

Maulana Abul Kalam Azad University of Technology, West Bengal (formerly West Bengal University of Technology)

Department of Biotechnology

M.Sc. (Biotechnology) Master of Science in Biotechnology

Syllabus 2019 (Two-Year Course)

(Syllabus of Biotechnology is adapted & modified from the syllabus prescribed by the Department of Biotechnology, Govt. of India, with slight modification)

M.Sc Biotechnology (2-Year, 4-Semester Course) (2019)

S. No.	Paper Code	Course Title	Contact Hours/ wk	Credits		
SEMESTER ONE						
1	MSUBT-101	Biochemistry	3-0-0	3		
2	MSUBT-102	Laboratory Techniques & Biosafety	3-0-0	3		
3	MSUBT-103	Cell and Molecular Biology	3-0-0	3		
4	MSUBT-104	Biostatistics	3-0-0	3		
5	MSUBT-105	Microbiology	3-0-0	3		
6	MSUBT-191	Laboratory I: Biochemistry and Analytical	0-0-6	3		
		Techniques		-		
7	MSUBT-192	Laboratory II: Microbiology	0-0-6	3		
8	MSUBT-181	Seminar / Journal Presentation		1		
		TOTAL		22		
		SEMESTER TWO	· · · · · · · · · · · · · · · · · · ·			
1	MSUBT-201	Genetics and Molecular Diagnostics	3-0-0	3		
2	MSUBT-202	Genomics and Proteomics	3-0-0	3		
3	MSUBT-203	Immunology	3-0-0	3		
4	MSUBT-204	Genetic Engineering	3-0-0	3		
5	MSUBT-205	Applied Bioinformatics	3-0-0	3		
6	MSUBT-206	Choice Based Courses (From MOOCs basket)		2		
7	MSUBT-291	Laboratory III: Molecular Biology &	0-0-6	3		
		Genetic Engineering				
8	MSUBT-292	Laboratory IV: Immunology	0-0-6	3		
9	MSUBT-281	Seminar / Journal Presentation		1		
		TOTAL		24		
	SEMESTER THREE					
1	MSUBT-301	Bioprocess Engineering and Technology	3-0-0	3		
2	MSUBT-302	Plant & Animal Cell Culture Technology	3-0-0	3		
3	MSUBT-303	Industrial Biotechnology	3-0-0	3		
4	MSUBT-304	Intellectual Property Rights, Biosafety and Bioethics	3-0-0	3		
5	MSUBT-305	Choice Based Courses (From Elective Basket)	2-0-0	2		
6	MSUBT-306	Choice Based Courses (From MOOCs Basket)		2		
7	MSUBT-391	Laboratory V: Bioprocess Engineering and Technology	0-0-6	3		
8	MSUBT-392	Laboratory VI: Applied Bioinformatics	0-0-6	3		
9	MSUBT-393	Laboratory VII Lab for Data Analysis Using 0-0-4		2		
		Statistical Software				
10	MSUBT-381	Project Proposal Presentation		2		
		TOTAL		26		
	SEMESTER FOUR					
1	MSUBT-481	Dissertation		22		
2	MSUBT-482	Industry/ Lab visit		1		
3	MSUBT-483	Seminar / Journal Presentation		1		
		TOTAL		24		
		TOTAL CREDITS		96		

Recommended Electives

Code	Subject	
MSUBT-305A	Principles of Ecology	
MSUBT-305B	Research Methodology and Writing	
MSUBT-305C	Nanobiotechnology	
MSUBT-305D	Enzyme Technology	
MSUBT-305E	Plant Molecular Biology	
MSUBT-305F	Medical Devices	
MSUBT-305G	Environmental Biotechnology	

Semester One

1.Biochemistry	MSUBT 101 Credits 3			
Unit I	Formation of chemical bonds, molecular orbital (MO) theory and linear combination of atomic orbitals (LCAO), basics of mass spectrometry,			
Basic chemistry	molecules, Avogadro number, molarity, chemical reactions, reaction stoichiometry, rates of reaction, rate constants, order of reactions, kinetic versus thermodynamic controls of a reaction, reaction equilibrium (equilibrium constant); light and matter interactions (optical spectroscopy, fluorescence, bioluminescence, paramagnetism and diamagnetism, photoelectron spectroscopy; chemical bonds (ionic, covalent, Van der Walls forces); electronegativity, polarity; VSEPR theory and molecular geometry, dipole moment, orbital hybridizations; acids, bases and pH - Arrhenious theory, pH, ionic product of water, weak acids and bases, conjugate acid- base pairs, buffers and buffering action etc; chemical thermodynamics - internal energy, heat and temperature, enthalpy (bond enthalpy and reaction enthalpy), entropy, Gibbs free energy of ATP driven reactions, spontaneity versus driven reactions in biology; bond rotations and molecular conformations - Newman projections, conformational analysis of alkanes, alkenes and alkynes; functional groups, optically asymmetric carbon centers, amino acids, proteins, rotational freedoms in polypeptide backbone (Ramachandran plot).			
Unit II	Water – properties of water, essential role of water for life on earth pH, buffer, maintenance of blood pH and pH of gastric juice, pH optima of different enzymes (pensin, trypsin and alkaline phosphatase), ionization and			
Protein structure	different enzymes (pepsin, trypsin and alkaline phosphatase), ionization and hydrophobicity, emergent properties of biomolecules in water, biomolecular hierarchy, macromolecules, molecular assemblies; Structure- function relationships: amino acids – structure and functional group properties, peptides and covalent structure of proteins, elucidation of primary and higher order structures, Ramachandran plot, evolution of protein structure, protein degradation and introduction to molecular pathways controlling protein degradation, structure-function relationships in model proteins like ribonuclease A, myoglobin, hemoglobin, chymotrypsin etc.; basic principles of protein purification; tools to characterize expressed proteins; Protein folding: Anfinsen's Dogma, Levinthal paradox, cooperativity in protein folding, free energy landscape of protein folding and pathways of protein folding.			
Unit III	Enzyme Classification, Enzyme catalysis – general principles of catalysis; quantitation of enzyme activity and efficiency; enzyme characterization and Michaelis-Menten kinetics; relevance of enzymes in metabolic regulation, activation, inhibition and covalent modification; single substrate enzymes; restriction enzymes and nucleoside monophosphate kinase; regulatory strategies with specific example of haemoglobin; isozymes; role of covalent modification in enzymatic activity; zymogens.			
Enzyme kinetics				
Unit IV	Sugars-mono, di, and polysaccharides with specific reference to glycogen,			
Glycobiology	amylose. lipids- structure and properties of important members of storage and membrane.			

Unit V	Nucleosides, nucleotides, nucleic acids - structure, a historical perspective			
Nucleic acid	leading up to the proposition of DNA double helical structure.			
Unit VI	Bioenergetics-basic principles; equilibria and concept of free energy; coupled interconnecting reactions in metabolism; oxidation of carbon fuels;			
Bioenergetics	entry to citric acid cycle, citric acid cycle as a source of biosynthetic precursors; Oxidative phosphorylation, Photosynthesis – chloroplasts and two photosystems; proton gradient across thylakoid membrane.			
Unit VII	Calvin cycle and pentose phosphate pathway; glycogen metabolism,			
Role of vitamins & cofactors in metabolism	metabolic pathways; logic and integration of central metabolism; entry/ exit of various biomolecules from central pathways; principles of metabolic regulation; steps for regulation.			
Recommended Text books and References	 Stryer, L. (2015). Biochemistry. (8th ed.) New York: Freeman. Lehninger, A. L. (2012). Principles of Biochemistry (6th ed.). New York, NY: Worth. Voet, D., & Voet, J. G. (2016). Biochemistry (5th ed.). Hoboken, NJ: J. Wiley & Sons. Dobson, C. M. (2003). Protein Folding and Misfolding. Nature, 426(6968), 884-890. doi:10.1038/nature02261. Richards, F. M. (1991). The Protein Folding Problem. Scientific American, 264(1), 54-63. doi:10.1038/scientificamerican 0191-54. 			

2. Laboratory		MSUBT 102	Credits 3	
Techniques & S	Safety			
Unit I	Basic goal (health adm	of Chemical hygiene and inistration (OSHA), Safety	lab safety, Occupational Safety and precaution, Health hazard, Chemical	
Laboratory safety	and biological hazard, Personal protective equipment			
Unit II	Paper Chromatography, Thin-layer chromatography, Displacement chromatography, Gas chromatography, High performance / pressure			
Chromatography Techniques	liquid chromatography, Ion exchange chromatography, Size-exclusion chromatography, Affinity chromatography.			
Unit III	Theory and application of Polyacrylamide and Agarose gel electrophoresis;			
Electrophoretic techniques and blotting techniques	Capillary electrophoresis; 2D Electrophoresis; Immunoelectrophoresis, Isoelectric focussing, Disc gel electrophoresis; Gradient electrophoresis; Pulsed field gel electrophoresis, Western blot, Eastern blot, Southern blot, Northern blot.			
Unit IV	Radioactive & stable isotopes; Pattern and rate of radioactive decay; Units			
Radioactivity	of radioactivity; Measurement of radioactivity; Geiger-Muller counter; Solid & Liquid scintillation counters (Basic principle, instrumentation & technique); Applications of isotopes in biochemistry; Autoradiography.			
Unit V	Basic principles; Mathematics & theory (RCF, Sedimentation coefficient etc);			
Centrifugation	Types of centrifuge, Micro centrifuge, High speed & Ultracentrifuges; Preparative centrifugation; Differential & density gradient centrifugation; Applications (Isolation of cell components); Analytical centrifugation;			

	Determination of molecular weight by sedimentation velocity & sedimentation equilibrium methods.				
Unit VI	Optical microscopy, Electron microscopy, Confocal microscopy				
Microscopy					
Unit VII	DNA and Amino acid Sequencing, DNA CHIP, Microarray, Subtractive				
Advanced techniques	Hybridization, RNase protection assay, ELISA, Mass spectroscopy, Infra-red spectroscopy, NMR, Circular Dichroism				
Recommended Text books and References	 Cantor & Schimmel : Biophysical Chemistry (Part I, II & III) A. Lehninger : Principles of Biochemistry Freifelder D., Physical Biochemistry, Application to Biochemistry and Molecular Biology, 2nd Edition, W.H. Freeman & Company, San Fransisco, 1982. Keith Wilson and John Walker, Principles and Techniques of Practical Biochemistry, 5th Edition, Cambridge University Press, 2000. D. Holme & H. Peck, Analytical Biochemistry, 3rd Edition, Longman, 1998. R. Scopes, Protein Purification - Principles & Practices, 3rd Edition, Springer, Verlag, 1994. Selected readings from Methods in Enzymology. Academic Press 				

3. Cell and Molecular Biology		MSUBT 103	Credits 3	
Unit I	Universal features of cells; cell chemistry and biosynthesis: chemical organization of cells; internal organization of the cell - cell membranes: structure of cell membranes and concepts related to compartmentalization in eukaryotic cells; intracellular organelles: endoplasmic reticulum and Golgi apparatus, lysosomes and peroxisomes, ribosomes, cellular cytoskeleton, mitochondria, chloroplasts and cell energetics; nuclear compartment: nucleus, nucleolus and chromosomes.			
Dynamic organization of cell				
Unit II	Chromatin organization - histone and DNA interactome: structure and assembly of eukaryotic and prokaryotic DNA polymerases, DNA-replication, repair and recombination; chromatin control: gene transcription and silencing by chromatin- Writers,-Readers and –Erasers; Transcriptional control: Structure and assembly of eukaryotic and prokaryotic RNA Polymerases, promoters and enhancers, transcription factors as activators and repressors, trancriptional initiation, elongation and termination; post-transcriptional control: splicing and addition of cap and tail, mRNA flow through nuclear envelope into cytoplasm, breakdown of selective and specific mRNAs through interference by small non-coding RNAs (miRNAs and siRNAs), protein translation machinery, ribosomes-composition and assembly; universal genetic codes, degeneracy of codons, Wobble hypothesis; Iso-accepting tRNA; mechanism of initiation, elongation and termination; co- and post-translational modifications, mitochondrial genetic code			
Chromatin structure and dynamics				

Unit III	Molecular mechanisms of membrane transport, nuclear transport,		
Cellular signalling, transport and trafficking	transport across mitochondria and chloroplasts; intracellular vesicular trafficking from endoplasmic reticulum through Golgi apparatus to lysosomes/cell exterior.		
Unit IV	Cell cycle and its regulation; cell division: mitosis, meiosis and cytokinesis;		
Cellular processes	cell differentiation: stem cells, their differentiation into different cell types and organization into specialized tissues; cell-ECM and cell-cell interactions; cell receptors and trans- membrane signalling; cell motility and migration; cell death: different modes of cell death and their regulation.		
Unit V	Isolation of cells and basics of cell culture; observing cells under a		
Manipulating and studying cells	microscope, different types of microscopy; analyzing and manipulating DNA, RNA and proteins.		
Unit VI	Mutations, proto-oncogenes, oncogenes and tumour suppressor genes,		
Genome instability and cell transformation	stability and sformation physical, chemical and biological mutagens; types of mutations; intra-genic in prokaryotes and eukaryotes, role of transposons in genome; viral and cellular oncogenes; tumor suppressor genes; structure, function and mechanism of action; activation and suppression of tumor suppressor genes: oncogenes as transcriptional activators		
Recommended Text books and References	 Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular Biology of the Cell (5th Ed.). New York: Garland Science. Lodish, H. F. (2016). Molecular Cell Biology (8th Ed.). New York: W.H. Freeman. Krebs, J. E., Lewin, B., Kilpatrick, S. T., & Goldstein, E. S. (2014). Lewin's Genes XI. Burlington, MA: Jones & Bartlett Learning. Cooper, G. M., & Hausman, R. E. (2013). The Cell: a Molecular Approach (6th Ed.). Washington: ASM ; Sunderland. Hardin, J., Bertoni, G., Kleinsmith, L. J., & Becker, W. M. (2012). Becker's World of the Cell. Boston (8th Ed.). Benjamin Cummings. Watson, J. D. (2008). Molecular Biology of the Gene (5thed.). Menlo Park, CA: Benjamin/Cummings 		

4. Biostatistics	MSUBT 104	Credits 3		
Unit I	Basic definitions and applications. Sampling: Representative sample, sample size, sampling bias and sampling techniques. Data collection and presentation: Types of data, methods of collection of primary and secondary data, methods of data presentation, graphical representation by histogram, polygon, ogive curves and pie diagram.			
Introduction to Biostatistics				
Unit II Measures of central tendency: Mean, Median, Mode.	Measures of variability: Standard deviation, standard error, range, mean deviation and coefficient of variation. Correlation and regression: Positive and negative correlation and calculation of Karl- Pearsons co-efficient of correlation. Linear regression and regression equation and multiple linear regression, ANOVA, one- and two-way classification. Calculation of an unknown variable using regression equation			

Unit III Tests of hypothesis	Tests of significance: Small sample test (Chi-square t test, F test), large sample test (Z test) and standard error. Introduction to probability theory and distributions, (concept without deviation) binomial, poison and normal (only definitions and problems) Computer oriented statistical techniques. Frequency table of single discrete variable, bubble spot, computation of mean, variance and standard Deviations, t test, correlation coefficient. Randomized block design, complete block design, Usage of Statistical software.			
	1. Aitken, M., Broadhursts, B., & Haldky, S. (2009) Mathematics for Biological Scientists, Carland Science			
Recommended Text	2 Billingsley P (1986) Probability and Measure New York: Wiley			
books and References	 Biningsley, P. (1966). Frobability and Wicasare: New Fork. Wiley. Rosner, B. (2000). Fundamentals of Biostatistics. Boston, MA: Duxbury Press. Daniel, W. W. (1987). Biostatistics, a Foundation for Analysis in the Health Sciences. New York: Wiley., 264(1), 54-63. doi:10.1038/scientificamerican 0191-54. 			

5. Microbiology		MSUBT 105	Credits 3		
Unit I Microbial	Introduction to microbiology and microbes, history & scope of microbiology, morphology, structure, growth and nutrition of bacteria, Microbial fermentation, Microbial energetics, biosynthesis of enzymes,				
characteristics	activ hete resp anti	vation energy, endergonic and exergonic erotrophic generation of ATP, Photophos iration, bacterial growth curve, ba microbial resistance.	c reaction, autotrophic and porylation, fermentation vs neterial culture methods;		
Unit II	Microbial taxonomy and evolution of diversity, classification of microorganisms, criteria for classification; classification of bacteria;				
Microbial diversity & and taxonomy	Cyanopacteria, acetic acid bacteria, Pseudomonads, lactic and propionic acid bacteria, endospore forming bacteria, Mycobacteria and Mycoplasma; Archaea: Halophiles, Methanogens, Hyperthermophilic archaea, Thermoplasm; Eukaryotes: algae, fungi, slime molds and protozoa; extremophiles and unculturable microbes, Molecular Taxonomy, Identification and characterization of unknown microbes.				
Unit III Control of microorganisms	Sterilization, disinfection and antisepsis: physical and chemical methods for control of microorganisms, antibiotics, antiviral and antifungal drugs, biological control of microorganisms				
Unit IV Bacterial genetics	Mutation and recombination in bacteria, plasmids, transformation, transduction and conjugation; Transposon, Prokaryotic gene expression.				
Unit V Interaction of microbes with its environment	Antibiotic, Probiotic, Prebiotic, drug resistance, multiple drug resistance, Host- pathogen interaction.				
Recommended Text books and References	 Joanne M. Willey, Linda Sherwood, Christopher J. Woolverton; (2011 Prescott's Microbiology, McGraw Hill. Michael Joseph Pelczar, Eddie Chin Sun Chan, Noel R. Krieg; (1993 Microbiology 				
	3. Gerard J. Tortora, Berdell R. Funke, Christine L. Case; (2015); Microbiology by Tortora. Pearson Education.				

6. Lab	oratory I	MSUBT 191	Credits 3		
Biochemistry	& Analytical				
Tech	niques				
Syllabus	1 Proparing various stock	colutions and working so	lutions that will be		
Synabus	1. Preparing various stock solutions and working solutions that will be				
	2. To prepare an Acetic-Na	Acetate Buffer and valid	late the Henderson-		
	Hasselbach equation.				
	3. To determine an unkr	nown protein concentra	ation by plotting a		
	standard graph of BSA usir	ng UV-Vis Spectrophoton	neter and validating		
	the Beer- Lambert's Law.				
	4. Titration of Amino Acid	s and separation of alip	hatic, aromatic and		
	polar amino acids by thin la	yer chromatography.	from a recombinant		
	source (such as Alkaline Ph	osnhatase or lactate De	hydrogenase or any		
	enzyme of the institution's	choice), a) Preparation c	of cell-free lysates b)		
	Ammonium Sulfate precip	itation c) Ion-exchange	Chromatography d)		
	Gel Filtration e) Affinity (Chromatography f) Dialy	sis of the purified		
	protein solution against 6	0% glycerol as a demor	nstration of storage		
	method g) Generating a	Purification Table (pro	tein concentration,		
	amount of total protein; Computing specific activity of the enzyme				
	preparation at each stage of purification) h) Assessing purity of samples				
	Trom each step of purification by SDS-PAGE Gel Electrophoresis I)				
	6 Experimental verification that absorption at OD260 is more for				
	denatured DNA as compared to native double stranded DNA, reversal of				
	the same following DNA renaturation. Kinetics of DNA renaturation as a				
	function of DNA size.				
	7. Identification of an unki	nown sample as DNA, R	NA or protein using		
	available laboratory tools. (Optional Experiments)			
	8. Biophysical methods (Ci	rcular Dichroism Spectro	scopy, Fluorescence		
	Spectroscopy).	f small molecules and fra	montation nattorns		
	by Mass Spectrometry	i sinali indiecules and ira	ginemation patterns		
	1. Joanne M. Willey, Linda	Sherwood, Christopher	. Woolverton; (2011)		
Recommended Text	Prescott's	·,	, ()		
books and References	Microbiology, McGraw Hill.				
	2. Michael Joseph Pelczar, Eddie Chin Sun Chan, Noel R. Krieg; (1993)				
	Microbiology				
	by Pelczar. McGraw Hill.				
	3. Gerard J. Tortora, Berdell K. FUNKE, Christine L. Case; (2015);				
	Tortora. Pearson Education.				

7. Laboratory Microbiolog	y II Iy	MSUBT 192	Credits 3	
Syllabus	1. Sterilization, disinfection, safety in microbiological laboratory.			
	2. P	reparation of media for growt	h of various microorganisms.	
	3. Ic	3. Identification and culturing of various microorganisms.		
	4. St	4. Staining and enumeration of microorganisms.		
	5. Growth curve, measure of bacterial population by turbidometry			
	and studying the effect of temperature, pH, carbon and nitrogen.			
	6. A	ntibiotics assay and demonstra	ation of antibiotic resistance.	
	7. Isolation and screening of industrially important microorganisms.			
	8. Determination of thermal death point and thermal death time of			
	microorganisms.			
	1. Cappuccino, J. G., & Welsh, C. (2016). Microbiology: a Laboratory Manual.			
Recommended Text	Benjamin-Cummings Publishing Company.			
books and References	2. Collins, C. H., Lyne, P. M., Grange, J. M., & Falkinham III, J. (2004). Collins			
	and Ly	ne's Microbiological Methods	(8th ed.). Arnolds.	
	3. Tille, P	3. Tille, P. M., & Forbes, B. A. Bailey & Scott's Diagnostic Microbiology.		

8.\$eminar/ Journal	MSUBT 181	Credits 1
Presentation		

Semester Two

1. Genetics & Molecular		MSUBT 201	Credits 3
Diagnostics			
Unit I	Concept of a gene in pre-DNA era; mapping of genes in bacterial and		
Genetics of bacteria,	phage chromosomes by classical genetic crosses; genetic		
bacteriophages and Yeast	complementation and other genetic crosses using phenotypic markers;		
	Meiotic crosses, tetrad analyses, non-Mendelian and Mendelian ratios		
Unit II	Monohybr	id & dihybrid crosses, b	ack-crosses, test-crosses, analyses of
Drosophila genetics as a	autosomal	and sex linkages, scree	ning of mutations based on
model of higher eukaryotes	phenotype	es and mapping the sam	e, hypomorphy, genetic mosaics,
	genetic ep	istasis in context of dev	elopmental mechanism.
Unit III	Introductio	on to the elements of po	opulation genetics: genetic variation,
Population genetics and	genetic dri	ft, neutral evolution; m	utation selection, balancing selection,
genetics of evolution	Fishers the	eorem, Hardy- Weinberg	g equilibrium, linkage disequilibrium;
	In- breedir	ng depression & mating	systems; population bottlenecks,
	migrations	, Bayesian Statistics; au	aptive landscape, spatial variation &
Linit IV		w of chromosomal stru	cture & mutations: DNA
Genome Biology in Health	nolymorphism: human identity: clinical variability and constically		
Disease Detection and	determine	d adverse reactions to c	drugs.
Analysis: Molecular	ARMS PCR- ISH- FISH- ISA- RFI P- DHPI C- DGGF- CSCF- SSCP- FST- SAGE-		
Oncology	Diagnostic proteomics: SELDI-TOF-MS; Bioinformatics data acquisition		
87	& analysis. Detection of predictive biomarkers for personalized onco-		
	therapy of human diseases such as chronic myeloid leukemia, as well as		
	matching t	argeted therapies with	patients and preventing toxicity of
	standard s	ystemic therapies.	
Unit V	Direct dete	ection and identificatior	n of pathogenic-organisms through
Detection and Identity of	microscop	y, ELISA, PCR and immu	noprecipitation that are slow growing
Microbial Diseases, Inherited	or current	ly lacking a system of in	vitro cultivation as well as genotypic
Diseases and Diagnostic	markers of	f microbial resistance to	specific antibiotics. Exemplified by
Metabolomics	dramatic improvement of quality of modical care; e.g. Eragile V		
	Gramatic improvement of quality of medical care: e.g., Fragile X		
	Syndrome: Metabolite profile for biomarker detection the body		
	NMR technological platforms		
Unit VI	Quality oversight: regulations and approved testing (according to ICMR		
Quality assurance and	guideline)		
control	Surgenite,		
	1.Campbe	ll, A. M., & Hever, I	. J. (2006). Discovering Genomics,
Recommended Text books	Proteomics, and Bioinformatics, San Francisco: Beniamin Cummings.		
and References	2.Brooker, R. J. (2009). Genetics: Analysis & Principles. New York. NY:		
	McGraw-H	lill.	
	3.Glick, B.	. R., Pasternak, J. J.,	& Patten, C. L. (2010). Molecular
	Biotechnology: Principles and Applications of Recombinant		
	DNA. Washington, DC: ASM Press. 4. Coleman, W. B., & Tsongalis, G. J.		
	(2010).		
	4.Molecular Diagnostics: for the Clinical Laboratorian. Totowa, NJ:		

Humana Press.
5.Hartl, D. L., & Jones, E. W. (1998). Genetics: Principles and Analysis.
Sudbury, MA: Jones and Bartlett.
6.Pierce, B. A. (2005). Genetics: a Conceptual Approach. New York:
W.H. Freeman.
7.Tamarin, R. H., & Leavitt, R. W. (1991). Principles of Genetics.
Dubuque, IA: Wm. C. Brown.
8.Smith, J. M. (1998). Evolutionary Genetics. Oxford: Oxford University
Press.

2.Genomics &	Proteomics	MSUBT 202	Credits 3	
Unit I Metagenomics	Metagenome Seque MPLING and Data G for Metagenomic An Human Genome and	encing and Analysis, Prese Generation, Sequence Process alysis, Application for Metage its Evolution, Overview of the	quencing Considerations, sing, Tools and Databases enomic Data Analysis e Human Genome, Protein	
Human Genomics	Coding Genes in the Human Genome, RNA Coding Genes and Gene Expression Control Regions, Genomic Heterogeneity of the Human Genome, Genetic Changes That Made Us Human, Ancient Human Genomes, UCSC Human Genome Browser			
Unit III	What is the Transcrip within Transcripton	ptome and how it is evaluate ne. Transcriptome Evaluati	d? Type of RNA molecules on Method: Microarray	
Transcriptomics	Analysis, DNA Mi Transcriptome Analy and Expression Sig Visualizationand Ana	icroarrays, The Diversity vsis Throughout RNA-seq, Ide natures, Methods for Gene ilysis, Construction and Analys	of the Transcriptome, entification of Biomarkers e Co-expression Network sis of GCNs	
Unit IV	DNA Methylation, Epigenetic Mechanisms of Gene Regulation, Strategies for Epigenome Analysis, ChIP, ChIP-on-Chip, ChIP-Seq, Profiling of DNA Methylation MeDIP-seq Sequencing the Epigenome Integrating			
Epigenomics	Epigenomic Results, Visualizing the Epigenome, Epigenetics of Aging			
Unit V	Protein Structure, Secondary, Tertiary Amino Acid Sequer Western Blots, Mass	Amino Acids, Peptide Bo Structure, Quaternary, Expern Inces and Protein Structures S Spectrometry, Chemical Ide	onds, Primary Structure, rimental Determination of Protein 2D Gels, Protein ntification of Amino Acids	
Proteomics	Western Blots, Mass Spectrometry, Chemical Identification of Amino Acids in Peptides, Analysis of Protein 3D Structure by X Ray Diffraction and,Other Assays for Protein Compositions and Interactions, Computational Methods for Modeling Molecular Structures, Molecular-Force-Field, Molecular Dynamics, Hydrogen Bonds Computation and Minimization of Solutions to the Problem of Minimization of RMSD over Rotations, Solutions to the Problem of Minimization of RMSD over Rotations and Solvent- Accessible Surface of a Protein, Computational Prediction of Protein Structure and Function, Inferring Structures of Proteins, Protein, De Novo Methods, Comparative Protein Modeling, Visualization of protein modeling by Swiss PDB package, Application of Biopolymer package in			
	protein modeling, Protein–Ligand Bindi	Necessary application of n ng Analysis , Classification Ba	nodeling in proteomics, sed on Proteomic Assays	

Recommended Text	1. Branden and Tooze "Introduction to Protein Structure"
books and References	2. R. R. Sinden, "DNA Structure & Function"
	A. R. Leach "Molecular Modelling- Principles & Function"
	3. Mount "Bioinformatics" Cold Spring Harbour
	4. Arthur Lesk "Introduction to Bioinformatics

3.Immunology	MSUBT 203	Credits 3	
Unit I	Components of innate and acquired	immunity: Phagocytosis: Complement	
	and Inflammatory responses; patho	gen recognition receptors (PRR) and	
Immune system	pathogen associated molecular patt	ern (PAMP); Haematopoesis; Organs	
	and cells of the immune system- prir	nary and secondary lymphoid organs;	
	Lymphatic system; Lymphocyte circu	lation; Lymphocyte homing; Mucosal	
	and Cutaneous associated Lymp	hoid tissue.(MALT&CALT); Mucosal	
	Immunity; Antigens - immunogens, haptens; Major Histocompatibility		
	Complex - MHC genes, MHC and immune responsiveness and disease		
	susceptibility, HLA typing.		
Unit II	Immunoglobulins - basic struc	ture, classes & subclasses of	
Immune responses	immunoglobulins, antigenic detern	ninants; multigene organization of	
generated by B and T	Immunoglobulin genes; B-cell rece	eptor; Immunoglobulin superfamily;	
lymphocytes	immuno rosponso momony: B	coll maturation activation and	
	differentiation: generation of antibody diversity: T-cell maturation		
	activation and differentiation and T-cell receptors: functional T Cell subsets		
	cell-mediated immune responses, ADCC; cytokines: properties, receptors		
	and therapeutic uses; antigen processing and presentation- endogenous		
	antigens, exogenous antigens, non-p	peptide bacterial antigens and super-	
	antigens; cell-cell co-operation, Hapte	n-carrier system.	
Unit III	Precipitation, agglutination and comp	plement mediated immune reactions;	
Antigen-antibody	Advanced immunological techniques -	RIA, ELISA, Western blotting,	
interactions	ELISPOT assay, immunofluor	escence, flow cytometry and	
	immunoelectron microscopy; Surface	e plasma resonance, Biosenor assays	
	for assessing ligand -receptor	r interaction, CMI techniques-	
	assays Apontotosis Microarrays Transgenic mice Gene knock outs CD		
	assays, Apoptotosis, Microarrays, Hansgenic Hile, Gene Knock Ouls, CD nomenclature Identification of immune Cells. Principle of		
	Immunofluorescence Microscopy, El	urochromes: Staining techniques for	
	live cell imaging and fixed cells. Flow cytometry Instrumentation		
	Applications.		
Unit IV	Active and passive immunization; Live	e, killed, attenuated, sub unit vaccines;	
Vaccinology	Vaccine technology- Role and prope	rties of adjuvants, recombinant DNA	
	and protein based vaccines, plant-l	based vaccines, reverse vaccinology;	
	Peptide vaccines, conjugate vaccines; Antibody genes and antibody		
	engineering- chimeric and hybrid monoclonal antibodies; Catalytic		
	antibodies and generation of immunoglobulin gene libraries.		
Unit V	Immunity to Infection: Bacteria, viral	, fungal and parasitic infections (with	
	l examples from each group): Hypers	ensitivity - Type I-IV: Autoimmunity:	

	Types of autoimmune diseases; Mechanism and role of CD4+ T cells; MHC				
Clinical Immunology	and TCR in autoimmunity; Treatment of autoimmune diseases;				
	Transplantation-Immunological basis of graft rejection; Clinical				
	transplantation and immunosuppressive therapy; Tumor immunology -				
	Tumor antigens; Immune response to tumors and tumor evasion of the				
	immune system, Cancer immunotherapy; Immunodeficiency- Primary				
	immunodeficiencies, Acquired or secondary immunodeficiencies.				
	Immunoglobulin therapy, Specific and nonspecific immunotherapy for				
	Asthma and allergic diseases.				
	1. Kuby, RA Goldsby, Thomas J. Kindt, Barbara, A. Osborne Immunology,				
	6th Edition, Freeman, 2002.				
Recommended Text	2. Brostoff J, Seaddin JK, Male D, Roitt IM., Clinical Immunology, 6th				
books and References	Edition, Gower Medical Publishing, 2002.				
	3. Janeway et al., Immunobiology, 4th Edition, Current Biology				
	publications., 1999.				
	4. Paul, Fundamental of Immunology, 4th edition, Lippencott Raven				

4. Genetic Engi	neering	MSUBT 204	Credits 3	
Unit I	Impact of genetic engineering in modern society; general requirements for			
Introduction and tools for genetic engineering	and methylases; DNA ligase, Klenow enzyme, T4 DNA polymerase, polynucleotide kinase, alkaline phosphatase; cohesive and blunt end ligation; linkers; adaptors; homopolymeric tailing; labelling of DNA: nick translation, random priming, radioactive and non-radioactive probes, hybridization techniques: northern, southern, south-western and far- western and colony hybridization, fluorescence in situ hybridization			
Unit II	Plasmids; B	acteriophages; M13 mp v	ectors; PUC19 and Bluescript vectors,	
Different types of vectors	Artificial chromosome vectors, insertion and heplacement vectors, cosinids, expression expression vectors; pMal; GST; pET-based vectors; Protein purification; His-tag; GST-tag; MBP-tag etc.; Intein-based vectors; Inclusion bodies; methodologies to reduce formation of inclusion bodies; mammalian expression and replicating vectors; Baculovirus and Pichia vectors system, plant based vectors, Ti and Ri as vectors, yeast vectors, shuttle vectors.			
Unit III	Principles o	of PCR: primer design; fid	lelity of thermostable enzymes; DNA	
Different types of PCR techniques	polymerases; types of PCR – multiplex, nested; reverse-transcription PCR, real time PCR, touchdown PCR, hot start PCR, colony PCR, asymmetric PCR, cloning of PCR products; T-vectors; proof reading enzymes; PCR based site specific mutagenesis; PCR in molecular diagnostics; viral and bacterial detection; sequencing methods; enzymatic DNA sequencing; chemical			
	sequencing of DNA; automated DNA sequencing; RNA sequencing; chemical			
	synthesis of	oligonucleotides; mutatio	on detection: SSCP, DGGE, RFLP, RAPD,	
	functional c	Inicrosatellite, DNA mark	er, Polymorphism, Positional cioning, z	
Unit IV	Insertion of transfection	foreign DNA into host c ; construction of libraries	cells; transformation, electroporation, s; isolation of mRNA and total RNA;	
Gene manipulation and protein-DNA interaction	reverse tra construction study of p	nscriptase and cDNA syn n of microarrays – genomic rotein-DNA interactions:	thesis; cDNA and genomic libraries; c arrays, cDNA arrays and oligo arrays; electrophoretic mobility shift assay;	

	DNase I footprinting; methyl interference assay, chromatin immunoprecipitation; protein-protein interactions using yeast two-hybrid system; phage display.				
Unit V	Gene silencing techniques; Transposon and jumping gene, introduction to				
Gene silencing and genome editing technologies	siRNA; siRNA technology; Micro RNA; construction of siRNA vectors; principle and application of gene silencing; gene knockouts and gene therapy; creation of transgenic plants; debate over GM crops; introduction to methods of genetic manipulation in different model systems e.g. fruit flies (Drosophila), worms (C. elegans), frogs (Xenopus), fish (zebra fish) and chick; Transgenics- gene replacement; gene targeting; creation of transgenic and knock-out mice; disease model; introduction to genome editing by CRISPR-CAS9 with specific emphasis on Chinese and American clinical trials.				
Becommended Text	1. Old, R. W., Primrose, S. B., & Twyman, R. M. (2001). Principles of Gene Manipulation: an Introduction to Genetic Engineering. Oxford: Blackwell				
books and References	2. Green, M. R., & Sambrook, J. (2012). Molecular Cloning: a Laboratory				
	Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.				
	3. Brown, T. A. (2006). Genomes (3rd ed.). New York: Garland Science Pub. 4. Selected papers from scientific journals, particularly Nature & Science.				
	5. Technical Literature from Stratagene, Promega, Novagen, New England Biolab etc.				

5. Applied Bioi	nformatics	MSUBT 205	Credits 3	
Unit I	Sequence datab	ases; Similarity matrices;	Pairwise alignment; BLAST;	
Sequence-alignment related problems	alignment; Clustal; Phylogenetics: distance-based approaches, maximum parsimony.			
Unit II	Motif representa models; Regulato	tion: consensus, regular e ry sequence identification	xpressions; PSSMs; Markov using Meme; Gene finding:	
Pattern analysis in sequences	composition-based finding, sequence motif-based finding.			
Unit III	Representation of molecular structures (DNA, mRNA, protein), secondary			
Structure-related problems	Visualization software (Pymol, Rasmol etc.); Experimental determination of structures (X-ray crystallography, NMR); Structure databases; Secondary structure prediction; RNA structure prediction; Mfold; Protein structure prediction by comparative modelling approaches(homology modelling, threading); Ab initio structure prediction: force fields, backbone conformer generation by Monte Carlo approaches, side-chain packing; Energy minimization; Molecular dynamics; Rosetta; Structure comparison (DALI, VAST etc.); CASP; Protein-ligand docking; Computer-aided drug design (pharmacophore identification); QSAR; Protein-Protein interactions.			
Unit IV	Transcriptomics: I	Microarray technology, expre	ession profiles, data analysis;	
System-wide analyses	arrays; Metabolor	nics:13C NMR based metabol	ic flux analysis.	

	1. Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford: Oxford University Press.
Recommended Text books and References	 Mount, D. W. (2001). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Bourne, P. E., & Gu, J. (2009). Structural Bioinformatics. Hoboken, NJ: Wiley Lies
	 Wiley-Liss. 4. Lesk, A. M. (2004). Introduction to Protein Science: Architecture, Function, and Genomics. Oxford: Oxford University Press. 5. Campbell, M & Heyer, L. J. (2006), Discovering Genomics, Proteomics and Bioinformatics, Pearson Education. 6. Oprea, T. (2005). Chemoinformatics in Drug Discovery, Volume 23. Wiley Online Library.
	7. Gasteiger, J. & Engel, T. (2003), Chemoinformatics: a Textbook, Wiley Online Library.

6.Choice Based	d Courses	MSUBT 206	Credits 2
Syllabus		From MOOCs Baske	t

7.Labo Molecular Biol Engin	ratory III ogy and Genetic neering	MSUBT 291	Credits 3
Syllabus	 Concept of lac-operon: Glucose Repression. c) Diau UV mutagenesis to isolate Phage titre with epsilon p Genetic Transfer-Conjuga Plasmid DNA isolation an Restriction Enzyme diges Agarose gel electrophore Polymerase Chain F electrophoresis Vector and Insert Ligation Preparation of compete Transformation of <i>E.C</i> transformation of the instal Expression of recombin 	a) Lactose induction of exic growth curve of E.co e amino acid auxotroph phage/M13 ation, gene mapping d DNA quantitation tion of plasmid DNA esis Reaction and analysi ent cells coli with standard plas sert by Colony PCR and pant protein, concept of	of B-galactosidase. b) bli s by agarose gel smids, Calculation of d Restriction mapping f soluble proteins and

	inclusion body formation in E.coli, SDS-PAGE analysis 14. Purification of His-Tagged protein on Ni-NTA columns a) Random Primer labeling b) Southern hybridization.
Recommended Text	 Green, M. R., & Sambrook, J. (2012). Molecular Cloning: a Laboratory
books and References	Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

8.Laborat Immuno	ory IV logy	MSUBT 292	Credits 3	
Syllabus	1. Antibody tit	tre by ELISA method.		
	2. Double diffusion, Immuno-electrophoresis and Radial			
	Immunodiffusion	. Complement fixation te	st.	
	3. SDS-PAGE, Immunoblotting, Dot blot assays			
	4. Demonstration of Phagocytosis of latex beads			
	5. Separation of mononuclear cells by Ficoll-Hypaque			
	6. Flow cytometry, identification of T cells and their subsets			
	7. Culture of Macrophage cell and demonstration of Phagocytosis of			
	latex beads			
	8. Determination of Blood group of an individual and differential			
	leucocyte count under a microscope.			
	9. Cryopreservati	on of cultured cells and c	ell revival.	

9.Seminar/ Journal Presentation	MSUBT 281	Credits 1

Semester Three

1. Bioprocess Engineering		MSUBT 301	Credits 3	
& Technolog	У			
Unit I Basic principles of biochemical engineering	Isolation, screening and maintenance of industrially important microbes; microbial growth and death kinetics (an example from each group, particularly with reference to industrially useful microorganisms); strain improvement for increased yield and other			
11	desirable cha	racterístics.		
Stoichiometry and models of microbial growth	yield coefficients; unstructured models of microbial growth; structured models of microbial growth.			
Unit III Bioreactor design and analysis	Batch and continuous fermenters; modifying batch and continuous reactors: chemostat with recycle, multistage chemostat systems, fed- batch operations; conventional fermentation v/s biotransformation; immobilized cell systems; large scale animal and plant cell cultivation; fermentation economics; upstream processing: media formulation and optimization; sterilization; aeration, agitation and heat transfer in bioprocess; scale up and scale down; measurement and control of bioprocess parameters.			
Unit IV Downstream processing and product recovery	- Separation of insoluble products - filtration, centrifugation, sedimentation, flocculation; Cell disruption; separation of soluble products: liquid-liquid extraction, precipitation, chromatographic techniques, reverse osmosis, ultra and micro filtration, electrophoresis; final purification: drying; crystallization: storage and packaging			
Unit V	Isolation of m	icro-organisms of pote	ntial industrial interest; strain	
Fermentation economics	improvement; market analysis; equipment and plant costs; media; sterilization, heating and cooling; aeration and agitation; bath-process cycle times and continuous cultures; recovery costs; water usage and recycling; effluent treatment and disposal.			
Unit VI	Mechanism	of enzyme function an	d reactions in process techniques;	
Applications of enzyme technology in food processing	enzymatic bioconversions e.g. starch and sugar conversion processes; high- fructose corn syrup; interesterified fat; hydrolyzed protein etc. and their downstream processing; baking by amylases, deoxygenation and desugaring by glucoses oxidase, beer mashing and chill proofing; cheese making by proteases and various other enzyme catalytic actions in food processing.			
Unit VII	Fermented fo	ods and beverages; for	od ingredients and additives	
Applications of microbial technology in food process operations and production, biofuels and biorefinery	prepared by fermentation and their purification; fermentation as a method of preparing and preserving foods; microbes and their use in pickling, producing colours and flavours, alcoholic beverages and other products; process wastes-whey, molasses, starch substrates and other food wastes for bioconversion to useful products; bacteriocins from lactic acid bacteria – production and applications in food preservation; biofuels and biorefinery			
	1. Shuler, M. L., & Kargi, F. (2002). Bioprocess Engineering: Basic			

	Concepts. Upper Saddle River, NJ: Prentice Hall.
Recommended Text books	2. Stanbury, P. F., & Whitaker, A. (2010). Principles of
and References	Fermentation Technology. Oxford: Pergamon Press.
	3. Blanch, H. W., & Clark, D. S. (1997). Biochemical Engineering. New
	York:
	M. Dekker.
	4. Bailey, J. E., & Ollis, D. F. (1986). Biochemical Engineering
	Fundamentals. New York: McGraw-Hill.
	5. El-Mansi, M., & Bryce, C. F. (2007). Fermentation Microbiology and
	Biotechnology. Boca Raton: CRC/Taylor & Francis.

2. Plant and Animal Cell Culture MSUBT 302 Credits 3						
Tech	lechnology					
Unit I	Animal cell culture; media composition and growth conditions; Animal cell and tissue, Animal cell culture preservation; Anchorage and non-					
Animal cell culture	anchorage dependent cell cu	Iture; Primary and se	econdary culture; Animal			
	cell growth characteristics and kinetics; Micro & macro carrier culture;					
	Hybridoma technology; Ster	i cell technology; Tra	ansgenic animals; Animal			
	cloning; Mechanisms of drug	resistance and cell d	eath.			
Unit II	Totipotency; Plant growth re	egulators; Regenerat	ion and micropropagation			
Plant Cell Culture	of plants: clonal propagati	on, organogenesis,	shoot-tip and meristem			
	culture, haploid culture, tri	ploid culture, proto	plast culture; Somaclonal			
	variation; lissue culture and	Cell suspension cult	ure system: methodology,			
	Transformation methods	(emphasis on /	ursors and encirors, Plant			
	transformation): Hairy root c	ulture: Plant product	s of industrial importance.			
	Production of secondary met	abolites	а ст			
Linit III	Principles, design and opera	tion of bioreactors:	specific design criteria for			
	mammalian and plant sy	stems; Strategies	for fermentation with			
Secondary metabolite	recombinant organisms; Iso	recombinant organisms; Isolation, characterization and production of				
production	secondary metabolites from different plant cell types; Bioprocess					
	monitoring and control: cu	rrent practices in t	he bioprocess industries,			
	centrifugation, filtration and chromatographic techniques.					
	1. Butterworth Heinemann Lt	d (1994) Biotol Seri	es. In vitro Cultivation of			
	Plant cell.					
Recommended Text	2. Bhojwani S.S. and Razdan N	M.K. (1996) Plant Tiss	sue Culture: Theory and			
books and References	Practice, a Revised Edition, Elsevier Science					
	3. T. A. Brown, (2001) Gene Cloning and DNA Analysis: an					
	Introduction, Blackwell Science.					
	4. M. L Shuler and F. Kargi. (2002), Bioprocess Engineering, Prentice Hall Inc.					
	5. A. Slater, N. Scott and M. Fowler (2003), Plant Biotechnology: the					
	6. M. M. Ranga (2007). Animal Biotechnology. 3rd Revised Edition.					
	Agrobios.		- ,			
	7. Freshney. (2016) Culture o	f Animal Cells.				
	8. Meyer, Handschel, Wiesma	8. Meyer, Handschel, Wiesmann (2009). Fundamentals of Tissue				
	Engineering					
	and Regenerative Medicine.	tific lournals martin	Jorly Noturo 8 Colorad			
	9. Selected Papers from Scien	itine Journals, particu	any nature & Science.			

3. Industrial Bio	otechnology	MSUBT 301	Credits 3	
Unit I Process Design and Industrial Production	Media and process optimization using Plackett Burman, Box Behnken and Central Composite design; Overproduction of microbial metabolites; Bioreactor scale-up based on constant power consumption per volume, mixing time, impeller tip speed (shear), mass transfer coefficients.			
Unit II	Concept of sustainability; Starch and sugar-based biorefinery; Biochemical biorefinery; Syngas biorefinery; Algal biorefinery; Pretreatment of biomass-complexity, challenges and methods; Microbial cell factory; Biomass			
Biorefinery and Bioeconomy	logistics; Indian bioe	conomy.		
Unit III	First, second and third generations of bioethanol production; Production of butanol, 2,3-butanediol, 1,3-propanediol, Lactic acid, Succinic acid, Glutamic			
Production of commodity bioproducts	acid, Xylitol, Bioadip	ic acid.		
Unit IV	Production of recombinant and synthetic vaccines, purification, evaluation of the efficacy stability formulation of the product			
Development and production of vaccines		.,,,		
Unit V	Metabolic reconstruction and flux analysis; Redesigning metabolic pathways for improved product formation using synthetic biology approach.			
Metabolic engineering for bioproduction				
Recommended Text books and References	 Raymond H. M Anderson-Cook (2 product optimization Alexander N Biotechnology. Camb Peter F Stanbury Fermentation Technol Wei-Shou Hu (Wiley. Virendra S Bis Renewable Resource Christina D Sr Handbook. CRC Press 	Myers, Douglas C. Montgome 009) Response Surface Meth ousing designed experiments. Jo Glazer and Hiroshi Nikaio oridge University Press. y, Allan Whitaker and Stephen J ology. 3rd ed. Elsevier. 2018) Engineering Principles i saria and Akihiko Kondo (20 es to Commodity Bioproducts. Jo molke (2010) The Metabolic s.	ery and Christine M. hodology: Process and hn Wiley. do (2007) Microbial Hall (2017) Principles of n Biotechnology. John D14) Bioprocessing of hn Wiley. Pathway Engineering	

4. Intellectual Rights, Biosa Bioethi	Property fety and cs	MSUBT 304	Credits 2	
Unit I	Introduction to copyright & rel	intellectual property; types of ated rights, industrial design	IP: patents, trademarks, traditional knowledge.	
Introduction to IPR	geographical indications, protection of new GMOs; International framework for the protection of IP; IP as a factor in R&D IPs of relevance to biotechnology and few case studies; introduction to history of GATT, WTO, WIPO and TRIPS; plant variety protection and farmers rights act; concept of 'prior art': invention in context of "prior art"; patent databases - country- wise patent searches (USPTO, EPO, India); analysis and report formation			
Unit II	Basics of patents: types of patents; Indian Patent Act 1970; recent amendments; WIPO Treaties; Budapest Treaty; Patent Cooperation Treaty (PCT) and implications; procedure for filing a PCT application; role of a			
Patenting	Country Patent C patenting-disclosu guidelines includi other regulatory applications: prov patent applicatio costs; financial as publication of pat infringement- me commercialization licensing, royalt university/organiz backward and for commercial (finar	Office; filing of a patent applic ure/non-disclosure - patent ing those of National Bio-diver bodies, fee structure, time risional and complete specificati ns; international patenting-requessistance for patenting-introduce tents-gazette of India, status is eaning, scope, litigation, case n of patented innovations; lity; patenting by research se rational rules in India and abroat ward IP; benefit/credit sharing a ncial) and non-commercial incention	ation; precautions before application- forms and rsity Authority (NBA) and frames; types of patent ons; PCT and conventional uirement, procedures and ction to existing schemes; in Europe and US; patent e studies and examples; icensing – outright sale, students and scientists- id, collaborative research - among parties/community, tives.	
Unit III	Biosafety and Bios to biological safet	security - introduction; historica y cabinets; primary containmen	I background; introduction t for biohazards; biosafety	
Biosafety	recommended bid definition of GMC plants – sequent substantial equiva feed safety ass compilation of rel of analysis plan; products derived	osafety levels for infectious age Os & LMOs; principles of safety ial steps in risk assessment; co alence; risk – environmental risk sessment; problem formulati levant information, risk characte risk assessment of transgenic of from RNAi, genome editing tools	ents and infected animals; assessment of transgenic oncepts of familiarity and assessment and food and on – protection goals, erization and development crops vs cisgenic plants or s.	
Unit IV	International regularity of the second secon	Ilations – Cartagena protocol, O	ECD consensus documents	
National and international regulations	documents, regu regulatory bodies containments – k trails – biosafet guidelines of stat Authority of India	Ilatory framework – RCGM, ; Draft bill of Biotechnology Reg biosafety levels and category o y research trials – standard e governments; GM labeling – F (FSSAI).	GEAC, IBSC and other ulatory authority of India - f rDNA experiments; field operating procedures - Food Safety and Standards	
Unit V	Introduction, eth	ical conflicts in biological scie	ences - interference with	

Bioethics	nature, bioethics in health care - patient confidentiality, informed consent, euthanasia, artificial reproductive technologies, prenatal diagnosis, genetic screening, gene therapy, transplantation. Bioethics in research – cloning and stem cell research, Human and animal experimentation, animal rights/welfare, Agricultural biotechnology - Genetically engineered food, environmental risk, labeling and public opinion. Sharing benefits and protecting future generations - Protection of environment and biodiversity – biopiracy.
Recommended Text books and References	 Ganguli, P. (2001). Intellectual Property Rights: Unleashing the Knowledge Economy. New Delhi: Tata McGraw-Hill Pub. National IPR Policy, Department of Industrial Policy & Promotion, Ministry of Commerce, Gol Complete Reference to Intellectual Property Rights Laws. (2007). Snow White Publication Oct. Kuhse, H. (2010). Bioethics: an Anthology. Malden, MA: Blackwell. Office of the Controller General of Patents, Design & Trademarks; Department of Industrial Policy & Promotion; Ministry of Commerce & Industry: Government of India. http://www.ipindia.nic.in/
	 Industry; Government of India. http://www.ipindia.nic.in/ 6. Karen F. Greif and Jon F. Merz, Current Controversies in the Biological Sciences-Case Studies of Policy Challenges from New Technologies, MIT Press 7. World Trade Organisation. http://www.wto.org 8. World Intellectual Property Organisation. http://www.wipo.int 9. International Union for the Protection of New Varieties of Plants. http://www.upov.int 10. National Portal of India. http://www.archive.india.gov.in 11. National Biodiversity Authority. http://www.nbaindia.org 12. Recombinant DNA Safety Guidelines, 1990 Department of Biotechnology, Ministry of Science and Technology, Govt. of India. Retrieved from http://www.envfor.nic.in/divisions/csurv/geac/annex-5.pdf 13. Wolt, J. D., Keese, P., Raybould, A., Fitzpatrick, J. W., Burachik, M., Gray, A., Wu, F. (2009). Problem Formulation in the Environmental Risk Assessment for Genetically Modified Plants. Transgenic Research, 19(3), 425-436. doi:10.1007/s11248-009-9321-9 14. Craig, W., Tepfer, M., Degrassi, G., & Ripandelli, D. (2008). An Overview of General Features of Risk Assessments of Genetically Modified Crops. Euphytica, 164(3), 853-880. doi:10.1007/s10681-007-9643-8 15. Guidelines for Safety Assessment of Foods Derived from Genetically Engineered Plants. 2008. 16. Guidelines and Standard Operating Procedures for Confined Field Trials of Regulated Genetically Engineered Plants. 2008. Retrieved from http://www.igmoris.nic.in/guidelines1.asp 17. Alonso, G. M. (2013). Safety Assessment of Food and Feed Derived from Mttp://www.igmoris.nic.in/guidelines1.asp 17. Alonso, G. M. (2013). Safety Assessment of Food and Feed Derived from http://biosafety.icgeb.org/inhousepublicationscollectionbiosafetyreviews.

5.Choice Based Courses		MSUBT 305	Credits 2
Syllabus	From Elective Basket		
MSUBT-305A	Principles of Ecology		
MSUBT-305B	Research Methodology and Writing		
MSUBT-305C	Nanobiotechnology		
MSUBT-305D	Enzyme Technology		
MSUBT-305E	Plant Molecular Biology		
MSUBT-305F	Medical Devices		
MSUBT-305G	Environmental Biotechnology		

6.Choice Based	Courses	MSUBT 306	Credits 2
Syllabus		From MOOCs Bask	æt

7. Labo Bioprocess Tech	oratory V Engineering & nology	MSUBT 391	Credits 3
Syllabus	 Basic Microbiology technique a) Scale up from frozen vial b) Instrumentation: Micropolic c) Isolation of microorganisme 2. Experimental set-up a) Assembly of bioreactor and b) Growth kinetics. c) Substrate and product inherit of the second secon	ues to agar plate to shake fla late reader, spectrophoto ms from soil samples. nd sterilization. hibitions. substrates. c Flux Analysis (MFA). c Flux Analysis (MFA).	sk culture. ometer, microscopy. ues and extractions.

	a) Analytical techniques like HPLC, FPLC, GC, GC-MS etc. for measurement of amounts of products/substrates.
Recommended Text books and References	 Shuler, M. L., & Kargi, F. (2002). Bioprocess Engineering: Basic Concepts. Upper Saddle River, NJ: Prentice Hall. Stanbury, P. F., & Whitaker, A. (2010). Principles of Fermentation Technology. Oxford: Pergamon Press. Blanch, H. W., & Clark, D. S. (1997). Biochemical Engineering. New York: M. Dekker. Bailey, J. E., & Ollis, D. F. (1986). Biochemical Engineering Fundamentals. New York: McGraw-Hill. El-Mansi, M., & Bryce, C. F. (2007). Fermentation Microbiology and Biotechnology. Boca Raton: CRC/Taylor & Francis.

8.Labo Applied Bi	ratory VI oinformatics	MSUBT 392	Credits 2
Syllabus	 Using NCBI and Uniprot w Introduction and use of v Sequence information re 	veb resources. arious genome databases source: Using NCBI, EME	s. 3L, Genbank, Entrez,
	 Swissprot/TrEMBL, UniProt. 4. Similarity searches using 5. Multiple sequence alignm 6. Phylogenetic analysis of p 7. Use of gene prediction m 8. Using RNA structure pred 9. Use of various primer des 10. Use of different protein CATH). 11. Construction and study 12. Homology modelling of 13. Use of tools for mutatio protein structures. 14. Use of miRNA prediction 	tools like BLAST and inter nent using ClustalW. protein and nucleotide se ethods (GRAIL, Genscan, liction tools. signing and restriction site structure prediction da of protein structures usin proteins. n and analysis of the ene	rpretation of results. quences. Glimmer). e prediction tools. tabases (PDB, SCOP, ng Deepview/PyMol. rgy minimization of rediction tools.

9. Laborata Data Analy Softwar	ory VII osis by re	MSUBT 393	Credits 2
Syllabus	 are 1. Introduction to different statistical software. 2. Determination of mean, median, mode of given data set. 3. Determination of standard deviation and standard error of a give data set. 4. Preparation of different types of graph from a given data set. 5. Determination of statistical significance of the experimental dat Paired and unpaired t test and p value determination 5. Nonparametric Mann-Whitney test, including confidence interval of difference of medians. 6. Wilcoxon test with confidence interval of median. 7. Usage of two- and three-way anova. 		software. node of given data set. tion and standard error of a given raph from a given data set. ificance of the experimental data: e determination est, including confidence interval of erval of median. a.

10.Project Proposal		MSUBT 381	Credits 2		
Presentation					
Unit I	Selection of	Selection of research lab and research topic: Students should first select a			
Project Proposal	lab wherein	they would like to pursue	e their dissertation. The supervisor or		
Preparation	the areas of	interest of the lab and	help the students to read papers in the help them select a topic for their		
	project. The	topic of the research show	uld be hypothesis driven.		
	Review of li	terature: Students shou	Id engage in systematic and critical		
	review of ap	propriate and relevant ir	formation sources and appropriately		
	apply qualita	tive and/or quantitative	evaluation processes to original data;		
	evaluation of data and other resources. Writing Research Proposal: With the help of the senior researchers.				
	students should be able to discuss the research questions, goals, approach,				
	methodology, data collection, etc. Students should be able to construct a logical outline for the project				
	including and	including analysis steps and expected outcomes and prepare a complete			
Unit II	Students will	have to present the top	bic of their project proposal after few		
	months of th	eir selection of the topi	c. They should be able to explain the		
Poster Presentation	novelty and importance of their research topic.				
Unit III	At the end	of their project, presen	tation will have to be given by the		
Oral Presentation	students to explain work done by them in detail. Along with summarizing				
	their findings	they should also	outcome of their work		
		cuss the future expected			

Semester Four

1.Disso	ertation	MSUBT 481	Credits 22
Syllabus	Based on the project prop	osal submitted in earlier	semester, students
	should be able to plan, an	d engage in, an indeper	ident and sustained
	critical investigation and e	valuate a chosen researd	ch topic relevant to
Planning & performing experiments	biological sciences and society. They should be able to systematically identify relevant theory and concepts, relate these to appropriate methodologies and evidence, apply appropriate techniques and draw appropriate conclusions. Senior researchers should be able to train the students such that they can work independently and are able to understand the aim of each experiment performed by them. They should also be able to understand the possible outcomes of each experiment.		
Thesis writing	At the end of their project,	thesis has to be written	giving all the details
	such as aim, methodology,	results, discussion and fu	ture work related to
	their project. Students may	aim to get their researc	h findings published
	in a peer-reviewed journa	I. If the research finding	gs have application-
	oriented outcomes, the stud	dents may file patent app	plication.

2.Industry/ Lab Visit	MSUBT 482	Credits 1

3.\$eminar/ Journal	MSUBT 483	Credits 1
Presentation		