

Maulana Abul Kalam Azad University of Technology, West Bengal

Course: M.Sc. in Applied Chemistry Duration: 2 Years; Level: Post graduation; Type: Degree

SEMESTER - I

SI.	Paper code	Course name	Course	Marks	H	ours/	'credi	it
No.			type		L	Τ	Р	C
1.	MSAC-101	Biochemistry & Bioinorganic Chemistry	CF (Theory)	100	3	0	0	3
2.	MSAC-102	Organic Chemistry I	CC (Theory)	100	3	0	0	3
3.	MSAC-103	Statistical methods for Chemical and Biochemical Applications	DSE (Theory)	100	2	0	0	2
4.	MSAC-104	Computer Aided Advanced Physical Chemistry	CC (Theory)	100	3	0	0	3
5.	MSAC-105	Analytical Lab Techniques	CC (Theory)	100	3	0	0	3
6.	MSAC-106	Research Methodology (From MOOC basket / 8-12 weeks)	VAC	100	2	0	0	2
7.	MSAC-191	Lab techniques for quantitative and qualitative analysis	CC (Practical)	100	0	0	6	3
8.	MSAC-192	Introduction to programming and simulation applications for Physical/Chemical/Biological Problems	CC (Practical)	100	0	0	6	3
9.	MSAC-193	Computer Aided Determination of Stereo-chemical outcome of complex chemical reaction		100	0	0	4	2
			900		24	4		

SEMESTER - II

Sl. No.	Paper code	Course name	Course type	Marks		Cre	edit	
					L	T	P	C
1.	MSAC-201	Quantum Chemistry	CC	100	3	0	0	3
			(Theory)					
2.	MSAC-202	Statistical Mechanics	CC	100	3	0	0	3
			(Theory)					
3.	MSAC-203	Organic Chemistry II	CC	100	3	0	0	3
			(Theory)					
4.	MSAC-204	Nano science and technology	DSE	100	3	0	0	3
			(Theory)					
5.	MSAC-205	Computational Methods	CC	100	3	0	0	3
			(Theory)					
6.	MSAC-206	Natural Products and Medicinal	IDE	100	3	0	0	3
		Chemistry	(Theory)					
7.	MSAC-291	Computational methods in	CC	100	0	0	6	3
		Chemistry	(Practical)					
8.	MSAC-292	Advanced Organic Chemistry	CC	100	0	0	6	3
		Lab	(Practical)					
		Total		800		2	4	

SEMESTER - III

Sl. No.	Paper code	Course name	Course	Marks		Cre	edit	
			type		L	Т	Р	C
1.	MSAC-301	Bioorganic and Supramolecular	CC	100	3	0	0	3
		Chemistry	(Theory)					
2.	MSAC-302	Industrial Chemistry	CF	100	3	0	0	3
			(Theory)					
3.	MSAC-303	Elective I	EF	100	3	0	0	3
			(Theory)					
4.	MSAC-304	Elective II	EF	100	3	0	0	3
			(Theory)					
5.	MSAC-391	Industrial Exposure	VAC	100	0	0	2	2
			(Sessional)					
6.	MSAC-392	Mini Project and Seminar	SEC	100	0	0	2	2
		Presentation	(Sessional)					
7.	MSAC-393	Programming Lab - Python	SEC	100	0	0	4	2
			(Practical)					
8.	MSAC-394	Preparation of complex materials	CC	100	0	0	6	3
		and their characterization by	(Practical)					
		physiochemical techniques						

9.	MSAC-395	Spectroscopic Analysis Lab	CC	100	0	0	6	3
			(Practical)					
			900		2	4		

SEMESTER - IV

Sl.	Paper code	Paper code Course name		Marks	Credit				
N0.			type		L	Т	Р	C	
1.	MSAC-401	Elective III	EF (Theory)	100	3	0	0	3	
2.	MSAC-491	Project Stage-I (Term paper focus on project & Seminar)	(Sessional)	100		5	5		
3.	MSAC-492 Project Stage-II (Dissertation & Viva voce)		(Sessional)	100		1	6		
		Total		300		2	4		

CC: Core Course, VAC: Value Added Course, SEC: Skill Enhancement Course, IDE: Interdisciplinary Course, DSE: Discipline Specific Course, EF: Elective Foundation, CF: Compulsory Foundation.

Electives:

- 1. Cheminformatics
- 2. Photochemistry and spectroscopy
- 3. Pharmaceutical Chemistry
- 4. Water and Wastewater Treatment
- 5. Solid Waste Management and Air Pollution
- 6. Industrial Catalysis
- 7. Industrial & Environmental Pollution Management and Industrial Process Safety
- 8. Alternative and green energy, solar cell and perovskite
- 9. Food Chemistry
- 10. Sensor Development
- 11. Semiconductor devices

Semester	Course Hours/week	Marks	Course credit
Ι	32	900	24
II	30	800	24
III	28	900	24
IV	45	300	24
	Total	2900	96

Maulana Abul Kalam Azad University of Technology, West Bengal

Course: M.Sc. in Applied Chemistry Duration: 2 Years; Level: Post graduation; Type: Degree

SEMESTER-I

Biochemistry and Bioinorganic Chemistry P

Paper code: MSAC-101 (3 Credit) (100 Marks)

Course Objectives (CO):

- 1. To gain knowledge on different interactions and energy change in cells can be understood. This will help in biochemical applications.
- 2. To gain knowledge on different methods of Preparation of organometallic compounds will be known and may be applied to industry.
- 3. T learn structure and bonding involved in supramolecules can be determined. These molecules are required in industry.
- 4. Transport of different elements and energy within cells can be determined which has applications in pharmaceutical field.

Module 1: Unit 1: Basics of Biochemistry

Principles of biophysical chemistry, Thermodynamics, Colligative properties, Stabilizing interactions: Van der Waals, Electrostatic, Hydrogen bonding, Hydrophobic interaction, etc.Composition, structure, function and metabolism of Carbohydrates, Lipids, Amino Acids and Nucleotides. Bioimaging.

Module 2: Unit 2: Organometallic Compounds

Metal carbonyls-synthesis, structure and bonding in mononuclear and polynuclear carbonyls with and without bridging, metal carbonyl hydrides and metal carbonyl clusters. Complexes with linear π donor ligands: olefins, acetylenes, dienes and allyl complexes. Catalysis by organometallic compounds-hydrogenation, hydroformylation and polymerisation reactions. (Wilkinson's catalyst, Ziegler-Natta catalyst & Synthetic gasoline should be included among various examples) and various others applications. Application of C-H, C-X activation and functionalization.

Module 3: Unit 3: Metal-Organic Framework and Covalent Organic Framework (8L) Macrocycles and supramolecules non-covalent forces and interactions in supramolecules: crown ethers, cryptates, cryptands, carcerands, calixarenes, cyclodextrins, fullerenes, dendrimers, rotaxanes, self-assembly and preorganization, coordination driven self-assembly of supramolecular two and three dimensional architectures, host-guest chemistry, metal-organic frameworks, covalent-organic frameworks and their applications.

Module 4: Unit 4: Bioinorganic Chemistry

(10L)

(8L)

(10L)

Principles of coordination chemistry related to bioinorganic chemistry, Essential and trace metal ions in biological systems, Porphyrin and related ligands, ATP as energy source, oxidative phosphorylation and phosphorylation of glucose. Transport and storage of dioxygen: Structure and function of hemoglobin, myoglobin, hemocyanin and hemerythrin. Synthetic oxygen carriers. Mechanism of gas transport (e.g.- NO₂, CO₂ etc).

Text Books:

1. F. A. Cotton, G. Wilkinson, C. A, Murillo, and M. Bochmann *Advanced Inorganic Chemistry*, 6th Edition Wiley-Interscience: New York, 1999.

2. D. F. Shriver, P. W. Atkins, C. H. Langford, *Inorganic Chemistry*, 3rd Ed. ELBS, 1999. **Reference texts:**

1. J. W. Steed, J. L. Atwood, Supramolecular Chemistry, 2nd edition, John Wiley & Sons Ltd., (2009)

2. B. Douglas, D. McDaniel, J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Ed., Wiley.

3. Berg, J.M., Tymoczko, J.L. and Stryer, L. (2010). Biochemistry. W.H. Freeman & Company. USA.

4. Brown, T.A. (2006). *Gene Cloning and DNA analysis: In Introduction*. Blackwell Publishing Professional. USA.

5. Haynie, D.T. (2007). Biological thermodynamics. Cambridge University. UK.

6. Mathews, C.K., Van Holde, K.E. and Ahern, K.G. (2000). *Biochemistry*. Oxford University Press Inc. New York.

7. J.E. Huheey, Ellen A. Keiter and Richard L. Keiter "Inorganic Chemistry, Principles of structure and Reactivity", 4th Ed., Harper Collin College Publishers, 1993

Sl.No	Content of the course	Module No.	%age of questions	Course Outcomes (CO)
1.	Basics of biochemistry	Module-1/ Unit-1	20%	1. Different interactions and energy change in cells can be understood. This will help in biochemical applications.
2.	Organometallic compounds	Module- 2/Unit-2	30%	2. Different methods of Preparation of organometallic compounds will be known and may be applied to industry.
3.	Metal-organic framework and covalent organic framework	Module- 3/Unit-3	20%	3. Structure and bonding involved in supramolecules can be determined. These molecules are required in industry.
4.	Bioinorganic chemistry	Module- 4/Unit-4	30%	4. Transport of different elements and energy within cells can be determined which has applications in pharmaceutical field.

- 1. To write and assign reactive intermediates, stereochemistry of organic compounds.
- 2. To learn advanced knowledge of pericyclic and photochemical reactions.
- 3. To learn about the role and applications of oxidising and reducing agents in organic synthesis
- 4. To impart advanced knowledge regarding various rearrangement reactions for synthetic applications.

Module 1: Unit 1: Organic Reaction Mechanism and Introduction to Stereochemistry (8L)

Methods of determining reaction mechanisms (kinetic and non-kinetic methods): The Hammond postulate, reactivity vs selectivity principle, the Curtin-Hammett principle, microscopic reversibility, kinetic vs thermodynamic control. Isotope effects. Linear free energy relationships: Hammett and Taft parameters, Solvent effects, nucleophilicity and nucleofugality. Other Experimental techniques to determine reaction mechanisms: cross - over experiments, isotope scrambling. Concept of centre and plane of chirality, axial chirality and point groups. Winstein-Holness equation, Curtin-Hammett principle; Conformational analysis of cyclohexane, cyclohexane, alkyl ketone effect, 2- halo ketone effect, allylic strains (A^{1,2} and A^{1,3}), decalin and their derivatives; perhydroanthracene, perhydrophenanthrene etc., Felkin-Anh, Cieplak Models; Addition Reactions to Carbonyl Compounds.

Module 2: Unit 2: Pericyclic reactions, Aromatcity, Polynuclear hydrocarbons and Application (10L)

Study of Frontier Molecular Orbital theory, aromatic transtionstate theory and the generalized Woodward – Hoffmann rule applied to cycloaddtions, electrocyclic reactions, sigmatropic rearrangements and chelotropic reactions– Stereochemistry and regiochemistry of cycloaddtions. Secondary orbital interactions in [4+2] cycloadditionsIntramolecular Diels–Alder reactions. 1,3-dipolar cycloaddition reactions. Photochromism and thermochromism, Cope rearrangement, Claisen rearrangement, and ene-reaction.

Aromatcity, Polynuclear hydrocarbons and their applications.

Module 3: Unit 3: Oxidising and reducing agents in organic synthesis (10L)

(a) Oxidation: metal-based oxidants (Cr, Mn, Os, Ag, Ru and Pb); non-metal-based oxidation: Swern oxidation, Moffat oxidation, Organic oxidants, Chemistry of hypervalent iodine based oxidants, CAN as oxidant.

(b) Reduction: metal hydrides (B-H, Al-H, Zn-H, Sn-H, Si-H based reagents); hydrogenation; dissolving metal reductions; samarium iodide, Organic reductants.

Module 4: Unit4: Rearrangements Reactions

(8L)

General mechanistic considerations - nature of migration - migratory aptitude -nucleophilic, electrophilic and free radical rearrangements - Wagner-Meerwein,McLafferty, Demyanov, Benzil-benzilic acid, Favorskii, Fritsch-Buttenberg-Wiechell,Neber, Hofmann, Curtius, Beckmann, Schmidt, Lossen, Wolff, Baeyer-Villiger,Dienone-phenol, Pinacol, Stevens, Wittig, Chapman, Wallach, Orton, Bamberger, Pummerer and von Richter rearrangements.

Text Books:

1. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th ed. 2013, Wiley

2. F. A. Carey and R. J. Sundberg: Advanced Organic Chemistry (parts A and B), 5th Edition2008, Springer.

3. J. Clayden, N. Green, S. Warren and P. Wothers: *Organic Chemistry*, 2nd Edition. 2012, Oxford University Press

Refrence texts:

1. T H.Lowry and K.S.Richardson: *Mechanism and Theory in Organic Chemistry*, 3rd ed. 1997, Benjamin-Cummings Publishing Company.

2.F. A. Carroll: *Perspectives on structure and mechanism in organic chemistry*, Wiley, 2011 edition. 3. *Organic Stereochemistry* by P.S. Kalsi.

4. I. Flemming: Molecular orbitals and organic chemical reactions, student edition, 2009, Wiley.

5. J. McMurry, Organic Chemistry, Fifth Edition, 2000, Brooks/Cole.

Sl.No	Content of the course	Module No.	%age of	Course Outcomes (CO)
			questions	
1.	Organic reaction mechanism and	Module-1/ Unit-1	20%	1. Learn about reactive intermediates, stereochemistry of organic compounds
	introduction to stereochemistry			steresenember y or organice compounds
2.	Pericyclic reactions, aromatcity, polynuclear hydrocarbons and applications	Module- 2/Unit-2	30%	2. To gain advanced knowledge of pericyclic and photochemical reactions
3.	Oxidising and reducing agents in organic synthesis	Module- 3/Unit-3	30%	3. To learn about the role and applications of oxidising and reducing agents in organic synthesis
4.	Rearrangement reactions	Module- 4/Unit-4	20%	4. To impart advanced knowledge regarding various areaarangement reaction for synthetic applications

- 1. To know different statistical parameters and probability distribution can be learnt, these can be applied for data collection in different fields.
- 2. To learn various sampling techniques and their comparative studies can be known, which may be applied in different systems.

Module 1: Unit 1: Overview of Bio-Statistics

(10L)

Overview of Biostatistics: Difference between parametric and non-parametric statistics, Univariant andmultivariant analysis, Confidence interval, Errors, Levels of significance, Hypothesis testing. Descriptive statistics: Measures of central tendency and dispersal, Histograms, Probability distributions (Binomial, Poisson and Normal), Sampling distribution, Kurtosis and Skewness.

Module 2: Unit 2: Experimental design and analysis of sampling techniques (10L) Experimental design and analysis: Sampling techniques, Sampling theory, Various steps in sampling, collection of data-types and methods. Inferential Statistics: Student's t-test, Paired ttest, Mann-Whitney U-test, Wilcoxon signed-rank, One-way andtwo-way analysis of variance (ANOVA), Critical difference (CD), Least Significant Difference (LSD), Kruskal–Wallis oneway ANOVA by ranks, Friedman two-way ANOVA by ranks, χ^2 test. Standard errors of regression coefficients, Comparing two regression lines, Pearson Product-Moment Correlation Coefficient, Spearman Rank Correlation Coefficient, Power and sampling size in correlation and regression.

Text books:

1. Norman, G. and Streiner, D. (2008). *Biostatistics: The Bare Essentials*. 3/e (with SPSS). Decker Inc. USA.

2. Sokal, R.R. and Rohlf, F.J. (1994). *Biometry: The Principles and Practices of Statistics in Biological Research*. W.H. Freeman publishers, USA.

Reference texts:

3. Gookin, D. (2007). MS Word 2007 for Dummies. Wiley, USA.

4. Johnson, S. (2009). Windows 7 on demand. Perspiration Inc. USA.

Sl. No	Content of the course	Module No.	%age of questions	Course Outcome
1	Overview of bio- statistics	Module 1/Unit 1	40%	1. Different statistical parameters and probability distribution will be learnt, these can be applied for data collection in different fields.
2	Experimental design and analysis of sampling techniques	Module 2/Unit 2	60%	2. Various sampling techniques and their comparative studies will be known, which may be applied in different systems.

- 1. Effectively learn about quantum chemistry.
- 2. Effectively learn the grouptheory and its use for molecular term symbol.
- 3. Will be expertise to predict the reaction rate using computer softwere.
- 4. Will be able to treat ionic reaction probably.
- 5. Information regarding thermodynamic properties of different systems which may be applied to understand the equilibrium conditions of chemical reactions.

Module 1: Unit 1: Quantum Chemistry

Postulates of quantum mechanics, Eigen values and Eigen functions, operators, hermitian and unitary operators, some important theorems. Schrodinger equation-particle in a box (1D, 3D) and its application, potential energy barrier and tunneling effect, one-dimensional harmonic oscillator and rigid rotor.

Module 2: Unit 2: Symmetry & Group Theory

Symmetry elements & operations; group, subgroup, class, point groups, group multiplication tables for cyclic and non-cyclic groups; matrix representations of symmetry operations and their characters, reducible representations, irreducible representations and great orthogonality theorem (no derivation), construction of character tables; application of group theory.

Module 3: Unit 3: Thermodynamics

Laws of Thermodynamics, General condition of Equilibrium, Entropy, Partial molar quantities, their significance. Thermodynamic properties of gases with special reference to real gas in pure state and in mixture. Thermodynamics of ideal and non ideal binary solutions. Gibbs Duhem equation, Duhem Margules equation. Different scales of activity coefficients for solutes and solvents.

Module 4: Unit 4: Kinetics

Brief review of collision theory & activated complex theory; ionic reaction, kinetic salt effect; steady state kinetics, kinetic & thermodynamic control of reactions; unimolecular reactions; chain reactions, fast reactions. Computational approach to understand the chemical kinetics of different ordered reactions.

Module 5: Unit 5: Electrochemistry

Activity and Activity coefficient of electrolytes, ionic strength, Debye Huckel theory of strong electrolytes. Debye Huckel limiting law, Mean ionic activity coefficient. Application of Debye Hückel theory to conductance bahaviour, Relaxation and electrophoretic effect, Debye-Hückel-Onsager equation and its derivation. Debye Falkenhagen effect. Wein effect.

Text books:

1. I. N. Levine, Quantum Chemistry, 6th Edn., Pearson Education, London, 2008

2. D. A. McQuarrie, *Quantum Chemistry*, 3rd Edn., Univ. Sci. Books, Mill Valley, California, 1983 **Reference texts:**

- 1. J. P. Lowe, Quantum Chemistry 3rd Edn., Academic Press, New York, 2008
- 2. D. D. Fitts, *Principles of Quantum Mechanics as Applied to Chemistry and Chemical Physics*, CUP, Cambridge, New York, 2002
- 3. M. Taketani, *The Formation and Logic of Quantum Mechanics*, Vol. I-III, World Scientific, New Jersey, 2001

(8L)

(8L)

(8L)

(8L)

(8L)

Paper code: MSAC-104 (3 Credit) (100 Marks)

- 4. G. Esposito, G. Marmo and G. Sudarshan, From Classical to Quantum Mechanics. An Introduction to the Formalism, Foundations and Applications, Cambridge, 2004
- 5. L. Piela, Ideas of Quantum Chemistry, Elsevier, Amsterdam, 2007
- P. W. Atkins, *Molecular Quantum Mechanics*, OUP, Oxford, 1983
 P.W. Atkins, *Physical Chemistry*, 8th Edn., Wiley, New York, 2006
- 8. J. Bockris and A.K.N. Reddy, Modern Electrochemistry, 2B, 2nd Edn., Wiley, New York, 1998

Sl.	Content of the course	Module No.	%age of	Course outcome
No.			questions	
1	Quantum chemistry	Module	20	1.Adequetly learn about quantum
		1/Unit-1		chemistry
2	Symmetry & group	Module	30	2.Effectively learn the group theory
	theory	2/Unit-2		and its use for molecular term symbol.
3	Kinetics	Module	20	3.Will be expertise to predict the
		3/Uni-3		reaction rate using computer softwere.
4	Electrochemistry	Module	10	4.Will be able to treat ionic reaction
		4/Unit-4		probably.
5	Thermodynamics	Module	20	5.Information regarding
		5/Unit-5		thermodynamic properties of different
				systems which may be applied to
				understand the equilibrium conditions
				of chemical reactions

- 1. To impart knowledge about spectroscopic techniques and solve structural problems based on UV-Vis, IR, ¹H-NMR, ¹³C-NMR and mass spectral data.
- 2. Electron microscopy and mass spectroscopy will be learnt.
- 3. To impart knowledge about thermal analysis technique and associated methods
- 4. To learn separation techniques and data analysis using contemporary techniques

Module 1: Unit 1: Spectroscopy	(12L)
Principles and applications of UV-Vis, Vibrational and Raman spectroscopy, Fluore	scence and
NMR spectroscopy in understanding chemical and biological interactions.	
Module 2: Unit 2: Electron Microscopy and Mass spectroscopy	(8L)
SEM, TEM, Tunnelling Electron Microscope. Instrumentation, Mass spectral fragment	tation of
organic compounds, McLafferty rearrangement, structure determination.	
Module 3: Unit 3: Thermal Methods	(6L)
Theory and application of TGA, DSC and DTA.	
Module 4: Unit 4: Separation Techniques and Data Analysis	(10L)
HPLC, GC, gel electrophoresis for biological samples. Uncertainties, errors, mean, stat	ndard
deviation, least square fit, testing the fit (C2 test, residual etc.). Signal to noise ratio.	

Text books:

- 1. Spectroscopy of Organic Compounds by P.S. Kalsi, New Age International
- 2. Kemp, W. Organic Spectroscopy 3rd Ed., W. H. Freeman & Co. (1991).

- 1. Silverstein, R. M., Bassler, G. C. & Morrill, T. C. Spectroscopic Identification of Organic Compounds John Wiley & Sons (1981).
- 2. Pavia, D. L.; Lampmann, G. M.; Kriz, G. S.; Vyvyan, J. R. *Introduction to Spectroscopy* Cengage Learning (2014).
- 3. Organic Structures from spectra; L. D. Field, S. Sternhell and J R Kalman, John Wiley & Sons Ltd., 2007

Sl. No	Content of the course	Module No.	%age of questions	Course Outcomes
1.	Spectroscopy	Module 1/Unit 1	30	1. Knowledge about spectroscopic techniques and solve structural problems based on UV-Vis, IR, ¹ H-NMR, ¹³ C-NMR and mass spectral data.
2.	Electron microscopy	Module	20	2. Electron microscopy and mass
	and mass spectroscopy	2/0nit 2		spectroscopy will be learnt.
3.	Thermal methods	Module	20	3. To impart knowledge about thermal
		3/Unit 3		analysis technique and associated methods.
4.	Separation techniques and data analysis	Module 4/Unit 4	30	4. To learn separation techniques and data analysis using contemporary techniques.

-•

One course from prescribed MOOC's basket on Research methodology of minimum 8 weeks based on following topics:

- 1. Review of literature
- 2. Reporting of experimental data.
- 3. Calculation of error.
- 4. Statistical data analysis.
- 5. Standard deviation of results.

Any course from MOOC's basket can be chosen having atleast 80% coverage of the above topics.

(40 Hr)

Course Objectives (CO):

- 1. Characterization and analysis of organic compounds for identifying compounds.
- 2. To be able to synthesize organic compounds and separation of components in mixtures can be studied, which is of great use in different chemical fields.
- 3. To learn the techniques of purification of organic compounds from mixture.

Module 1: Unit 1: Identification of single organic compounds (solid/liquid) with one or more functional group(s) through preparation of derivatives.

Module 2: Unit 2: Organic preparations, including methods of purification (e.g., crystallization, steam distillation, vacuum distillation, sublimation, etc.).

Module 2: Unit 3: Chromatographic separation techniques to isolate single organic compound from mixture of compounds.

Reference texts:

1) Vogel's textbook of practical organic chemistry - Arthur Israel Vogel, B. S. Furniss

- 2) Practical Organic Chemistry Frederick George Mann and Bernard Charles Saunders
- 3) Advanced Practical Organic Chemistry N K Vishnoi
- 4) Laboratory Manual of Organic Chemistry R. K. Bansal

S1.	Content of the course	Module	%age of	Course Outcomes
No.		No.	questions	
1.	Identification of	Module	30	1. Characterization and analysis of organic
	functional groups	1/Unit 1		compounds for identifying functional groups can
	in organic compounds			be learnt.
2.	Preparation of organic	Module	30	2.Synthesis of organic compounds and separation
	compounds	2/Unit 2		of components in mixtures can be studied, which
				is of great use in different chemical fields.
3.	Purofication of	Module	40	3. Purification of organic compounds from
	organic compounds	2/Unit 3		mixture.

Introduction programming and simulation applications for Physical/Chemical/Biological Problems

Paper code: MSAC-192 (3 Credit) (100 Marks)

Course Objectives (CO):

- 1. To know the basic operating systems of computer.
- 2. To know the basic structure and principles of computer programming.
- 3. To know how to use the computer softwere to solve chemical problems.
- 4. To learn computer programming.

Module 1: Unit-1: Computional Laboratory-I

Basic concepts of operating systems like MS DOS, MS WINDOW, UNIX, Algorithm & flow chart.

C Fundamentals: The C character set identifiers and keywords, data type & sizes, variable names, declaration, statements. Operators & Expressions:Arithmetic operators, relational and logical operators, type, conversion, increment and decrementoperators, bit wise operators, assignment operators and expressions, precedence and order of evaluation.Input and Output: Standard input and output, formatted output -- printf, formatted input scanf.

Flow of Control:Statement and blocks, if - else, switch, loops - while, for do while, break and continue, go to and labels.

C Programming Laboratory: Problems should cover basic features of the Language.

Fortran programming and application in computational chemistry.

Module 2: Unit-2: Computional Laboratory-II

Implementation of various Numerical problems using MATLAB/OCTAVE/C Programming and simulation applications in Physical/Inorganic and Organic Chemistry problems, Virtual nano Lab, MD Simulation, Quantum Wise, Atomic Scale Modeling. Hartree Fock, DFT theory Gaussian application.

Module 3: Unit-3: Computational Laboratory-III

(10Hr)

(10Hr)

Python and R: Modelling, simulation and analysis of materials. Define materials at the atomic level and calculate their physical, chemical and biological properties. New materials with best properties for new products or systems. Select and optimize materials in a product system.

Reference texts:

- 1. *Linux Command Line and Shell Scripting Bible*, 3rd Edition, Wiley
- 2. Computer programming in FORTRAN 77, Y. Rajaramann
- 3. Essentials of Computational Chemistry: Theories and Models, 2nd Edition, Christopher J. Cramer

S1.	Content of the course	Module	%age of	Course Outcomes
No.		No.	questions	
1.	Computional	Module	20	1. Will be familiar with different operating
	Laboratory-I	1/Unit 1		systems of computer.
2.	Computional	Module	20	2. Will be able to write computer programme.
	Laboratory-I	1/Unit 1		
3.	Computional	Module	30	3. Will be able to use computer softwere.
	Laboratory-II	2/Unit 2		
4.	Computional	Module	30	4. Will be able to design new materials.
	Laboratory-III	3/Unit 3		-

(20Hr)

(20 hr)

Course Objectives (CO):

- 1. To know how to draw chemical structures using computer.
- 2. To know how to compute basic chemical properties of a compound.

Module 1: Unit-1: Analysis of Stereochemistry of single organic molecule and stereochemicaloutcome of complex chemical reaction using computer as analytical tool. Module 2: Unit-2: Use of ChemOffice (Chemdraw 14.0 suite and Chemdraw 3D ultra) in order to determine most stable conformation of certain chemical structure.

Reference texts:

Sl.	Content of the course	Module	%age of	Course Outcomes
No.		No.	questions	
1.	Analysis of	Module	20	1. Will be able to draw the structure of organic
	Stereochemistry	1/Unit 1		compounds.
2.	Use of ChemOffice	Module	20	2. Will be able to predict R, S nomencleature of
		2/Unit 2		an organic compound.

1. User manual of ChemDraw.

Quantum Chemistry

Paper code: MSAC-201 (3 Credit) (100 Marks)

Course Objectives (CO):

- 1. To know the details of quantum numbers.
- 2. To know how to calculate different quantum numbers.
- 3. To know how to solve the wavefunction of a system by purterbation method.
- 4. To know different quantum numbers.
- 5. To know molecular structure theory.

Module 1: Unit 1: Recapitulations of the background

Wave function in spherical polar coordinates, Planar rotator, phi equation, wave functions in real forms, Polar diagrams, Nonplanar rotator, Theta equation and solutions Lagendre equation and Lagendre polynomials, Spherical harmonics, Angular momentum operator L^2 and Lz, Space quantization. Hydrogen atom, the R equation. Computational solutions to problems.

Module 2: Unit 2: Perturbation Theory

(8L)

(8L)

(10L)

Perturbation theory for non-degenerate and degenerate states and its applications. The variation theorem and its application.

Module 3: Unit 3: Generalized Angular Momenta and Spin

Generalized angular momentum. Electron's magnetic Moment and Spin Angular Momentum. Gyromagnetic Ratio and Bohr Magneton and the g - factor. Energy associated with a magnetic dipole placed in magnetic field. Larmor's Theorem.Stern-Gerlach Experiment.Addition of angular momenta. Restriction of eigenvalues from $|j_1 - j_2|$ to $|j_1 + j_2|$.

Module 4: Unit 4: Atomic and Molecular Structure

(10L)

Many electron wave functions, Pauli exclusion principle, Helium atom, atomic term symbols. The self-consistent field method. Slater-type orbitals. Born-Oppenheimer approximation. Molecular orbital treatment for H2+. MO treatment of homo- and hetero nuclear diatomic Hückel MO treatment of simple and conjugated polyenes and alternate molecules. hydrocarbons.

Text books:

- 1. Quantum Chemistry, I.N. Levine, 5th edition, Pearson Educ., Inc. New Delhi (2000).
- 2. Chemical Applications of Group Theory, F. A. Cotton, John Wiley & Sons (2008).

- 1. Physical Chemistry: A Molecular Approach, D. A. McQuarrie, and J. D. Simon, Viva Books (2011).
- 2. Valence Theory, J.N. Murrell, S.F.A. Kettle and J. M. Tedder, 2nd edition, John Wiley (1965).
- 3. Introductory Quantum Chemistry, A.K. Chandra, 4th Edition, Tata Mcgraw Hill (1994).
- 4. Molecular Symmetry and Group Theory, R. L. Carter, J. Wiley (1998).
- 5. Group Theory and Chemistry, D. M. Bishop, Dover Publications (1993).
- 6. Quantum Chemistry, J. P. Lowe, and Peterson, K., Academic Press (2005).

S1.	Content of the course	Module No.	%age of	Course Outcomes
No.			questions	
1.	Recapitulations of the	Module/Unit-	10	1. Will be familiar with different quantum
	background	1		numbers.
2.	Recapitulations of the	Module	15	2. Will be able to calculate the quntum
	background	1/Unit-1		number of an electron in a particular state.
3.	Perturbation Theory	Module	25	3. Will be able to findout the wave function
		2/Unit-2		of any chemical system.
4.	Generalized Angular	Module	25	4. Will be able to relate the spectra of a
	Momenta and Spin	3/Unit-3		system with its electronic structure.
5.	Atomic and	Module	25	5. Will be able to learn about the electronic
	Molecular Structure	4/Unit-4		structure of a molecule.

- 1. To gain concept of different ensembles and partition functions help in calculating specific heat of solids.
- 2. To impart knowledge on distribution and fluctuations of parameters in different systems can be learnt, which will help in understanding fluctuations in macroscopic observables
- 3. To impart knowledge on different thermodynamic properties in various systems can be known which have applications in real systems

Module 1: Unit 1: Review of Classical Mechanics And Partition Functions (10L)

Mathematical Review of Classical Mechanics: Lagrangian Formulation, Hamiltonian Formulation, Poisson Brackets and Canonical Transformations Classical approach to Ensembles: Ensembles and Phase Space, Liouville's Theorem, Equilibrium Statistical Mechanics and it's ensembles Partition Function: Review of rotational, vibrational and translational partition functions. Application of partition functions to specific heat of solids and chemical equilibrium. Real gases.

Module 2: Unit 2: Probability Theory And Distribution

Elementary Probability Theory. Distributions and Averages, Cumulants and Fluctuations, The Central Limit Theorem Distributions & Fluctuations:Theory of Ensembles, Classical and Quantum, Equivalence of Ensembles, Fluctuations of Macroscopic Observable.

Module 3: Unit 3: Basic Thermodynamics

Basic Thermodynamics: Review of Concepts, The Laws of Thermodynamics, Legendre Transforms, TheMaxwell Relations, The Gibbs-Duhem Equation and Extensive Functions, Intensive Function.

Module 3: Unit 4: Thermodynamic Properties

(8L)

(10L)

(8L)

Bose-Einstein distribution: Einstein condensation. Thermodynamic properties of ideal BE gas. Fermi-Dirac distribution: Degenerate Fermi gas. Electron in metals. Magnetic susceptibility.

Text books

1. Kerson Haung, *Statistical Mechanics*, Wiley, 2nd Ed. (2008).

2. R. K. Pathria and P. D. Beale, *Statistical mechanics*, Elsevier, 3rd Ed (2011).

Reference texts:

1. D. A. Mcquarrie, Statistical Mechanics, University Science Books (2011).

2. D. Chandler, Introduction to Statistical Mechanics, Oxford University Press (1987).

Sl.	Content of the course	Module	%age of	Course Outcomes
No.		No.	questions	
1.	Review of classical mechanics and partition functions	Module 1/Unit 1	30%	1. Concept of different ensembles and partition functions help in calculating specific heat of solids.
2.	Probability theory and distribution	Module 2/Unit 2	30%	2. Knowledge on distribution and fluctuations of parameters in different systems can be learnt, which will help in understanding fluctuations in macroscopic observables
3.	Basic Thermodynamics	Module	40%	3. Knowledge on different thermodynamic

Γ	and thermodynamic	3/Units 3	properties in various systems can be
	properties	and 4	known which have applications in real
			systems

- 1. To gain knowledge on various metal-catalyzed coupling reactions, reducing agents, oxidizing agents, and their applications in organic synthesis
- 2. To acquire knowledge on organic spectroscopic techniques and solve problems and structural anylaysis
- 3. To impart knowledge on synthesis and utility of various heterocyclic compounds
- 4. To acquire knowledge of basic principles of photochemistry and advanced photochemical reactions

Module 1: Unit 1: Reagents in Organic Synthesis

Diborane - lithium aluminium hydride - sodium borohydride - selenium-di-oxide -osmium tetroxide - phenyl isothiocyanate - N-bromosuccinamide (NBS) - leadtetraacetate dicyclohexylcarbodiimide (DCC) - pyridiniumcholorochromate (PCC) -Swern oxidation - ptoluenesulphonyl chloride - trifluoroacetic acid - lithiumdiisopropylamide (LDA) - 1,3-dithiane (reactive umpolung) - crown ethers - trimethylsilyl iodide - Gilman reagent dichlorodicyanobenzoquinone (DDQ) – lithiumdimethylcuprate - tri-n-butyltin hydride - di-tertbutoxydicarbonate - dihydropyran -phase transfer catalysts - Wilkinson's catalysts - Peterson synthesis – and diethylaluminium cyanide- IBX and Swern oxidations.

Module 2: Unit 2: Organic Spectroscopy

Advanced Techniques and Applications of NMR: ¹H and ¹³C NMR principles, rules for ¹³C calculations, principles of decoupling, gated and inverse gated decoupling techniques, NOE, relaxation processes, population transfer, selective polarization transfer, NMR shift reagents and their applications, basic two-dimensional sequence.

Module 3: Unit 3: Heterocycles

Synthesis and reactivity of furan, thiophene, pyrrole, thiazole, pyridine, indole andtheir derivatives, quinoline, isoquinoline, pyrimidine, purine and flavone -Skraupsynthesis - Fischer indole synthesis and Pachmanncoumarin synthesis - alkaloids -sources and classification structural elucidation by chemical degradation – totalsynthesis of quinine, morphine, reserpine, papaverine and nicotine (Any two).

Module 4: Unit 4: Photochemistry

Basic principles, Jablonski diagram, photochemistry of olefinic compounds, cis-trans isomeriation, Paterno-Buchi reaction, Norrish type I and II reactions, photoreduction of ketones, di-pi-methane, oxo di-pi methane and aza di-pi methane rearrangements, Barton reaction, Hofmann-Loefflar-Freytag reactions, photochemistry of arenes, SRN1 reaction, photooxidation, Photoreaction in solid state. Method of generation and detection of radicals (ESR), radical initiators, reactivity pattern of radicals, substitution and addition reactions involving radicals, synthetic applications: cyclisation of radicals including various ring expansion, ring contraction, remote functionalisation and radical fragmentation reaction. Photochemical reaction using UV, Sunlight and LED light etc.

Text books:

1. J. March, Advanced Organic Chemistry, 5th edition, Wiley-Intersciences, New York (2003).

(10L)

(10L)

(10L)

(10L)

2. F.A.Carey and R.J. Sundberg, Advanced Organic Chemistry, Part A and Part B, 5th edition, Plenum Press, New York (2005).

Reference texts:

1. T.H. Lowry and K.S. Richardson, *Mechanism and Theory in Organic Chemistry*, 2nd edition, Harper and Row Publishers (1981).

2. R.K. Mackie and D.M. Smith, *Guide book to Organic Synthesis*, 2nd edition, ELBS Publications, London (1998).

3. Horspool, W. M. Aspects of Organic Photochemistry Academic Press (1976).

4. Heterocyclic Chemistry: Joule, John A., Mills, Keith.

5. Absorption spectroscopy of organic molecules- V.M. Parikh

6. R.P. Wayne, "Principles and Applications of Photochemistry", Oxford University Press

7. C.H.Dupuoy, and O.L.Chapman, "Molecular Reactions and Photochemistry", Prentice Hall

8. Essentials of molecular photochemistry, A. Gilbert and J. Baggott. Blackwell Scientific Publication.

9. Introductory photochemistry. Cox and T. Camp Mc Graw -Hill

10. Organic photochemistry J. Coxon and B. Hallon Cambridge University press.

S1.	Content of the course	Module No.	%age of	Course Outcomes (CO)
No			questions	
1.	Reagents in organic synthesis	Module-1/ Unit-1	25%	1. Knowledge on various metal-catalyzed coupling reactions, reducing agents, oxidizing agents, and their applications in organic synthesis.
2.	Organic spectroscopy	Module- 2/Unit-2	25%	2. Acquire knowledge on organic spectroscopic techniques and solve problems and structural anylaysis.
3.	Heterocycles	Module- 3/Unit-3	25%	3. Learn about synthesis and utility of various heterocyclic compounds.
4.	Photochemistry	Module- 4/Unit-4	25%	4. Knowledge of basic principles of photochemistry and advanced photochemical reactions.

- 1. To learn about synthesis of nano materials of various elements having different properties, which has diverse industrial applications.
- 2. To learn structure and characterization of nano materials and study for their applications in drug delivery processes.
- 3. To know symmetry in molecules and different properties of nano materials which help in applications in medical fields.

Module 1: Unit 1: Introduction to Nanoscience and Nanotechnology(10L)

Basic problems and limitations - opportunities of nano scale-evolution of band structures andFermi surface. Nanoparticles through homogeneous and heterogeneous nucleation-Growth controlled by surface and diffusion process- Oswald ripening process - influence of reducing agents-solid state phase segregation- grain growth and sintering precipitation in solid solutionhumerothery rule. Carbon Nanotubes (CNT) - Metals (Au, Ag, Pd, Cu) - Metal oxides (TiO2, CeO2, ZnO, MgO) -Semiconductors (Si, Ge, CdS, ZnSe). Classifications of nanomaterials-zero dimensional - one dimensional - two dimensional - three dimensional nanostructures - Quantum dots - Quantum wire, Quantum well-semiconductors and ceramics.

Module 2: Unit 2: Special nanomaterials

(10L)

Carbon fullerenes-fullerene derived crystals-carbon nanotubes. Micro and Mesoporous material ordered mesoporous materials, Random mesoporous materials-crystalline microporous materials.Core/Shell structures, Metal oxide structures, Metal polymer structures, Intercalation compounds-nanograined materials. Nanomaterials in drug delivery.

Module 3: Unit 3: Materials Structure and Properties

(10L)

Space lattice and unit cells, crystal system, Symmetry operation, Structures of common metallic, Semiconductor ceramic and superconductor materials, Miller Indices, Packing fractions, Formation of dangling bonds-atom like behavior of nanomaterials-physicochemical properties. Optical properties of nanomaterials-semiconductor-metal nanoparticles-Electrical and electronic properties, Thermal properties-Ferro electric properties-mechanical and magnetic properties.

Module 2: Unit 4: Organic Nanomaterials, nanoelectronics and engineering(8L)

Organic nanoelectronics. Advanced nanomaterials for applications. Nanosystems engineering to design, develop, and characterize materials on the nanoscale. Nanoparticles for Environment, Engineering, and Nanomedicine.

Text books:

1. Introduction to Nanoscience and Nanotechnology, By Gabor L. Hornyak, H.F. Tibbals, Joydeep Dutta, John J. Moore

2. *Nanostructures and Nanomaterials: Synthesis, Properties, and Applications*, By Guozhong Cao, Ying Wang. **Reference texts:**

1. Organic Nanomaterials: Synthesis, Characterization, and Device Applications, By Tomas Torres, Giovanni Bottari

2. Nanochemistry: A Chemical Approach to Nanomaterials, By Geoffrey A. Ozin, André C.

Arsenault, Ludovico Cademartiri

3. T. Pradeep, Nano The Essentials: Understanding Nanoscience and Nanotechnology.

Sl.	Content of the course	Module No	%age of	Course Outcomes (CO)
No			questions	
1	Introduction to nanoscience and nanotechnology	Module 1/Unit 1	30%	1. Synthesis of nano materials of various elements having different properties can be learnt, which has diverse industrial applications
2.	Special nanomaterials, nanoelectronics and engineering	Module 2/Units 2 and 4	40%	2. Structure and characterization of Nano materials will be studied for application in drug delivery processes
3.	Material structures and properties	Module 3/Unit 3	30%	3. Symmetry in molecules and different properties of nano materials will be known which help in applications in medical fields

- 1. To learn about the linear and non-linear equations.
- 2. To know how linear and non-linear equations may be solved.
- 3. To learn to handel the matrix and determinant for scientific problem solution using computer.
- 4. To learn numerical methods to solve the differential equation and integration.
- 5. To learn the method of error calculation.
- 6. To learn different methods of numerical problem solution.

Module 1: Unit 1: Linear and non-linear equations

(10L)

(10L)

Linear and Non –Linear equations:Solution of Algebra and transcendental equations, Bisection, Falsi position and Newton-Rhapson methods-Basicprinciples-Formulae-algorithms.

Simultaneous equations:Solutions of simultaneous linear equations-Guass elimination and Gauss Seidel iterative methods-Basic principles-Formulae-Algorithms, Pivotal Condensation.

Module 2: Unit 2: Matrix and Determinants

Matrix and Determinants:Matrix Inversion, Eigen-values, Eigen-vector, Diagonalization of Real Symmetric Matrix by Jacobi's Method. First Principle approach.

Module 3: Unit 3: Programme to solve differential equation and integration (10L) Interpolations: Concept of linear interpolation-Finite differences-Newton's and Lagrange's interpolation formulae-principles and Algorithms Numerical differentiation and integration: Numerical differentiation-algorithm for evaluation of first order derivatives using formulae based on Taylor'sseries, Numerical integration-Trapezoidal Rule, Simpson's 1/3 Rule, Weddle's Rule, Gauss Quadrature Formulae-Algorithms. Error in numerical Integration. Curve Fit: least square, straight line and polynomial fits.

Module 4: Unit 4: Numerical Solution of differential equations

(10L)

Numerical Solution of differential Equations: Picards Method, Taylor's Series Method, Euler's Method, Modified Euler's Method, Runge-Kutta Method, Predictor-Corrector Method.

Text books:

- 1. V. Rajaraman, Computer Oriented Numerical Methods, PHI, 1993.
- 2. E. Balaguruswamy, Numerical Methods, Tata McGraw Hill, 2017.

- 1. F. Acton, Numerical Methods that Work, Harper and Row, 1997.
- 2. S. D. Conte and C.D.Boor, *Elementary Numerical Analysis*, McGraw Hill, 2005.
- 3. S. S. Shastri, Introductory Methods of Numerical Analysis, PHI, 2012.

Sl.	Content of the course	Module	%age of	Course Outcomes (CO)
No		No	questions	
1	Linear and non-linear	Module	20	1. Will be able to handle linear and non-
	equations	1/Unit-1		linear equations.
2.	Linear and non-linear	Module	20	2. Will be able to solve linear and non-
	equations	1/Unit-1		linear equations.

3.	Matrix and Determinants	Module 2/Unit-2	10	3.Will be able to handle matrix and determinant using computer.
4.	Programme to solve differential equation and integration	Module 3/Unit-3	10	4.Will be able to write computer programme to solve differential equation and integration.
5.	Programme to solve differential equation and integration	Module 3/Unit-3	20	5.Will be able to calculate error of experimental results.
6.	Numerical Solution of differential Equations	Module 4/Unit-4	20	6.Will be able to use proper method for any kind of problem solution using numerical methods.

- 1. To acquire knowledge on structure and synthesis of amino acids, peptides and nucleic acids
- 2. To acquire knowledge on basic concepts and application of natural products and synthetic molecules in medicinal chemistry
- To learn basics of lead drugs and to describe the biosynthetic studies of different classes 3. of drugs

Module 1: Unit 1: Proteins and Nucleic Acids

Classification - structure and synthesis of amino acids - peptides - Merrifield solidphase peptide synthesis - structure determination - peptide sequence and synthesis - primary, secondary, tertiary and quaternary structures- Merrifield solid phasepeptide synthesis - nucleic acids structure and synthesis of DNA - structure and synthesis of RNA-WC Model.

Module 2: Unit 2: Introduction to Medicinal Chemistry

Antibiotics – Penicillins, Cephalosporins, tetracyclins, newer generation of antibiotics. Vitamins - Definition of vitamins and coenzymes, classification of vitamins, mechanism of function with synthesis of vitamin A, B1, B6 and folic acid, etc.

Drugs - Introduction and classification of drugs, brief discussion on drug targets. Sulphur drugs, anti tubercular drugs, anti diabetic drugs and newer generation of antacids.

Module 2: Unit 3: Advanced Medicinal Chemistry

(10L) Drug design and synthesis, Molecular and quantum mechanics; Drawing chemical structures, equations, and diagrams; 3D structures; Molecular modelling and Energy Minimization; Molecular properties, Conformational analysis, Docking Procedures, De novo design, Molecular Recognition, Receptor Based Molecular Modeling, QSAR studies, Antineoplastic agents, cardiovascular drugs, Local anti-infective drugs, Antimalarial, Anticholenergic and CNS-active drugs.

Module 3: Unit 4: Lead Drugs

(10L)

(10L)

(10L)

Introduction, isoprene rule, general methods of isolation, structure elucidation and synthesis of some representative members of mono and sesquiterpenes. Biogenesis and biosynthesis of mono-, sesqui- and di-terpenoids.

Definition and classification, general methods of isolation and structure elucidation, structure and synthesis of ephedrine, piperine, nicotine and papaverine. Biosynthesis of ephedrine and nicotine.

Text books:

1. Gringauz, A. Introduction to Medicinal Chemistry: How Drugs Act and Why? John Wiley & Sons (1997).

2. Patrick, G. L. Introduction to Medicinal Chemistry, Oxford University Press (2001). **Reference texts:**

1. Lemke, T. L. & William , D. A., Foye's Principles of Medicinal Chemistry, 5th Ed., USA, (2002).

2. D. Sriram, P. Yogeswari, Medicinal Chemistry, Pearson Education India, 2010.

3. C.O. Wilson, J.M. Beale, J.H. Block, Textbook of Organic Medicinal and Pharmaceutical Chemistry, 12th Edn., Lippincott Williams and Wilkins, 2010

4. S. S. Kadam, Principles of Medicinal Chemistry, Vol. I & II, Pragati Books, 2008

Sl.	Content of the course	Module No	%age of	Course Outcomes (CO)
No			questions	
1	Proteins and nucleic acids	Module 1/Unit 1	25	1. To acquire knowledge on structure and synthesis of amino acids, peptides and nucleic acids
2.	Introduction and advanced medicinal chemistry	Module 2/Units 2 and 3	50	2. To acquire knowledge on basic concepts and application of natural products and synthetic molecules in medicinal chemistry
3.	Lead Drugs	Module 3/Unit 4	25	3. To learn basics of lead drugs and to describe the biosynthetic studies of different classes of drugs

Computational methods in Chemistry (Lab)

Paper code: MSAC-291 (3 Credit)(100 Marks)

Course Objectives (CO):

- 1. To familiar with the geometry optimization.
- 2. To know how to use computational tool to compute the properties of a compound.
- 3. To know how we could handel the data to analyse using computer.

Module 1: Unit-1: Computational Lab

(20hr)

(10hr)

Simulation and structures and geometry optimisation with the commercial programs like "Materials Studio" (Forcite, Force Field: COMPASS), Gaussian.

Module 2: Unit-2: Computational Lab

Computational studies on opto-electronic and charge transport properties in conjugated systems. Other computational application introducing "ChemCraft", "Gaussian", "SCM ADF" softwares GAMMES.

Module 3: Unit-3: Computational Lab

(10hr)

Plotting, analysis and interpretation of data from UV-Vis or Fluorescence spectrophotometry using Origin.

- 1. User guide of Gaussian.
- 2. *Molecular Dynamics Simulation: Fundamentals and Applications*, Kun Zhou and Bo Liu, Academic Press Inc (1 November 2020)

S1.	Content of the course	Module No	%age of	Course Outcomes (CO)
No			questions	
1	Computational Lab	Module 1/Unit 1	20	1.Will be able to draw structure and optimize it using DFT.
2.	Computational Lab	Module 2/Unit 2	40	2.Will be able to compute physical and chemical properties of a compound.
3.	Computational Lab	Module 3/Unit 3	40	3.Will be able to plot and analyse data with the help of computer.

•

- 1. To acquire knowledge of laboratory techniques for organic synthesis and characterization.
- 2. To learn synthetic procedures: aqueous workup, distillation, reflux, separation, isolation, and crystallization.
- 3. To gain knowledge about starting materials, functional groups, mechanism, and typical reaction conditions.

Module 1: Unit-1: Some important techniques in practical organic chemistry:	(8hr)
Recrystallization, mixed melting point, drying of solvents and steam dist	illation.
Unit-2: Preparation of	(16hr)
i) Methyl orange ii) Coumarin iii) Pyrazolone iv) Azalactone	
Unit-3: Preparation of	(16hr)
i) Benzanilide by Beckmann's rearrangement:	
(a) Preparation of benzophenone oxime	
(b) Beckmann's rearrangement to benzanilide	
ii) Benzilic acid from benzoin:	
(a) Benzil from benzoin	
(b) Benzilic acid from benzyl	
iii) Anthranilic acid from phthalic anhydride:	
(a) Phthalimide from Phthalic anhydride	
(b) Hoffmann's rearrangement to anthranilic acid	
iv) m-Nitroaniline from Nitrobenzene:	
(a) m-Dinitrobenzene from Nitrobenzene	

(b) m-Nitroaniline from m-Dinitrobenzene

- 1) Vogel's textbook of practical organic chemistry Arthur Israel Vogel, B. S. Furniss
- 2) Practical Organic Chemistry Frederick George Mann and Bernard Charles Saunders
- 3) Advanced Practical Organic Chemistry N K Vishnoi
- 4) Laboratory Manual of Organic Chemistry R. K. Bansal

Sl.	Content of the course	Module No	%age of	Course Outcomes
1.	Some important techniques in practical organic chemistry	Module 1/Unit 1	20%	1. Will learn laboratory techniques for organic synthesis and characterization.
2.	Preparation of organic compounds	Module 1/Unit 2	40%	2. Learn synthetic procedures: aqueous workup, distillation, reflux, separation, isolation, and crystallization.
3.	Preparation of organic compounds via multistep synthesis	Module 1/Unit 3	40%	3. Gain knowledge about starting materials, functional groups, mechanism, and typical reaction conditions.

Bioorganic and Supramolecular Chemistry

Paper code: MSAC – 301 (3 Credit)(100 Marks)

Course Objectives (CO):

- 1. Concept of Supra Molecules and their interactions.
- 2. Concept of Bio-Organic molecules and their applications.

Module 1: Unit -1: Supramolecular Chemistry

(20L)

Basic concepts of supramolecular chemistry, different noncovalent forces (e.g. H-bonding, cation- π , anion- π , π -stacking, hydrophobic, hydrophilic interactions etc.) leading to strong bonding of guest molecules to the hosts, thermodynamics of host-guest complexation, solvent effects and salt effects in complexation, design principle of host molecules, experimental techniques for characterization of host – guest complexation, examples of different design-based receptor molecules for cation, anion and neutral molecules binding, chiral recognition with examples, supramolecular devices (optical and electrochemical) and molecular switches, self-organization process-template association and supramolecular synthesis, self-replication and autocatalysis, supramolecular reactivity and catalysis, transport processes and carrier design, supramolecular gel, cyclodextrins, catenanes and rotaxanes.

Module 2: Unit -2: Bioorganic Chemistry

(16L)

Structure and utility of natural and unnatural compounds, carbohydrates, biopolymers, nucleic acids, amino acids, peptides, drug molecules. Drug – Receptor binding and Bioorganic compounds for drug delivery and bio-signalling.

Text books:

1. Steed, J. W.; Turner, D., R.; Wallace, K. J., Core Concepts in Supramolecular Chemistry and Nanochemistry, John Wiley & Sons, West Sussex (2007).

2. Steed, J. W.; Atwood, J. L., *Supramolecular Chemistry*, 2nd Ed., John Wiley & Sons, West Sussex (2009).

Reference texts:

1. Cotton, F. A.; Bochmann, M.; Murillo, C. A.; Wilkinson, G., *Advanced Inorganic Chemistry*, 6th Ed., Wiley India, New Delhi (2007).

2. Ariga, K.; Kunitake, T., Supramolecular Chemistry: Fundamentals and Applications, Springer, Heidelberg (2006).

3. Lehn, J.-M., Supramolecular Chemistry: Concepts and Perspectives, Wiley India, New Delhi (2014).

Sl.	Content of the	Module	%age of	Course Outcome
No	course	No.	questions	
1.	Supramolecular chemistry	Module 1/Unit 1	50%	1. To gain knowledge in bonding in supra molecules and their formations will help in understanding supra molecular devices and molecular switches
2.	Bio-organic Chemistry	Module 2/Unit 2	50%	2. To learn structure and utility of natural and unnatural organic compounds which will help in understanding drug-receptor binding for applications in drug delivery processes

Industrial Chemistry

Course Objectives (CO):

- 1. Basic principles of different separation processes.
- 2. Preparation of gases and chemicals for industrial use.
- 3. Manufacture of chemicals of industrial importance.
- 4. Metallurgy and Ceramics

Module 1: Unit -1: Chemical Technology

Basic principles of distillation, solvent extraction, solid-liquid leaching and liquid-liquid extraction, separation by absorption and adsorption. An introduction into the scope of different types of equipment needed in chemical technology, including reactors, distillation columns, extruders, pumps, mills, emulgators. Scaling up operations in chemical industry. Introduction to clean technology.

Module 2: Unit -2: Industrial Gases and Inorganic Chemicals (10L) Industrial Gases: Large scale production, uses, storage and hazards in handling of the following gases: oxygen, nitrogen, argon, neon, helium, hydrogen, acetylene, carbon monoxide, chlorine, fluorine, sulphur dioxide and phosgene. Oils and waxes. Polymer - plastic, rubber.

Module 3: Unit -3: Inorganic Chemicals

(10L)Inorganic Chemicals: Manufacture, application, analysis and hazards in handling the following chemicals: hydrochloric acid, nitric acid, sulphuric acid, caustic soda, common salt, borax, bleaching powder, sodium thiosulphate, hydrogen peroxide, potash alum, chrome alum, potassium dichromate and potassium permanganate. Soap and detergent. Fertilizer. Glasses. Cement.

Module 4: Unit -4: Industrial Metallurgy and Ceramics

(10L)

Preparation of metals (ferrous and non-ferrous) and ultra-pure metals for semiconductor technology. Crystalline ceramics and Noncrystalline ceramics and their electrical and optical properties.

Text books:

- 1. ULLMANN's Encyclipedia of Industrial Chemistry
- Industrial chemistry: Part 1 & part 2: by R. K. das 2.

Refernce texts:

- Dryden's outlines of Chemical Technology for 21st Century by Kirk-Othmer. 1.
- Industrial Inorganic chemistry by Mark Anthony Benvenuto. 2.

Sl. No.	Content of the course	Module No.	%age of questions	Course Outcome
1	Chemical technology	Module 1/Unit 1	25%	1. Separation of components from a mixture will be learnt, for scaling up operations in chemical industries
2	Industrial gases and inorganic chemicals	Module 2/Unit 2	25%	2. To acquire knowledge in large-scale production of industrial gases for application in Industry
3	Inorganic chemicals	Module 3/Unit 3	25%	3. To gain knowledge about different chemical manufacturing for use as raw material in industrial processes
4	Industrial metallurgy and ceramics	Module 4/Unit 4	25%	4. To learn extraction of metals and preparation of pure metals of use in semi-conductor and ceramic technology

(10L)

- 1. To learn changes in energy levels of a molecule after absorption of radiation to understand the effect of sunlight on living systems.
- 2. To gain knowledge about manufacture of laser for use in different field.
- 3. To know life time in the excited states of molecules which helps in predicting the reactions at excited state.
- 4. To learn characterization of the molecules and their applications for use in different field.

Module 1: Unit 1: Photophysical processes in molecules(8L)

Jablonski diagram, Fluorescence and Phosphorescence, Kasha's rule, Delayed fluorescence, Quantum yield, Mechanism and decay kinetics of photophysical processes. Fluorescence Quenching (dynamic and static), Stern Volmer equation. Energy transfer, Electron transfer phenomenon (Marcus theory, Rehm Weller theory), Proton transfer phenomenon, complex formation phenomenon (excimer, exciplex).

Module 2: Unit 1: Interaction of electromagnetic radiation with matter (8L) Interaction of electromagnetic radiation with matter, Transition probabilities, Transition moment integral

and its applications. Selection rules, Franck Condon principle, Oscillator strength, Nature of transitions, solvent effect on absorption and emission spectra, Stokes shift. Laser, different types and applications.

Module 3: Unit 3: Properties of electronically excited molecules and different non radiative electronic transition (8L)

Properties of electronically excited molecules: Life time, redox potential, dipole moment, pK values. Potential energy diagram for donor acceptor system, polarized luminescence.

Nonradiative intramolecular electronic transition; internal conversion, intersystem crossing, crossing of potential energy surface.

Module 4: Unit 3: Raman, Mossbauer, NQR and Photoelectron spectroscopy and applications (16L)

Raman Spectroscopy: Classical and quantum mechanical treatment of rotational and vibrational Raman spectra, Polarization and depolarization of Raman lines. Resonance Raman spectroscopy.

Mossbauer spectroscopy; Principles,technique,chemical shift,quadrupole effect,effects of magnetic field, applications. NQR spectroscopy: Principle, technique,coupling in atom, applications.

Photoelectron spectroscopy: principles and applications.

Text Books:

1. Lampman, G. M.; Pavia, D. L.; Kriz, G. S.; Vyvyan, J.R., *Introduction to Spectroscopy*, 5th Ed., Cengage Learning India, New Delhi (2015).

2. An introduction to Photochemistry by K.K.Rohatgi-Mukherjee.

- 1. *Photochemistry* by Wayne and Wayne.
- 2. *Photochemistry* by J.A. Barltrop and J.D.Coyle
- 3. Spectroscopy by Raymond Chang
- 4. Fundamentals of Molecular Spectroscopy by C. N. Banwell
- 5. *Spectroscopy* by Barrow.
- 6. Molecular Structure and Spectroscopy by G.Aruldhas.
- 7. W. Kemp, NMR in chemistry-A Multinuclear Introduction, McMillan, 1986.

Sl.No.	Content of the course	Module	%age of	Course Outcome
		No.	questions	
1	Photophysical processes in molecules	Module 1/Unit 1	20%	1. Changes in energy levels of a molecule after absorption of radiation can be learnt to understand the effect of sunlight on living systems.
2	Interaction of electromagnetic radiation with matter	Module 2/Unit 2	20%	2. Manufacture of laser can be learnt for use in different field.
3.	Properties of electronically excited molecules and different non radiative electronic transition	Module 3/Unit 3	20%	3. Life time in the excited states of molecules are known which helps in predicting the reactions at excited state.
4	Raman, Mossbauer, NQR and photoelectron spectroscopy and applications	Module 4/Unit 4	40%	4. Characterization of the molecules and their applications can be learnt for use in different field.

- 1. To handle doctor's prescription.
- 2. To know about how to prepare different medical solutions.
- 3. To know about different types of powder used in medicinal techniques.
- 4. To know how drugs act in our body.
- 5. To know how the dose of a drug is considered.
- 6. To know what is the process after the action of a drug.

Module 1: Unit-1: Pharmaceutics basics

- a. *Prescription:* Parts of prescription, handling of prescription, Posology.
- b. *Solution:* Formulation, aqueous and non-aqueous vehicles, factors affecting rate of solubilization and solubility, methods to improve aqueous solubility, formulation additives; Elixirs; Linctus; Mouthwashes and Gargles; Nasal and Ear drops; Lotions; Stability of solution; Syrups.
- c. *Powder:* Classification, advantages of powder formulation, milling, mixing and dividing of powders, factors influencing blending of powders, powders containing liquids, eutaxia.
- d. Pharmaceutical calculations Labelling of Pharmaceutical products

Module 2: Unit -2: Basics of Drug Action

(25L)

(15L)

- a. *Interactions:* Inter- and intramolecular interactions. Weak interactions in drug molecules. Chirality and drug action. Covalent, ion-ion, ion-dipole, Hydrogen bonding, C-H hydrogen bonding, dihydrogen bonding, Van der Waals interactions and the associated energies
- b. *Receptorology:* Drug-receptor interactions, Receptor theories and drug action: Occupancy Theory, Rate Theory, Induced Fit Theory, Macromolecular perturbation theory, ActivationAggregation theory. Topological and stereochemical consideration.
- c. *Enzyme Kinetics:* enzyme kinetics in drug action. Do all molecules of an enzyme have same kinetics? Mechanisms of enzyme catalysis, Electrostatic catalysis and desolvation. Covalent catalysis, Acid-base catalysis, Strain / distortion in enzyme catalysis. Coenzyme catalysis.
- d. *Enzyme Inhibition*: Drug action through enzyme inhibition. Examples based on PDE4, GSK3, etc. Theories of enzyme inhibition and inactivation. Enzyme activation of drugs prodrugs.
- e. *Nucleic acids& drug research:* NA as targets for drug action. NA-interactive agents. Classes of drugs that interact with nucleic acids. Intercalation, NA-alkylation, NA-strand breaking and their importance in drug action.
- f. *Drug likeness:* Drug like molecules and theories associated with the recognition of drug like properties. Physical organic chemistry of Drug metabolism, drug deactivation and elimination.
- g. *Drug action after Metabolism:* Phase I and Phase II transform.Concept of hard and soft drugs. Chemistry of ADME and Toxicity properties of drugs.

Text books:

- 1. C.O. Wilson, J.M. Beale, J.H. Block, *Textbook of Organic Medicinal and Pharmaceutical Chemistry*, 12th Edn., Lippincott Williams and Wilkins, 2010.
- 2. J. P. Remington, Remington's Pharmaceutical Sciences, Vol.13, 19th Edn., Mack, 1990.

- 1. *Pharmaceutical Chemistry I*, Dr. A. V. Kasture, Dr Sg Wadodkar, Pragati Books Pvt. Ltd., 2015
- 2. Essentials of Pharmaceutical Chemistry, Cairns, Donald, Fourth edition, 2012
- 3. A Textbook of Pharmaceutical Chemistry, Jayashree Ghosh, S. Chand Publishing, 2010.

Sl.	Content of the course	Module No.	%age of	Course Outcome
No.			questions	
1.	Pharmaceutics basics	Module	5	1.Will be able to explain the
		1/Unit-1		prescription of a doctor.
2.	Pharmaceutics basics	Module	15	2.Will be able to learn the variation
		1/Unit-1		of solutions used in medicine.
3.	Pharmaceutics basics	Module	15	3. Will be able to prepare and identify
		1/Unit-1		different types of powder used to
				prepare medicine.
4.	Basics of Drug Action	Module	15	4.Will be able to know how drugs
		2/Unit-2		works in our body.
5.	Basics of Drug Action	Module	25	5.Will be able to know about the
		2/Unit-2		importance and measurement
				methods of IC_{50} of a drug.
6.	Basics of Drug Action	Module	25	6.Will be able to know different
		2/Unit-2		process of the metabolism of a drug.

Industrial Exposure

•

Paper Code: MSAC-391 (2 Credit)(100 Marks)

To visit industry facility and subsequent submission of a report to the department from individual student. This is a value added course for students. Credits may be transferred after submission of report.

For industrial exposure, any industry should be chosen for the visit to observe their work and the experience in report form shall have to be submitted to the department.

Mini Project and Seminar Presentation	Paper Code: MSAC-392
	(2 Credit)(100 Marks)

Students will have to pursue literature survey under the guidance of faculty on scientific cutting edge progress related to the course curriculum. Then after, they have to make presentation followed by viva-voce.

For project report submission: 25 marks

For presentation and viva-voce: 25 marks

(20hr)

Course Objectives (CO):

- 1. To know different commands and environment of Python programming.
- 2. To use python programming for the solution of simple mathematical equations.

Module 1: Unit-1: Basics of Python programming, Object and data structure, Comparison operator, Python statement, methods and functions, object oriented programming, modules and packages, errors and expectation calculation.

- 1. Python Programming Language: A Complete Guide For Beginners To Master And Become An Expert In Python Programming Language, Brian Draper, 12 October 2016.
- 2. Core Python Programming, R. Nageswara Rao, 1 January 2018.

S1.	Content of the course	Module	%age of	Course Outcome
No.		No.	questions	
1	Python programming	Module	25	1.Will be able to write a
		1/Unit-1		python program
2	Python programming	Module	25	2.Will be able to solve
		1/Unit-1		simple equations using
				python

Preparation of complex materials and their characterization by physiochemical techniques(Lab)

Course Objectives (CO):

- 1. To determine relative average molecular mass of a polymer by viscosity method.
- 2. To determine thermodynamic solubility product of a sparingly soluble salt in aqueous medium.
- 3. To perform conductometric titration of a mixture of HCl and CH₃COOH with NaOH.
- 4. To determine CMC of surfactants from interfacial tension measurements.
- 5. To determine rate constant of acid catalysed inversion of canesugar by polarimetric method.
- 4. To determine second order rate constant of alkaline hydrolysis of ester by conductometric method.
- 5. To perform potentiometric titration of Ferrous ion by dichromate and evaluation of the formal potential of Fe^{3+}/Fe^{2+} .
- 6. To determine the redox potential E^0 of the quinhydrone electrode by potentiometric method and pH of buffer solution.

Module 1: Unit 1:

- 1. Determination of relative average molecular mass of a polymer by viscosity method.
- 2. Determination of thermodynamic solubility product of a sparingly soluble salt in aqueous medium.

Module 2: Unit 2:

- 1. Conductometric titration of a mixture of HCl and CH₃COOH with NaOH.
- 2. Determination of CMC of surfactants from interfacial tension measurements.

Module 3: Unit 3:

- 1. Determination of rate constant of acid catalysed inversion of canesugar by polarimetric method.
- 2. Determination of second order rate constant of alkaline hydrolysis of ester by conductometric method.

Module 4: Unit 4:

- 1. Potentiometric titration of Ferrous ion by dichromate and evaluation of the formal potential of Fe^{3+}/Fe^{2+} .
- 2. Determination of the redox potential E^0 of the quinhydrone electrode by potentiometric method and pH of buffer solution.

- 1. Practical Physical Chemistry by S.R.Palit and A.K.De.
- 2. Experimental Physical Chemistry by V.D.Athawale and Parul Mathur.

S	1.	Content of the course	Module	%age of	Course Outcome
N	Io.		No.	questions	
1		Determination of relative average molecular	Module-	25	Characterization of
		mass of a polymer by viscosity method.	1		molecules can be done
		Determination of thermodynamic solubility			for their applications
		product of a sparingly soluble salt in aqueous			
		medium			
2		Conductometric titration of a mixture of HCl	Module-	25	Estimation of the
		and CH ₃ COOH with NaOH. Determination of	2		components amount in
		CMC of surfactants from interfacial tension			a mixture.
		measurements.			
3		Determination of rate constant of acid catalysed	Module-	25	Rate of reactions are
		inversion of canesugar by polarimetric method.	3		known for applications.
		Determination of second order rate constant of			
		alkaline hydrolysis of ester by conductometric			
		method.			
4		Potentiometric titration of Ferrous ion by	Module-	25	Characterization of
		dichromate and evaluation of the formal	4		electrodes are done.
		potential of Fe^{3+}/Fe^{2+} . Determination of the			
		redox potential E ₀ of the quinhydrone electrode			
		by potentiometric method and pH of buffer			
		solution.			

Spectrpscopic Analysis Lab (LAB)

Paper code: MSAC-395 (3 Credit)(100 Marks)

Spectroscopic Analysis:

•

(40hr)

- 1. Determination of bonding in a molecule by using Fourier Transform Infrared (FTIR) spectroscopy.
- 2. Characterization of an compound by Attenuated Total Reflection Infra-Red Spectroscopy (ATR-FTIR, MID-IR).
- 3. Study of a charge-transfer complex between iodine and tritron-X 100 using UV-visible Spectroscopy (UV-Vis).
- 4. Determination of bond length of a diatomic molecule by Far-Infra-Red and Near Infra-Red spectroscopy.
- 5. Study of protein folding and defolding by Circular Dichroism (CD), and ORD.
- 6. Estimation of quenching constant of fluorescence quenching of a fluorescent molecule by Fluorescence spectrophotometer.
- 7. Quenching of fluorescence of a fluorescent molecule will be studied by time resolve fluorescence spectrophotometer.
- 8. Analysis and interpretation of sample data of given chemicals or compounds using Origin/ ChemOffice softwares.

Cheminformatics	Paper code: MSAC-401: (Elective III) (3 Credit) (100 Marks)				
Course Objectives (CO):					
1. To know how the information of a con	npound is stored in computer.				
2. To find out a compound from a databa	se using computer techniques.				
3. To know the available softwere to drav	w chemical structure of compounds.				
4. To know the important properties of a	compound to be a drug.				
5. To know different methods to design a	ι drug.				
Module 1: Unit-1: In-silico Representation	of Chemical Information (10L)				
a. CIF IUCr Crystallographic Info	ormation Framework				
b. CML Chemical Markup Langu	lage				
c. SMILES Simplified Molecul	lar Input Line Entry Specification				
d. Graph theory and its applicatio	n				
e. InChi IUPAC International C	Chemical Identifier				
f. Other representations					
Module 2: Unit-2: Chemical Databases and	Data Mining(10L)				
a. Cambridge Structural Database	CCDC CSD				
b. Crystallographic Open Databas	se COD				
c. Protein Data Bank PDB Ligand	d Explorer				
d. Chemspider					
e. Other Data Bases					
Module 3: Unit-3: Molecular Drawing and	Interactive visualization (10L)				
a. Chembraw h. Morgin Skotch					
$\begin{array}{c} \mathbf{O} \mathbf{P} \mathbf{T} \mathbf{F} \mathbf{P} \\ \mathbf{O} \mathbf{P} \mathbf{T} \mathbf{F} \mathbf{P} \end{array}$					
d Chimera RasMol PyMol					
e Quantumwise					
Module 4: Unit-4: Computer-Aided Drug)esign Tools (10L)				
a Molecular Modelling Tools					
b. Structural Homology Modellin	g Tools				
c. Docking Tools and Screening	Tools				
d. Methods for computation of IC	2 ₅₀ , LogP, toxicity etc.				
Text books:					
1. Chemoinformatics: A Textbook, Johann 2003, Wiley.	Gasteiger (Editor), Thomas Engel (Editor), November				

- 2. Chemoinformatics in Drug Discovery, Tudor I. Oprea (Editor), Raimund Mannhold (Series Editor), Hugo Kubinyi (Series Editor), Gerd Folkers (Series Editor), March 2006, Wiley.
- **Reference texts:**
 - 1. *Chemoinformatics in Drug Discovery*, Prof. Dr. Tudor I. Oprea, 26 January, 2005. Wiley online library.

Sl.	Content of the course	Module	%age of	Course Outcome
No.		No.	questions	
1.	In-silico Representation of	Module	10	1.Will be able to identify a compound
	Chemical Information	1/Unit 1		written in different format.
2.	Chemical Databases and	Module	20	2.Will be able to search drug like
	Data Mining	2/Unit 2		compounds from a data base to test new
				compounds as a drug.
3.	Molecular Drawing and	Module	10	3.Will be able to draw and store a
	Interactive Visualization	3/Unit 3		compound in computer.
4.	Computer-Aided Drug	Module	30	4.Will be familiar with the different
	Design Tools	4/Unit 4		properties of a drug.
5.	Computer-Aided Drug	Module	30	5.Will be able to desing a drug and
	Design Tools	4/Unit 4		predict its drug efficacy.

Project Stage-I (Term paper focus on project & Seminar) Paper code: MSAC-491 (5 Credit) (100 Marks)

1.Review of literature and submission of report on a project based on an experiment using a sophisticated equipment and the duration of work is four weeks. The project report has to be submitted and will be evaluated by a committee consisting of faculties of the department and one from allied department, through seminar presentation on the report.

Project Stage-II (Dissertation & Viva-voce)

Paper code: MSAC-492 (16 Credit) (100 Marks)

1. Review of literature, project work and submission of dissertation.

2. Viva-voce on submitted work.

Laboratory work on any topic which will be useful for further studies, to be performed in-house or in any institute. After completion of work of minimum 12 weeks duration the project report shall be submitted in dissertation form and that will be evaluated through presentation on submitted work followed by viva-voce in presence of a committee constituted by an external expert and internal teachers.