B.Tech (Automobile Engineering) Laboratory Mapping with Virtual Laboratory as available in the Web Page (http://www.vlab.co.in/broad-area-mechanical-engineering) for the New Syllabus effective from 2018

Semester	Paper Code	Name of Paper	Name of Lab/ Experiment	Mapped Virtual Lab	Name of Experiment	Offering	Remarks
						Institute	
Ι	ES-ME192	Workshop/	Workshop Practice:	NIL	NIL	NIL	Till now not
		Manufacturing	1. Machine shop (10 hours)				recommended
		Practices	2. Fitting shop (8 hours)				
			3. Carpentry (6 hours)				
			4. Electrical & Electronics (8 hours)				
			5. Welding shop (8 hours (Arc welding 4 hrs + gas				
			welding 4 hrs)				
			6. Casting (8 hours)				
			7. Smithy (6 hours)				
			8. Plastic moulding & Glass Cutting (6 hours)				
Π	ES-ME291	Engineering	1. Introduction to engineering design and its place in	NIL	NIL	NIL	Till now not
		Graphics &	society				recommended
		Design	2. Exposure to the visual aspects of engineering				
			design				
			3. Exposure to engineering graphics standards				
			4. Exposure to solid modelling				
			5. Exposure to computer-aided geometric design				
			6. Exposure to creating working drawings				
			7. Exposure to engineering communication				
			Schematic product symbols for standard		Orthographic	IIT	
		Machine	components in mechanical, electrical and electronic	Engineering Graphics	projections	Bombay	
		Drawing	systems, welding symbols and pipe joints;	Lab			
			Orthographic projections of machine elements,				
			different sectional views- full, auxiliary sections;				
ш	PC-AUF 391		Isometric projection of components; Assembly and				
	1 C-AUE 571		detailed drawings of a mechanical assembly, such				
			as a plummer block, tool head of a shaping				
			machine, tailstock of a lathe, simple gear box,				
			flange coupling, welded bracket joined by stud bolt				
			on to a structure, welded pipe joints indicating work				
			parts before welding, etc.				

			Practici	ng AutoCAD or similar graphics softwares				
			and ma	king orthographic and isometric projections				
			of diffe	rent components.				
			1.	Impact tests: Charpy or Izod tests;	Strength of Materials	1. Izod Impact	NIT	
				Hardness test, Test for drawability of sheet	Lab	Test	Karnataka,	
				metals through cupping test:		2. Charpy Impact	Surathkal	
			2.	Fatigue test of a typical sample.		Test		
			3.	Sample preparation and etching of ferrous		3. Tensile Test on		
				and non-ferrous metals and allovs for		Mild Steel		
				metallographic observation:		4. Tensile Test on		
			4.	Experiments on heat treatment of carbon		Cast Iron		
				steels under different rates of cooling		5. Compression		
				including quenching, and testing for the		Test on Mild Steel		
				change in hardness, and observing its		6. Compression		
				microstructural changes for standard		Test on Cast Iron		
				specimen through metallographic studies.		7. Torsion Test on		
			5.	Determining spring stiffness under tension		Mild Steel		
				and compressive loads; Strain gauge based				
				strain/ deflection/ force measurement of a				
		Manufacturin		cantilever beam;				
IV	PC-AUE 491	g & Testing	6.	Tension Test and Compression Test of				
		Lab		ductile and brittle materials: stress-strain				
				diagram, determination of yield strength,				
				ultimate strength, modulus of elasticity,				
				percentage elongation and percentage				
				reduction in areas, observation of fractured				
				surfaces; Bend and rebend test of flat test				
				pieces, determination of bending stresses;				
			7.	Torsion Test; Experiments on friction:				
				determination of coefficient of friction;				
			8.	Sand preparation and testing: specimen				
				preparation for testing permeability, clay				
				content, grain fineness number, moisture				
				content, green compression strength, green				
				shear strength, splitting strength, hardness,				
				etc.;				
			9.	Casting of metals after preparation of a				
				suitable type moulds; Experiments on				

			 properties of post casting, fettling, cleaning, deburring, and polishing operations; 10. Same experiment for another type of moulds. 11. Practicing smithy or forging of carbon steels and testing for its property changes; 12. Laboratory experiments in Fabrication processes to observe effects of varying process parameters in GMAW 13. Testing for Joint defects in GMAW with visual inspection and DP test. 14. Surface roughness measurement. 15. Measurement of threads, gears. 				
		Fluid Mechanics &	 Measurement of co-efficient of discharge of given orifice and venturi meters. Determination of the co-efficient of friction factor for flow through pipes. Determination of the performance characteristics of a centrifugal pump. Determination of the performance characteristics of Pelton Wheel. Determine the flow rate and velocity profile in a duct using pitot tube. Determination of thermal conductivity of a metric and end/or involution perdommetric. 	Hydraulics and Fluid Mechanics Lab Heat & Thermodynamics	1Venturi Meter Experiment 2.Orifices Experiment 3.Turbines Experiment 1.Heat_Transfer	IIT Hyderabad Amrita	Sl.No.1 and 4 are having related virtual lab. Sl. No. 8 is
V	PC-AUE 591	Heat Transfer Lab	 metal rod and/or insulating powder materials. Heat transfer through forced convection. Heat transfer through natural convection from a vertical surface. Determination of the convective heat transfer coefficient for flow over a heated plate Measurement of emissivity in a test surface. Experiment with a parallel flow and a counter flow heat exchanger. Determination of the performance characteristics of a vapour compression system Heat transfer through a pin fin. 	Virtual lab	by Natural Convection	Vishwa Vidyapeety ham University	having virtual lab

			1. Dismantling, measurement, inspection and	NIL	NIL	NIL	Till now not
V	PC-AUE 592	Automobile Engineering Lab I (Engine & Chassis Component Lab)	 Dismantling, measurement, inspection and assembling of different modern engine [like Multipoint fuel injection (MPFI) and Common rail injection (CRI) engines and Digital twin spark ignition (DTSI) etc.] engine for passenger car, commercial vehicle and two wheeler engines. Study of fuel supply system (SI and CI) and structure and testing of common rail high pressure injectors. Dismantling, assembling and testing of different types of Fuel injection Pumps such as distributor type, high pressure pump. Electronic ignition and battery ignition system with accessories. Study and testing of automotive air conditioning system. Dismantling and assembling of different types of clutch. Dismantling and assembling of different types of Gear. Dismantling and assembling of different Steering system and study of driver seat. Study of Frames used for Heavy commercial vehicle (HCV), Car, Two & Three Wheelers and Dismantling and assembling of Suspension system. Dismantling and assembling of Braking system, Brake adjustment and brake bleeding. Dismantling and assembling of Braking system. Dismantling and assembling of Braking system. Dismantling and assembling of Braking system. 	NIL	NIL	NIL	Till now not recommended
V	PC-AUE 593	Automobile Engineering Lab II (ETPM Lab)	 Valve Timing Diagram for Four Stroke Engine Valve Timing Diagram for Two Stroke Engine Studying the components and working 	NIL	NIL	NIL	Till now not recommended

			 principle of an MPFI engine Performance test and energy balance on MPFI engine at different load conditions. Performance test and energy balance on 2-Stroke Petrol engine at different load conditions. Performance test and energy balance on 2-Stroke Diesel Engine at different load conditions. Performance test and energy balance on 4-Stroke Petrol engine at different load conditions. Performance test and energy balance on 4-Stroke Petrol engine at different load conditions. Performance test and energy balance on 4-Stroke Diesel Engine at different load conditions. Performance test and energy balance on 4-Stroke Diesel Engine at different load conditions. Performance test and energy balance on 4-Stroke Diesel Engine at different load conditions. Performance test and energy balance on 4-Stroke Diesel Engine at different load conditions. Performance test and energy balance on 4-Stroke Diesel Engine at different load conditions. Determination of flash and fire point of fuels and lubricating oil. Determination of calorific value of different types of fuel by Bomb calorimeter. Measurement of pollutants emitted from the vehicle by gas analyzer/ Orsat apparatus/smoke meter. 				
VI	PC-AUE 691	Automobile Engineering Lab III (Automotive Design Lab)	Module 1: Sketcher: Introduction to CATIA/CREO, History, Basics, GUI, Use of mouse buttons, Sketcher, constraints, profile, setting workbench, Standard toolbar, how to open sketcher, sketch details and important toolbar for sketch, Profile toolbar, Types of constraints, constraint application, constraint colour, Sketch constraint, view toolbar, Operation toolbar, Specification tree use, selecting toolbars, Sketch toolbar, Visualization toolbar 7. Toolbar setting, plane size setting, graphics properties	NIL	NIL	NIL	Till now not recommended

			toolbar.				
			Module 2: Part Design: Introduction to Design tools				
			like Extrude; Revolve; Shell; Pad etc needed to				
			generate solid models using CATIA/CREO				
			software. Learning different tools of modeling				
			software with exercise - Piston, Piston Pin,				
			Connecting Rod, Crankshaft, Cylinder, Camshaft,				
			Flywheel.				
			Module 3: Assembly Design: Assembly modeling				
			of automotive mechanicals exercises - Piston -				
			Connecting Rod - Crankshaft Assembly, Cam -				
			Follower Assembly, Gear Assembly etc.				
			1. Study of fuel filter (petrol & diesel) and air	NIL	NIL	NIL	Till now not
			cleaner (dry & wet),				recommended
			 Study of fuel and brake bleeding. Inspection of ture and tube 				
			5. Inspection of type and tube.				
			5. Tannet adjustment & valve timing diagram of				
			four stroke engine				
			6. Study the air brake system & antilock braking				
		Automobile	system and their fault detection				
		Engineering	7. Testing of a nozzle				
v	PC-ALE 602	Lab IV	8. Engine compression test				
		(Vehicle	9. Maintenance of vehicle				
		Maintenance	10. Study of vehicle lifting machine				
		Lab)	11. Study and experiment on wheel balancing				
			machine				
			machine				
			13 Study and experiment on head light focusing of				
			vehicles				
			14. Under body inspection of vehicle either by				
			lifting the vehicle or bringing the vehicle over				
			underground inspection pit.				
		Automobile	Electrical	NIL	NIL	NIL	Till now not
VII	PC-AUE 791	Engineering					recommended
		Lab V	1. Battery testing				

(Automo	ve 2. Alternator testing.	
Electrica	& 3. Starter motor testing.	
Electroni	s 4. Diagnosis of ignition system.	
Lab)	5. Diagnosis of automotive electrical wiring.	
	6. Fault finding of relay & fuses in car using Off	
	Board Diagnostics Systems (OBDS).	
	7. Relay & fuse Fault diagnostic of a car using	
	OBDS.	
	Electronics	
	1. Characteristics of rectifier.	
	2. Study of IC timer.	
	3. Study of Microprocessor 8085.	
	4. Simple ALP program using 8085 MEL Kit.	
	5. Data acquisition from sensors using 8085 MEL	
	Kit.	
	6. Interfacing of stepper motor with 8085 MEL Kit.	
	7. Fault finding location of sensor in car using	
	OBDS.	