5	Numerical solution of Algebraic equation: Bisection method,Regula- Falsi method, Newton-Raphson method.		hod,Regula-	5	
6	Numerical solution of ordinary differential equation: Euler's method, Runge-Kutta methods, Predictor-Corrector methods and Finite4Difference method4				

Text book and Reference books:

- 1. C.Xavier: C Language and Numerical Methods.
- 2. Dutta & Jana: Introductory Numerical Analysis.
- 3. J.B.Scarborough: Numerical Mathematical Analysis.

- 4. Jain, Iyengar, & Jain: Numerical Methods (Problems and Solution).
- 5. Balagurusamy: Numerical Methods, Scitech.
- 6. Baburam: Numerical Methods, Pearson Education.
- 7. N. Dutta: Computer Programming & Numerical Analysis, Universities Press

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN T
1	Demonstrate competence with understanding the theoretical and practical aspects of the use of numerical methods.
2	Establish the limitations, advantages, and disadvantages of different numerical methods
3	Implement numerical methods for solving various engineering problems.
4	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to otherwise intractable mathematical problems.
5	Apply numerical methods to obtain approximate solutions to mathematical problems.
6	Analyze and evaluate the accuracy of common numerical methods.

Project-II Code: PROJ-IT791 Contacts: 12P

Name of the Course:		Project-II	
Course Code: PROJ-IT791		Semester: VII	
Duration	n: 6 months	Maximum Marks:100	
Teachi	ng Scheme		Examination Scheme
Theory:	NIL		Mid Semester exam:
Tutorial	: NIL		Assignment and Quiz:
			Attendance:
Practical	l: 12Hrs./Week		End Semester Exam:
Credit P	oints:		6
Objectiv	ves and detailed process:		
1	The object of Project Work	I is to enable the stude	ent to take up investigative study in the
	broad field of Electro	onics & Commun	ication Engineering, either fully
	theoretical/practical or invo	lving both theoretical	and practical work to be assigned by
	the Department on an individual basis or two/three students in a group, under the		
	guidance of a Supervisor. T	his is expected to prov	ride a good
	initiation for the student(s)	in R&D work.	
2	The object of Project Work	II & Dissertation is to	enable the student to extend further the
	investigative study taken up under EC P1, either fully theoretical/practical or involving		
	both theoretical and practical work, under the guidance of a Supervisor from the		
	Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry		
	This is expected to provide a good training		
	for the student(s) in R&D v	vork and technical lead	lership.
1	F		
---	---		
	The assignment to normally include:		
	1. In depth study of the topic assigned in the light of the Report prepared under ECP1;		
	2. Review and finalization of the Approach to the Problem relating to the assigned		
	topic;		
	3. Preparing an Action Plan for conducting the investigation, including team work;		
	4. Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experimentas		
	needed;		
3	5. Final development of product/process, testing, results, conclusions and future		
	directions;		
	6. Preparing a paper for Conference presentation/Publication in Journals, ifpossible;		
	7. Preparing a Dissertation in the standard format for being evaluated by the		
	Department.		
	8. Final Seminar Presentation before a Departmental Committee.		

Course Outcomes:

CO	STATEMEN T
1	Identify the problem
2	Compare existing literature.
3	Design experimental set-up and methodology
4	Apply modern tools
5	Analyze data
6	Develop valid conclusions & recommendations

SEMESTER-VIII (Fourth Year)

Information Security

Code: PCC-IT801

Contacts: 3L

Name	Name of the Course: Information Security				
Cours	se Code: PCC-IT801	Semester: VIII			
Durat	ion: 6 months	Maximum Marks	s:100		
Teac	hing Scheme	g Scheme Examination Scheme			
Theory: 3 hrs./week			Mid Semester ex	kam: 15	
Tutori	al: NIL		Assignment and	Quiz: 10 ma	arks
			Attendance: 5 m	narks	
Practi	cal: NIL		End Semester E	xam:70 Mar	KS
Credit	t Points:		3		
Objec	ctive:				
1	Acquire background on	hash functions; au	thentication; firew	valls; intrusio	on
2	Understand vulnerability	analysis of netwo	rk security.		
3	Understand network secu	urity threats, secur	ity services, and o	countermeasu	ures.
4	Obtain background for of security protocols	original research in	n network securit	y, especially	wireless
5	Understand the tradeoff and MANET security.	s and criteria/conc	erns for security	countermeas	surenetwork
6	Apply methods for authors Indentify and mitigate so systems prevention.	entication, access of offware security vi	control, intrusion Ilnerabilities in ex	detection an kisting	ddevelopment.
Pre-R	lequisite:				
1	Basic knowledge on inte	ernet, cryptography	and information	act	
Unit		Content		Hrs/Unit	Marks/Unit
1	Introduction to Inform of Confidentiality, In Policies, procedures, Gu Administrative Measures Process, Technology	nation Security: E ntegrity Availabi idelines, Standards and Technical M	Basics Principles lity Concepts, easures, People,	4	
2	Current Trends in Information Security Current Trends in information Security, Cloud Computing: benefits and Issues related to info Sec. Standards available for Info-Sec: Cobit, Cadbury, ISO 27001, OWASP, OSSTMM, etc - An Overview, Certifiable Standards8				
3	Risk Assessment Vuln Assessment and Mitigat BCP / DRP / Incident m Separation of Duties &	erability, Threat ion + Quick fixes nanagement, Segre Roles and respo	and Risk, Risk , Introduction to gation and nsibilities, IT	8	

	ACT 2000;		
4	Types of assessments for Information Security: 1. VAPT of Networks 2. Web Application Audits 3. IT assessments or audits 4. Assessment of Network Equipments 5. Assessment of Security Devices (Web Filtering, Firewalls, IDS / IPS, Routers 6. Data Center Assessment 7. Security of Application Software 8. SAP Security 9. Desktop Security 10. RDBMS Security 11. BCP / DRP assessments 12. Policy reviews	6	
5	Security Management Windows and Linux security, Types of Audits in Windows Environment: Server Security, Active Directory (Group Policy), Anti-Virus, Mails, Malware, End point protection, Shadow Passwords, SUDO users, etc	4	
6	Web Security Web Application Security: OWASP, Common Issues in Web Apps, What is XSS, SQL injection, CSRF, Password Vulnerabilities, SSL, CAPTCHA, Session Hijacking, Local and Remote File Inclusion, Audit Trails, Web Server Issues, etc.	6	

Text book and Reference books:

- 1. Hansen, Derek, Ben Sheiderman, Marc Smith. 2011. Analyzing Social Media Networks with NodeXL: Insights from a Connected World. Morgan Kaufmann, 304.
- 2. Avinash Kaushik. 2009. Web Analytics 2.0: The Art of Online Accountability.
- 3. Easley, D. & Kleinberg, J. (2010). Networks, Crowds, and Markets: Reasoning About a Highly Connected World. New York: Cambridge University Press. <u>http://www.cs.cornell.edu/home/kleinber/networks-book/</u>
- Wasserman, S. & Faust, K. (1994). Social network analysis: Methods and applications. New York: Cambridge University Press. Monge, P. R. & Contractor, N. S. (2003). Theories of communication networks. New York: Oxford University Press.

Course Outcomes:

CO	STATEMEN
	Т
1	Examine and apply the fundamental techniques of computer security.
2	Identify and explain risk and potential security issues
3	Demonstrate responsible computer use as it deals with social, political, legal and ethical issues in
	today's electronic society
4	Demonstrate knowledge of the profession, its organizations, goals and leadership roles,
	Literature/publications, issues, and research foundations.
5	Demonstrate knowledge of security objectives and policy development
6	Plan for the future and design a solution based on user requirements. Explain business continuity,
	backup and disaster recovery. Understand troubleshooting and quality consumer support

Digital Signal Processing Code: OEC-IT801A Contacts: 3L

Name of the Course: Digital Signal Processing					
Course	e Code: OEC-IT801A	Semester: VIII			
Durati	on: 6 months	Maximum Marks:100			
Teaching SchemeExamination			Scheme		
Theory:3 hrs./week Mid Semester ex		am: 15			
Tutorial: NIL Assignment and		Quiz: 10	marks		
Attendance: 5 ma		arks			
Practic	cal: NIL	H	End Semester Ex	am:70 M	arks
Credit	Points:		3		
Objec	tive:				
1	To provide background and	d fundamental material fo	or the analysis a	nd proces	ssing
	of digital signals.				
2	To familiarize the relations	hips between continuous-	time and discre	ete-timesi	gnals and
	systems.				
3	To study fundamentals of	time, frequency and z-pla	ane analysis and	to discus	ss the
	interrelationships of these a	nalytic method.			
4	To study the designs and st	ructures of digital (IIR and	nd FIR) filters fi	om analy	sis to
	synthesis for a given specif	ications.	· .·		
Dava D	10 introduce a few real-wo	rid signal processing appl	lications		
Pre-K	Pagia Imaguladas of Disanet	· Mathematica electroni	ag and Matlah		
1	Basic knowledge of Discret	e Mathematics, electromo	es and Matiad		
Unit		Content		Hrs/	Marks/
Unit		Content		Hrs/ Unit	Marks/ Unit
Unit	INTRODUCTION TO DI	Content GITAL SIGNAL PROC	CESSING:	Hrs/ Unit	Marks/ Unit
Unit	INTRODUCTION TO DIC Discrete	Content GITAL SIGNAL PROC	CESSING:	Hrs/ Unit	Marks/ Unit
Unit 1	INTRODUCTION TO DIO Discrete time signals & systems, linea	Content GITAL SIGNAL PROC r shift invariant systems,	CESSING: stabilityand	Hrs/ Unit	Marks/ Unit
Unit	INTRODUCTION TO DIC Discrete time signals & systems, linea causality, Discrete time systems	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff	CESSING: stabilityand erence	Hrs/ Unit	Marks/ Unit
Unit	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time sys equations, Frequency domain	Content GITAL SIGNAL PROC r shift invariant systems, items described by diff n representation of discre	CESSING: stabilityand erence te timesignals	Hrs/ Unit	Marks/ Unit
Unit	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time sys equations, Frequency domain and systems.	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff a representation of discre	CESSING: stabilityand erence te timesignals	Hrs/ Unit	Marks/ Unit
Unit 1	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time sys equations, Frequency domain and systems. FOURIER SERIES AND	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff r representation of discre FOURIER TRANSFO	CESSING: stabilityand erence te timesignals RMS: Discrete	Hrs/ Unit 4	Marks/ Unit
Unit 1	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time sys equations, Frequency domain and systems. FOURIER SERIES AND Fourier	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff representation of discre FOURIER TRANSFO	CESSING: stabilityand erence te timesignals RMS: Discrete	Hrs/ Unit 4	Marks/ Unit
Unit 1	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time syst equations, Frequency domain and systems. FOURIER SERIES AND Fourier series representation of peri	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff a representation of discre FOURIER TRANSFO	CESSING: stabilityand erence te timesignals RMS: Discrete ies of discrete	Hrs/ Unit	Marks/ Unit
Unit 1 2	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time sys equations, Frequency domain and systems. FOURIER SERIES AND Fourier series representation of peri Fourier series, Discrete F	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff representation of discre FOURIER TRANSFO odic sequences, Propert ourier transforms: freq	CESSING: stabilityand erence te timesignals RMS: Discrete ies of discrete uency domain	Hrs/ Unit 4	Marks/ Unit
Unit 1 2	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time sys equations, Frequency domain and systems. FOURIER SERIES AND Fourier series representation of peri Fourier series, Discrete F sampling, linear convolution of DET. Beleforghin of DET	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff r representation of discre FOURIER TRANSFO odic sequences, Propert ourier transforms: freq n of sequences using DF	CESSING: stabilityand erence te timesignals RMS: Discrete ies of discrete uency domain Γ, Computation	Hrs/ Unit 4	Marks/ Unit
Unit 1 2	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time systems, equations, Frequency domain and systems. FOURIER SERIES AND Fourier series representation of peri Fourier series, Discrete F sampling, linear convolution of DFT, Relationship of DFT Fast Facusion transforms (EFT	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff a representation of discre FOURIER TRANSFO odic sequences, Propert ourier transforms: freq n of sequences using DF to other transforms, Pro	CESSING: stabilityand erence te timesignals RMS: Discrete ies of discrete uency domain F, Computation perties of DFT,	Hrs/ Unit 4	Marks/ Unit
Unit 1 2	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time sys equations, Frequency domain and systems. FOURIER SERIES AND Fourier series representation of peri Fourier series, Discrete F sampling, linear convolution of DFT, Relationship of DFT Fast Fourier transforms (FFT algorithms Inverse FET	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff representation of discre FOURIER TRANSFO odic sequences, Propert ourier transforms: freq n of sequences using DF to other transforms, Pro) - Radix-2 FFT algorithm	CESSING: stabilityand erence te timesignals RMS: Discrete ies of discrete uency domain Γ, Computation perties of DFT, n, Radix-4 FFT	Hrs/ Unit 4	Marks/ Unit
Unit 1 2	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time sys equations, Frequency domain and systems. FOURIER SERIES AND Fourier series representation of peri Fourier series, Discrete F sampling, linear convolution of DFT, Relationship of DFT Fast Fourier transforms (FFT algorithms, Inverse FFT. RANSFORMS: Review of 2	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff representation of discre FOURIER TRANSFO odic sequences, Propert ourier transforms: freq n of sequences using DF ' to other transforms, Pro) - Radix-2 FFT algorithm	CESSING: stabilityand erence te timesignals RMS: Discrete ies of discrete uency domain Γ, Computation perties of DFT, n, Radix-4 FFT	Hrs/ Unit 4	Marks/ Unit
Unit 1 2	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time systems, equations, Frequency domain and systems. FOURIER SERIES AND Fourier series representation of peri Fourier series, Discrete F sampling, linear convolution of DFT, Relationship of DFT Fast Fourier transforms (FFT algorithms, Inverse FFT. RANSFORMS: Review of Z Rational Ztransforms Inverse	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff a representation of discre FOURIER TRANSFO odic sequences, Propert ourier transforms: freq n of sequences using DF to other transforms, Pro-) - Radix-2 FFT algorithm Z-transforms, Properties of rsion of Z- transforms	CESSING: stabilityand erence te timesignals RMS: Discrete ies of discrete uency domain F, Computation perties of DFT, n, Radix-4 FFT of Z-transform, stability and	Hrs/ Unit 4	Marks/ Unit
Unit 1 2 3	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time sys equations, Frequency domain and systems. FOURIER SERIES AND Fourier series representation of peri Fourier series, Discrete F sampling, linear convolution of DFT, Relationship of DFT Fast Fourier transforms (FFT algorithms, Inverse FFT. RANSFORMS: Review of 2 Rational Ztransforms, Inver causality, REALIZATION O	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff representation of discre FOURIER TRANSFO odic sequences, Propert ourier transforms: freq n of sequences using DF to other transforms, Prop) - Radix-2 FFT algorithm Z-transforms, Properties of rsion of Z- transforms, DF DIGITAL FILTERS:	CESSING: stabilityand erence te timesignals RMS: Discrete uency domain Γ, Computation perties of DFT, n, Radix-4 FFT of Z-transform, stability and Structures for	Hrs/ Unit 4 8	Marks/ Unit
Unit 1 2 3	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time sys equations, Frequency domain and systems. FOURIER SERIES AND Fourier series representation of peri Fourier series, Discrete F sampling, linear convolution of DFT, Relationship of DFT Fast Fourier transforms (FFT algorithms, Inverse FFT. RANSFORMS: Review of Z Rational Ztransforms, Inver causality. REALIZATION O FIR systems: Direct	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff representation of discre FOURIER TRANSFO odic sequences, Propert ourier transforms: freq n of sequences using DF ' to other transforms, Pro) - Radix-2 FFT algorithm Z-transforms, Properties of rsion of Z- transforms, DF DIGITAL FILTERS: form structure, Ca	CESSING: stabilityand erence te timesignals RMS: Discrete ies of discrete uency domain T, Computation perties of DFT, n, Radix-4 FFT of Z-transform, stability and Structures for uscade form	Hrs/ Unit 4 8 8	Marks/ Unit
Unit 1 2 3	INTRODUCTION TO DIO Discrete time signals & systems, linea causality, Discrete time sys equations, Frequency domain and systems. FOURIER SERIES AND Fourier series representation of peri Fourier series, Discrete F sampling, , linear convolution of DFT, Relationship of DFT Fast Fourier transforms (FFT algorithms, Inverse FFT. RANSFORMS: Review of 2 Rational Ztransforms, Inver causality. REALIZATION O FIR systems: Direct structures,	Content GITAL SIGNAL PROC r shift invariant systems, stems described by diff a representation of discre FOURIER TRANSFO odic sequences, Propert ourier transforms: freq n of sequences using DF to other transforms, Pro) - Radix-2 FFT algorithm Z-transforms, Properties of rsion of Z- transforms, DF DIGITAL FILTERS: form structure, Ca	CESSING: stabilityand erence te timesignals RMS: Discrete ies of discrete uency domain T, Computation perties of DFT, n, Radix-4 FFT of Z-transform, stability and Structures for uscade form	Hrs/ Unit 4 8 8	Marks/ Unit

	graphs and transposed structures, cascade form structures, Parallel form structures.		
4	DESIGN OF FIR DIGITAL FILTERS: Symmetric and antisymmetric FIR filters, Design of linear phase FIR Digital Filters using Windows, Design of linear phase FIR Digital Filters by Frequency Sampling method. DESIGN OF IIR DIGITAL FILTERS: IIR filter design by Approximation of Derivatives, IIR filter design by impulse invariance, IIR filter design by bilinear transformation, Characteristics of commonly used analog filters (Butter worth and Chebyshev), Frequency transformations, comparison of IIR & FIR filters.	8	
5	MULTIRATE DIGITAL SIGNAL PROCESSING: Decimation by a factor D, interpolation by a factor I, sampling rate conversion by a rational factor I/D, Filter Design & Implementation for sampling rate conversion, Multi stage Implementation of sampling rate conversion.	8	

Text book and Reference books:

- 1. John G. Proakis, Dimitris G. Manolakis (2007), Digital Signal Processing, Principles, Algorithms, and Applications, Pearson Education / PHI, India.
- 2. A.V. Oppenheim, R. W. Schaffer (2009), Discrete Time Signal Processing, PrenticeHall of India, New Delhi.
- 3. Andreas Antoniou (2006), Digital Signal Processing, Tata McGraw Hill, NewDelhi.
- 4. M. H. Hayes (2007), Schaums Outlines of Digital Signal Processing, Tata McGraw Hill, India.

Course Outcomes:

CO	STATEMEN T
1	Apply DFT for the analysis of digital signals & systems
2	Design FIR & IIR filters
3	Characterize finite Word length effect on filters
4	Understanding on basics of digital signal processing which can be applied to communication
	systems
5	Design the Multirate Filters

Natural Language Processing Code: OEC-IT801B Contacts: 3L

Name	Name of the Course: Natural Language Processing			
Course	e Code: OEC-IT801B	Semester: VIII		
Durati	on: 6 months	Maximum Marks:100		
Teaching SchemeExamination S		on Scheme)	
Theory:3 hrs./week Mid Semester exa		exam: 15		
Tutori	al: NIL	Assignment a	nd Quiz: 10	marks
		Attendance: 5	marks	
Practic	cal: NIL	End Semester	Exam:70 M	larks
Credit	Points:	3		
Objec	tive:			
1	Understand approaches to	syntax and semantics in NLP.		
2	Understand approaches to	discourse, generation, dialogue and su	nmarization	within
3	Understand current method	ls for statistical approaches to machine	translation.	
4	Understand machine learn	ing techniques used in NLP, including	hidden Mark	tov models
	and probabilistic context-fi	ree grammars, clustering and unsupervi	ed methods,	log-linear
	and discriminative models	s, and the EM algorithm as applied		
	within NLP.			
Pre-R	equisite:			
1	Data Structure, Theory of	Computation, Compiler Design and M	chine Learn	ing
Unit		Contont	Une/	Monks/
Unit		Content	Hrs/ Unit	Marks/ Unit
Unit	Regular Expressions and A	Content utomata Recap - Introduction toNLP,	Hrs/ Unit	Marks/ Unit
Unit	Regular Expressions and A Regular Expression, Finite S	Content Lutomata Recap - Introduction toNLP, tate Automata	Hrs/ Unit	Marks/ Unit
Unit	Regular Expressions and A Regular Expression, Finite S Tokenization - Word Toke	Content Lutomata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence	Hrs/ Unit	Marks/ Unit
Unit	Regular Expressions and A Regular Expression, Finite S Tokenization - Word Toke Segmentation, Named Entity	Content Automata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence y Recognition, Multi Word Extraction,	Hrs/ Unit	Marks/ Unit
Unit	Regular Expressions and A Regular Expression, Finite S Tokenization - Word Toke Segmentation, Named Entity Spell Checking – Bayesian A	Content Automata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence A Recognition, Multi Word Extraction, Approach, Minimum Edit Distance	Hrs/ Unit	Marks/ Unit
Unit	Regular Expressions and A Regular Expression, Finite S Tokenization - Word Toke Segmentation, Named Entity Spell Checking – Bayesian A Morphology - Morphology	Content utomata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence v Recognition, Multi Word Extraction, Approach, Minimum Edit Distance – Inflectional and Derivational	Hrs/ Unit	Marks/ Unit
Unit	Regular Expressions and A Regular Expression, Finite S Tokenization - Word Toke Segmentation, Named Entity Spell Checking – Bayesian A Morphology - Morphology Morphology, Finite State M	Content Automata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence V Recognition, Multi Word Extraction, Approach, Minimum Edit Distance – Inflectional and Derivational Iorphological Parsing, The Lexiconan	Hrs/ Unit	Marks/ Unit
Unit	Regular Expressions and A Regular Expression, Finite S Tokenization - Word Toke Segmentation, Named Entity Spell Checking – Bayesian A Morphology - Morphology Morphology, Finite State M Morphotactics, Morphologic Orthographic Pulse and Fini	Content Automata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence y Recognition, Multi Word Extraction, Approach, Minimum Edit Distance – Inflectional and Derivational forphological Parsing, The Lexiconan- al Parsing with Finite StateTransducers	Hrs/ Unit	Marks/ Unit
Unit 1	Regular Expressions and A Regular Expression, Finite S Tokenization - Word Toke Segmentation, Named Entity Spell Checking – Bayesian A Morphology - Morphology Morphology, Finite State M Morphotactics, Morphologic Orthographic Rules and Fini Porter Stemmer	Content Automata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence y Recognition, Multi Word Extraction, Approach, Minimum Edit Distance – Inflectional and Derivational forphological Parsing, The Lexiconan- al Parsing with Finite StateTransducers te State Transducers,	Hrs/ Unit	Marks/ Unit
Unit 1	Regular Expressions and A Regular Expression, Finite S Tokenization - Word Toke Segmentation, Named Entity Spell Checking – Bayesian A Morphology - Morphology Morphology, Finite State M Morphotactics, Morphologic Orthographic Rules and Fini Porter Stemmer	Content Automata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence A Recognition, Multi Word Extraction, Approach, Minimum Edit Distance – Inflectional and Derivational forphological Parsing, The Lexiconan- al Parsing with Finite StateTransducers te State Transducers,	Hrs/ Unit	Marks/ Unit
Unit 1	Regular Expressions and A Regular Expression, Finite S Tokenization - Word Toke Segmentation, Named Entity Spell Checking – Bayesian A Morphology - Morphology Morphology, Finite State M Morphotactics, Morphologic Orthographic Rules and Fini Porter Stemmer Language Modeling Introduction to N-grams	Content Automata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence y Recognition, Multi Word Extraction, Approach, Minimum Edit Distance – Inflectional and Derivational Iorphological Parsing, The Lexiconan- al Parsing with Finite StateTransducers te State Transducers,	Hrs/ Unit	Marks/ Unit
Unit 1	Regular Expressions and ARegular Expression, Finite STokenization - Word TokeSegmentation, Named EntitySpell Checking – Bayesian AMorphology - MorphologyMorphology, Finite State MMorphotactics, MorphologicOrthographic Rules and FiniPorter StemmerLanguage ModelingIntroduction to N-grams,Smoothing, Witten-Bell Dis	Content Automata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence v Recognition, Multi Word Extraction, Approach, Minimum Edit Distance – Inflectional and Derivational forphological Parsing, The Lexiconan- al Parsing with Finite StateTransducers te State Transducers, Chain Rule, Smoothing – Add-C counting: Backoff, Deleted Interpolation	Hrs/ Unit 11	Marks/ Unit
Unit 1	Regular Expressions and ARegular Expression, Finite STokenization - Word TokeSegmentation, Named EntitySpell Checking – Bayesian AMorphology - MorphologyMorphology, Finite State MMorphotactics, MorphologicOrthographic Rules and FiniPorter StemmerLanguage ModelingIntroduction to N-grams,Smoothing, Witten-Bell DisN-grams for Spelling and M	Content Automata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence y Recognition, Multi Word Extraction, Approach, Minimum Edit Distance – Inflectional and Derivational forphological Parsing, The Lexiconan- al Parsing with Finite StateTransducers te State Transducers, Chain Rule, Smoothing – Add-C counting; Backoff, Deleted Interpolation Word Prediction, Evaluation of langua	Hrs/ Unit 11	Marks/ Unit
Unit 1 2	Regular Expressions and ARegular Expression, Finite STokenization - Word TokeSegmentation, Named EntitySpell Checking – Bayesian AMorphology - MorphologyMorphology - MorphologyMorphology - MorphologyMorphology - MorphologyMorphology - MorphologyMorphology - MorphologicOrthographic Rules and FiniPorter StemmerLanguage ModelingIntroduction to N-grams,Smoothing, Witten-Bell DisN-grams for Spelling and Wmodels.	Content Automata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence y Recognition, Multi Word Extraction, Approach, Minimum Edit Distance – Inflectional and Derivational Iorphological Parsing, The Lexiconan- al Parsing with Finite StateTransducers te State Transducers, Chain Rule, Smoothing – Add-C counting; Backoff, Deleted Interpolation Word Prediction, Evaluation of langua	Hrs/ Unit 11 1 ne on, ge 8	Marks/ Unit
Unit 1 2	Regular Expressions and ARegular Expression, Finite STokenization - Word TokeSegmentation, Named EntitySpell Checking – Bayesian AMorphology - MorphologyMorphology, Finite State MMorphotactics, MorphologicOrthographic Rules and FinitPorter StemmerLanguage ModelingIntroduction to N-grams,Smoothing, Witten-Bell DisN-grams for Spelling and Mmodels.Hidden Markov Models and	Content Automata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence y Recognition, Multi Word Extraction, Approach, Minimum Edit Distance – Inflectional and Derivational forphological Parsing, The Lexiconan- al Parsing with Finite StateTransducers te State Transducers, Chain Rule, Smoothing – Add-C counting; Backoff, Deleted Interpolation Word Prediction, Evaluation of langua and POS Tagging Markov Chain, Hidd	Hrs/ Unit 11 1 ne on, ge 8 en	Marks/ Unit
Unit 1 2	Regular Expressions and ARegular Expression, Finite STokenization - Word TokeSegmentation, Named EntitySpell Checking – Bayesian AMorphology - MorphologyMorphology, Finite State MMorphology, Finite State MMorphotactics, MorphologicOrthographic Rules and FiniPorter StemmerLanguage ModelingIntroduction to N-grams,Smoothing, Witten-Bell DisN-grams for Spelling and Mmodels.Hidden Markov Models, Forward	Content Automata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence y Recognition, Multi Word Extraction, Approach, Minimum Edit Distance – Inflectional and Derivational forphological Parsing, The Lexiconand al Parsing with Finite StateTransducers te State Transducers, Chain Rule, Smoothing – Add-C counting; Backoff, Deleted Interpolation Word Prediction, Evaluation of langua and POS Tagging Markov Chain, Hidd Algorithm, Viterbi Algorithm, Part	Hrs/ Unit 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Marks/ Unit
Unit 1 2	Regular Expressions and ARegular Expression, Finite STokenization - Word TokeSegmentation, Named EntitySpell Checking – Bayesian AMorphology - MorphologyMorphology - MorphologyMorphology - MorphologyMorphology - MorphologyMorphology - MorphologyMorphology - MorphologicOrthographic Rules and FiniPorter StemmerLanguage ModelingIntroduction to N-grams,Smoothing, Witten-Bell DisN-grams for Spelling and Vmodels.Hidden Markov Models, ForwardSpeech Tagging – Rule bas	Content Automata Recap - Introduction toNLP, tate Automata nization, Normalization, Sentence y Recognition, Multi Word Extraction, Approach, Minimum Edit Distance – Inflectional and Derivational Iorphological Parsing, The Lexiconan- al Parsing with Finite StateTransducers te State Transducers, Chain Rule, Smoothing – Add-C counting; Backoff, Deleted Interpolation Word Prediction, Evaluation of languar and POS Tagging Markov Chain, Hido Algorithm, Viterbi Algorithm, Part ed and Machine Learning	Hrs/ Unit 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Marks/ Unit

3	Text Classification Text Classification, Naïve Bayes' Text Classification, Evaluation, Sentiment Analysis – Opinion Mining and Emotion Analysis, Resources and Techniques. Context Free Grammar Context Free Grammar and Constituency, Some common CFG phenomena for English, Top- Down and Bottom-up parsing, Probabilistic Context Free Grammar, Dependency Parsing	9	
4	Computational Lexical Semantics Introduction to Lexical Semantics – Homonymy, Polysemy, Synonymy, Thesaurus – WordNet, Computational Lexical Semantics – Thesaurus based	8	
	and Distributional Word Similarity Information Retrieval Boolean Retrieval, Term-document incidence, The Inverted Index, Query Optimization, Phrase Queries, Ranked Retrieval – Term Frequency – Inverse Document Frequency based ranking, Zone Indexing, Query term proximity, Cosine ranking, Combining different features for ranking, Search Engine Evaluation, Relevance Feedback		

Text book and Reference books:

- 1. Speech and Language Processing, Jurafsky and Martin, Pearson Education
- 2. Foundation of Statistical Natural Language Processing, Manning and Schutze, MIT Press
- 3. Multilingual Natural Language Processing Applications from Theory to Practice: Bikel, Pearson

Course Outcomes:

СО	STATEMEN T
1	Describe the fundamental concepts and techniques of natural language processing.
2	Distinguish among the various techniques, taking into account the assumptions, strengths, and weaknesses of each.
3	Use appropriate descriptions, visualizations, and statistics to communicate the problems and their solutions.
4	Analyze large volume text data generated from a range of real-world applications.

E-Commerce and ERP

Code: OEC-IT802A

Contacts: 3L

Name of the Course:E-Commerce and ERP					
Course	urse Code: OEC-IT802A Semester: VIII				
Duration: 6 months Maximum		Maximum Marks:100			
Teaching Scheme		E	Examination S	Scheme	
Theory:3 hrs./week		N	fid Semester exa	am: 15	
Tutori	al: NIL	A	ssignment and	Quiz: 10	marks
		A	ttendance: 5 ma	urks	
Practic	cal: NIL	E	and Semester Ex	am:70 M	arks
Credit	Points:	3			
Objec	tive:				
1	Define E-Marketplaces and	list their components.			
2	Describe the types of Intern	nediaries in EC and their 1	roles		
3	Describe electronic Catalog	s, Shopping carts, and sea	arch Engines		
4	List the Major types of Elec	ctronic Markets and descri	ibe their features	5	
5	This course provides an in	ntroduction to informatio	n systems for	business	and
	management.				
	It is designed to familiarize	e students with organizati	onal and manag	gerialfoun	dations of
6	systems, the technical found	lation for understanding ir	nformation		
	systems				
Pre-R	equisite:				
1	Basic knowledge of interne	t, marketing and software			
	[~		/	
Unit		Content		Hrs/	Marks/
	Overview Definitions Adv	iantages & Disadvantag	res of F	Umt	Unit
1	Commerce Threats of $F = C$	ommerce Managerial Prov	spective Rules	3	
1	& Regulations For Controllin	σ E – Commerce, Cyber I	aws	5	
	Technologies: Relationship F	Setween $E = Commerce$	& Networking		
	Different Types of Networ	king Commerce. Interne	et. Intranet &		
	Extranet, EDI Systems Wirel	ess Application		_	
2	Protocol: Definition, Hand	Held Devices, Mobility	& Commerce,	5	
	Mobile Computing, Wireless	Web, Web Security, Infra	structure		
	Requirement For E – Comme	erce.			
	1				
	Business Models of e – com	merce: Model Based On	Transaction		
3	Business Models of e – com Type, Model Based On Tran	merce: Model Based On saction Party - B2B, B2C	Transaction , C2B, C2C, E	2	
3	Business Models of e – com Type, Model Based On Tran – Governance.	merce: Model Based On saction Party - B2B, B2C	Transaction , C2B, C2C, E	2	
3	Business Models of e – com Type, Model Based On Tran – Governance. E – Strategy: Overview, Str	merce: Model Based On saction Party - B2B, B2C	Transaction , C2B, C2C, E eloping E –	2	

5	Four C's: (Convergence, Collaborative Computing, Content Management & Call Center). Convergence: Technological Advances in Convergence – Types, Convergence and its implications, Convergence & Electronic Commerce. Collaborative Computing: Collaborative product development, contract as per CAD, Simultaneous Collaboration, Security. Content Management: Definition of content, Authoring Tools & Content Management, Content – partnership, repositories, convergence, providers, Web Traffic & Traffic Management; Content Marketing. Call Center: Definition, Need, Tasks Handled, Mode of Operation, Equipment, Strength & Weaknesses of Call Center, Customer Premises Equipment (CPE).	6	
6	Supply Chain Management: E – logistics, Supply Chain Portal, Supply Chain Planning Tools (SCP Tools), Supply Chain Execution (SCE), SCE - Framework, Internet's effect on Supply Chain Power.	3	
7	E – Payment Mechanism: Payment through card system, E -Cheque, E – Cash, E – Payment Threats & Protections.	1	
8	E – Marketing:. Home –shopping, E-Marketing, Tele-marketing	1	
9	Electronic Data Interchange (EDI): Meaning, Benefits, Concepts, Application, EDI Model, Protocols (UN EDI FACT / GTDI, ANSI X – 12) Data Encryption (DES / RSA)		
10	12), Data Encryption (DES / KSA). Risk of E – Commerce: Overview Security for E – Commerce	Δ	
10	Security Standards, Firewall, Cryptography, Key Management, Password Systems, Digital certificates, Digital signatures.		
11	Enterprise Resource Planning (ERP): Features, capabilities and Overview of Commercial Software, re-engineering work processes for IT applications, Business Process Redesign, Knowledge engineering and data warehouse. Business Modules: Finance, Manufacturing (Production), Human Resources, Plant Maintenance, Materials Management, Quality Management, Sales & Distribution ERP Package, ERP Market: ERP Market Place, SAP AG, PeopleSoft, BAAN, JD Edwards, Oracle Corporation ERP- Present and Future: Enterprise Application Integration (EAI), ERP and E-Commerce, ERP and Internet, Future Directions in ERP	7	

Text book and Reference books:

- 1. E-Commerce, M.M. Oka, EPH
- 2. Kalakotia, Whinston : Frontiers of Electronic Commerce , Pearson Education.
- **3.** Bhaskar Bharat : Electronic Commerce Technologies & Applications.TMH
- 4. Loshin Pete, Murphy P.A. : Electronic Commerce , Jaico Publishing Housing.
- 5. Murthy : E Commerce , Himalaya Publishing.
- 6. E Commerce : Strategy Technologies & Applications, Tata McGraw Hill.
- 7. Global E-Commerce, J. Christopher & T.H.K. Clerk, University Press
- 8. Beginning E-Commerce, Reynolds, SPD 9. Krishnamurthy, E-Commerce Mgmt, Vikas

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN
	T
1	Understand the basic concepts and technologies used in the field of management information
	systems
2	Understand the processes of developing and implementing information systems
3	Understand the role of information systems in organizations, the strategic management processes, and the
	implications for the management. Develop an understanding of how various information
	systems work together to accomplish the information objectives of an organization.
4	Know the business modules of ERP
5	Appreciate the current and future trends in ERP

Economic Policies in IndiaCode: OEC-IT802B

Contacts: 3L

Name of the Course:		Economic Policies in India			
Course Code: OEC-IT802B		Semester: VIII			
Duration: 6 months		Maximum Marks:100			
Teach	ing Scheme		Examination Scheme		
Theory	v:3 hrs./week		Mid Semester exa	emester exam: 15	
Tutoria	al: NIL		Assignment and Quiz: 10 marks		
			Attendance: 5 ma	lance: 5 marks	
Practic	al: NIL		End Semester Exam:70 Marks		
Credit	Points:		3		
Object	tive:				
1	The objective of this cour	se is to provide stude	ents an in-depth	knowledg	ge of
	theoretical concepts and to	ols dealing with the ed	conomic behavior	of indiv	idual
	economic agents and marke	s and market structure.			
2	The subject also aims to let	The subject also aims to let the student know the issues that Indian economy facesduring			
	its process of economic growth.				
3	It intends to equip students with the knowledge and application of mathematical tools and				
	techniques that are commonly used in the exposition and formulation of economic				economic
	principles and theories				
4	The objective of this course is to provide a detailed treatment of theoretical and practical				
-	issues in agricultural economics.				
5	The objective is to provide	a thorough knowledge	about the econom	ics of ind	ustry
D D	in a clear and 24 analytical manner, particularly in the Indian context.				
Pre-R	equisite:	CT 1:		1.	
1	Basic knowledge on statistics, sources of Indian economics and Indian culture				
Unit		Content		Hrs/	Marks/
			1	Unit	Unit
	Economic Development and its	s Determinants Approa	cnes to economic		
1	State market and athen institu	nent – sustainable deve	iopment; Kole of	2	
1	Indianters of development	MUIS, OLI Uuman Davalann	ant Inday (UDI)	2	
	ander development indices		ient muex (HDI),		
	gender development indices.	122			

2	Planning in India Objectives and strategy of planning; Failuresand achievements of Plans; Developing grass-root organizations for development – Panchayats, NGOs and pressure groups	4	
3	Demographic Features, Poverty and Inequality Broad demographic features of Indian population; rural-urban migration; Urbanization and civic amenities; Poverty and Inequality	4	
4	Resource Base and Infrastructure Energy; social infrastructure – education and health; Environment; Regional imbalance; Issues and policies in financing infrastructure development.	4	
5	The Agricultural Sector Institutional Structure – land reforms in India; Technological change in agriculture – pricing of agricultural inputs and output; industry; Agricultural finance policy; Agricultural Marketing and Warehousing; Issues Terms of trade between agriculture and in food security – policies for sustainable agriculture.	4	
6	Industrial policy; Public Sector enterprises and their performance; Problem of sick units in India; Privatization and disinvestment debate; Growth and pattern of industrialization; Small-scale sector; Productivity in industrial sector; Exit policy – issues in labor market reforms; approaches for employment generation	4	
7	Public Finances Fiscal federalism – Centre-State financial relations; Finances of central government; Finances of state governments; Parallel economy; Problems relating to fiscal policy; Fiscal sector reforms in India.	3	
8	Money, Banking and Prices Analysis of price behavior in India; Financial sector reforms; Interest rate policy; Review of monetary policy of RBI; Money and capital markets; Working of SEBI in India.	3	
9	External Sector Structure and direction of foreign trade; Balance of payments; Issues in export-import policy and FEMA; Exchange rate policy; Foreign capital and MNCs in India; The progress of trade reforms in India	4	
10	Economic Reforms Rationale of internal and external reforms; Globalization of Indian economy; WTO and its impact on the different sectors of the economy; Need for and issues in good governance; Issues in competition and safety nets in Indian economy	4	

Text book and Reference books:

- Ahluwalia, I. J. and I. M. D Little (Eds.) (1999), India's Economic Reforms and 1. Development (Essays in honour of Manmohan Singh), Oxford University Press, New Delhi.
- 2. Bardhan, P. K. (9th Edition) (1999), The Political Economy of Development in India, Oxford University Press, New Delhi.
- 3. Bawa, R. s. and P. S. Raikhy (Ed.) (1997), Structural Changes in Indian Economy, Guru Nanak Dev University Press, Amritsar.
- Brahmananda, P. R. and V. R. Panchmukhi (Eds.) (2001), DevelopmentExperience 4. in the Indian Economy: Inter-State Perspectives, Book well, Delhi. 123

- 5. Chakravarty, S. (1987), Development Planning : The Indian Experience, Oxford University Press, New Delhi.
- 6. Dantwala, M. L. (1996), Dilemmas of Growth : The Indian Experience, Sage Publications, New Delhi.
- 7. Datt, R. (Ed.) (2001), Second Generation Economic Reforms in India, Deep &Deep Publications, New Delhi.
- 8. Government of India, Economic Survey (Annual), Ministry of Finance, NewDelhi.
- 9. Jain, a. K. (1986), Economic Planning in India, Ashish Publishing House, NewDelhi.
- 10. Jalan, B. (1992), The Indian Economy Problems and Prospects, Viking, NewDelhi

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN T
1	Demonstrate an understanding, usage and application of basic economic principles
2	Understand the efficiency and equity implications of market interference, including government policy
3	Understand govt. policies and programs
4	Apply the comprehensive understanding of Indian Economy
5	Analyze the behavioral patterns of different economic agents

Remote Sensing and GIS Code: OEC-IT802C Contacts: 3L

Name of the Course:		Remote Sensing and GIS		
Course Code: OEC-IT802C		Semester: VIII		
Duratio	on:6 months	Maximun	n Marks: 100	
Teach	ing Scheme		Examination Scheme	
Theory	: 3 hrs./week		Mid Semester exam: 15	
Tutoria	l: NIL		Assignment and Quiz : 10 marks	
			Attendance: 5 marks	
Practica	al: NIL		End Semester Exam: 70 Marks	
Credit	Points:		3	
Objectives:				
1	In this course the students will learn about the optical, thermal and microwaves			
	based Remote Sensing and applications for solving real life problems.			
2	The students will be able to disseminate basic concepts and applications of			
	Electromagnetic Spectrum in Remote Sensing, Energy Balance and Data acquisition			
	platforms, sensors and their characteristics.			
3	In this course the students will learn about the raster and vector data analysis			
	and applications for solving real life problems.			
4	The students will be able to disseminate basic concepts and applications of spatial and			
	non-spatial database in GIS, concept of co-ordinate system in Geo-			
	tagging any data.			
Pre-Re	Pre-Requisite:			
1	Basic knowledge on digital image processing and optical physics			

Unit	Content	Hrs/ Unit	Marks /Unit
1	Introduction and Overview of Geographic Information Systems Definition of a GIS, features and functions; why GIS is important; how GIS is applied; GIS as an Information System; GIS and cartography; contributing and allied disciplines; GIS data feeds; historical development of GIS.	3	
2	GIS and Maps, Map Projections and Coordinate Systems Mapsand their characteristics (selection, abstraction, scale, etc.); automated cartography versus GIS; map projections; coordinate systems; precision and error.	4	
3	Data Sources, Data Input, Data Quality and Database Concepts Major data feeds to GIS and their characteristics: maps, GPS, images, databases, commercial data; locating and evaluating data; data formats; data quality; metadata. Database concepts and components; flat files; relational database systems; data modeling; views of the database; normalization; databases and GIS.	3	
4	Spatial Analysis Questions a GIS can answer; GIS analytical functions; vector analysis including topological overlay; raster analysis; statistics; integrated spatial analysis.	3	
5	Making Maps Parts of a map; map functions in GIS; map design and map elements; choosing a map type; producing a map formats, plotters and media; online and CD-ROM distribution; interactive maps and the Web.	6	
6	Implementing a GIS Planning a GIS; requirements; pilot projects; case studies; data management; personnel and skill sets; costs and benefits; selecting a GIS package; professional GIS packages; desktop GIS; embedded GIS; public domain and low-cost packages.	4	
7	Technology & Instruments involved in GIS & Remote Sensing GIS applications; GIS application areas and user segments; creating custom GIS software applications; user interfaces; case studies. Future data; future hardware; future software; Object-oriented concepts and GIS; future issues – data ownership, privacy, education; GIS career options and how to pursue them.	6	
8	Remote Sensing Remote sensing of environment, E.M. Principle, Thermal infrared remote sensing, Remote sensing of Vegetation, Remote sensing of water, urban landscape	7	

Text book and Reference books:

- 1. "Principles of geographical information systems", P. A. Burrough and R. A. Mcdonnel, Oxford. 2. "Remote sensing of the environment", J. R. Jensen, Pearson References:
- 2. "Exploring Geographic Information Systems", Nicholas Chrismas, John Wiley & Sons.
- 3. "Getting Started with Geographic Information Systems", Keith Clarke, PHI.

4. "An Introduction to Geographical Information Systems", Ian Heywood, SarahCornelius, and Steve Carver. Addison-Wesley Longman.

Course Outcomes:

On completion of the course students will be able to

CO	STATEMEN T
1	Understand basic concepts, principles and applications of remote sensing, particularly the geometric and radiometric principles
2	Provide examples of applications of principles to a variety of topics in remote sensing, particularly related to data collection, radiation, resolution, and sampling
3	Introduce the technology and principles of Satellite Imaging
4	Theoretical explanations on Image processing and information extraction from Satellite DataProducts

Project-III Code: PROJ-IT801 Contacts: 12P

Name of the Course:		Project-III	
Course Code: PROJ-IT801		Semester: VIII	
Duration: 6 months		Maximum Marks:100)
Teach	ing Scheme		Examination Scheme
Theory:	NIL		Mid Semester exam:
Tutorial	: NIL		Assignment and Quiz:
			Attendance:
Practica	l: 12Hrs./week		End Semester Exam:
Credit P	Points:		6
Objecti	ve:		
2	 The object of Project Work I is to enable the student to take up investigative study in the broad field of Electronics & Communication Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on an individual basis or two/three students in a group, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up under EC P1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry This is expected to provide a good training for the student(s) in R&D work and technical leadership. 		
3	 The assignment to normally include: 1. In depth study of the topic assigned in the light of the Report prepared under ECP1; 2. Review and finalization of the Approach to the Problem relating to the assigned topic; 3. Preparing an Action Plan for conducting the investigation, including team work; 4. Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment 		

as needed;

5. Final development of product/process, testing, results, conclusions and future directions;

6. Preparing a paper for Conference presentation/Publication in Journals, if possible;

7. Preparing a Dissertation in the standard format for being evaluated by the Department.

8. Final Seminar Presentation before a Departmental Committee.

Course Outcomes:

CO	STATEMEN T
1	Identify the problem
2	Compare existing literature.
3	Design experimental set-up and methodology
4	Apply modern tools
5	Analyze data
6	Develop valid conclusions & recommendations