(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science

(Applicable from the academic session 2020-2021)

SEMESTER - IV

Discrete Mathematics Code: PCCCS 401 Contacts: 3L

Name of	f the Course:	Discrete Mathematics		
Course (Code: PCCCS 401	Semester: IV		
Duration	n:6 months	Maximum Marks:	100	
Teachin	ng Scheme		Examination Scheme	
Theory:	3 hrs./week		Mid Semester exam: 15	
Tutorial	: hour/week		Assignment and Quiz : 10 marks	
			Attendance : 5 marks	
Practica	l: NIL		End Semester Exam :70 Marks	
Credit P	oints:	3		
Objectiv	ve:			
1 U	Ise mathematically	correct terminolog	gy and notation.	
2 C	Construct correct direct and indirect proofs.			
3 T	To know Syntax, Semantics, Validity and Satisfiability, Graphs and Trees			
4 U	Use counterexamples. Apply logical reasoning to solve a variety of problems.			
Pre-Requisite:				
1 S	Some concepts from basic math – algebra, geometry, pre-calculus			

Unit	Content	Hrs/Unit	Marks/Unit
1	Sets, Relation and Function: Operations and Laws of Sets, Cartesian Products, Binary Relation, Partial Ordering Relation, Equivalence Relation, Image of a Set, Sum and Product of Functions, Bijective functions, Inverse and Composite Function, Size of a Set, Finite and infinite Sets, Countable and uncountable Sets, Cantor's diagonal argument and The Power Set theorem, Schroeder-Bernstein theorem.	8	
	Principles of Mathematical Induction: The Well- Ordering Principle, Recursive definition, The Division algorithm: Prime Numbers, The Greatest Common Divisor: Euclidean Algorithm, The Fundamental Theorem of Arithmetic.		
2	Basic counting techniques-inclusion and exclusion, pigeon-hole principle, permutation and combination	5	
3	Propositional Logic: Syntax, Semantics, Validity and Satisfiability, Basic Connectives and Truth Tables,	8	

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science (Δ

-			
pplicable from	n the academic	session 2020-2021)

	(Applicable from the academic session 20	20-2021)	
	Logical Equivalence: The Laws of Logic, Logical		
	Implication, Rules of Inference, The use of		
	Quantifiers. Proof Techniques: Some Terminology,		
	Proof Methods and Strategies, Forward Proof,		
	Proof by Contradiction, Proof by Contraposition,		
	Proof of Necessity and Sufficiency.		
4.	Algebraic Structures and Morphism: Algebraic Structures with one Binary Operation, Semi Groups, Monoids, Groups, Congruence Relation and Quotient Structures, Free and Cyclic Monoids and Groups, Permutation Groups, Substructures, Normal Subgroups, Algebraic Structures with two Binary Operation, Rings, Integral Domain and Fields. Boolean Algebra and Boolean Ring, Identities of Boolean Algebra, Duality,	7	
	Identities of Boolean Algebra, Duality, Representation of Boolean Function, Disjunctive and Conjunctive Normal Form		
5	Graphs and Trees: Graphs and their properties, Degree, Connectivity, Path, Cycle, Sub Graph, Isomorphism, Eulerian and Hamiltonian Walks, Graph Colouring, Colouring maps and Planar Graphs, Colouring Vertices, Colouring Edges, List Colouring, Perfect Graph, definition properties and Example, rooted trees, trees and sorting, weighted trees and prefix codes, Bi-connected component and Articulation Points, Shortest distances.	8	

Text book and Reference books:

1. Russell Merris, Combinatorics, Wiley-Interscience series in Discrete Mathematics and Optimisation

2. S.B. Singh, Discrete Structures - Khanna Publishing House (AICTE Recommended Textbook – 2018)

3. S.B. Singh, Combinatorics and Graph Theory, Khanna Publishing House (AICTE Recommended Textbook - 2018)

4. N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI

5. Gary Haggard, John Schlipf and Sue Whitesides, Discrete Mathematics for Computer Science, CENGAGE Learning

- 6. Gary Chartrand and Ping Zhang Introduction to Graph Theory, TMH
- 7. J.K. Sharma, Discrete Mathematics, Macmillan
- 8. Winfried Karl Grassmann and Jean-Paul Tremblay, Logic and Discrete Mathematics, PEARSON.
- 9. S. K. Chakraborty and B. K. Sarkar, Discrete Mathematics, OXFORD University Press.
- Douglas B. West, Introduction to graph Theory, PHI 10.
- 11. C. L. Liu, Elements of Discrete Mathematics, 2nd Ed., Tata McGraw-Hill, 2000.
- 12. R. C. Penner, Discrete Mathematics: Proof Techniques and Mathematical Structures,

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science

(Applicable from the academic session 2020-2021)

World Scientific, 1999.

13. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd Ed., Addison-Wesley, 1994.

14. N. Deo, Graph Theory, Prentice Hall of India, 1974.

15. S. Lipschutz and M. L. Lipson, Schaum's Outline of Theory and Problems of Discrete Mathematics, 2nd Ed., Tata McGraw-Hill, 1999.

16. J. P. Tremblay and R. P. Manohar, Discrete Mathematics with Applications to Computer Science, Tata McGraw-Hill, 1997.

17. Russell Merris, Combinatorics, Wiley-Interscience series in Discrete Mathematics and Optimisation

18. N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI

19. Gary Haggard, John Schlipf and Sue Whitesides, Discrete Mathematics for Computer Science, CENGAGE Learning

20. Gary Chartrand and Ping Zhang – Introduction to Graph Theory, TMH

Course Outcome(s)

On completion of the course students will be able to

401.1 Express a logic sentence in terms of predicates, quantifiers, and logical connectives

401.2 Derive the solution for a given problem using deductive logic and prove the solution based on logical inference

401.3 Classify its algebraic structure for a given a mathematical problem,

401.4 Evaluate Boolean functions and simplify expressions using the properties of Boolean algebra

401.5 Develop the given problem as graph networks and solve with techniques of graph Theory

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science

(Applicable from the academic session 2020-2021)

Formal Language & Automata Theory Code: PCCCS 403 Contacts: 3L

Name	e of the Course:	Formal Language & Automata Theory		
Cours	se Code: PCCCS 403	Semester: IV		
Durat	tion: 6 months	Maximum Marks:1	00	
Teac	hing Scheme		Examination Scheme	
Theor	ry: 3 hrs./week		Mid Semester exam: 15	
Tutor	ial: NIL		Assignment and Quiz: 10 marks	
			Attendance: 5 marks	
Pract	ical: NIL		End Semester Exam: 70 Marks	
Credi	t Points:	3		
Objeo	ctive:			
1	Be able to construct	finite state machine	es and the equivalent regular expressions.	
2	Be able to prove the equivalence of languages described by finite state machines and regular expressions			
3	Be able to construct pushdown automata and the equivalent context free grammars.			
	And Be able to prove the equivalence of languages described by pushdown automata and context free grammars.			
4	Be able to construct Turing machines and Post machines.			
	Be able to prove the equivalence of languages described by Turing machines and			
Pro-E	Post machines Pre-Requisite:			
1				

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Alphabet, languages and grammars, productions and derivation, Chomsky hierarchy of languages.	6	
2	Regular languages and finite automata: Regular expressions and languages, deterministic finite automata (DFA) and equivalence with regular expressions, nondeterministic finite automata (NFA) and equivalence with DFA, regular grammars and equivalence with finite automata, properties of regular languages, pumping lemma for regular languages, minimization of finite automata)	7	
3	Context-free languages and pushdown automata: Context-free grammars (CFG) and languages (CFL), Chomsky and Greibach normal forms,	6	

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science (Applicable from the academic session 2020-2021)

nondeterministic pushdown automata (PDA) and	
equivalence with CFG, parse trees, ambiguity in	
CFG, pumping lemma for context-free languages,	
deterministic push down automata, closure	
properties of CFLs.	

4	Context-sensitive languages: Context-sensitive grammars (CSG) and languages, linear bounded automata and equivalence with CSG.	6
5	Turing machines: The basic model for Turing machines (TM), Turing recognizable(recursively enumerable) and Turing-decidable (recursive) languages and their closure properties, variants of Turing machines, nondeterministic TMs and equivalence with deterministic TMs, unrestricted grammars and equivalence with Turing machines, TMsas enumerators	6
6	Undecidability: Church-Turing thesis, universal Turing machine, the universal and diagonalization languages, reduction between languages and Rice s theorem, undecidable problems about languages	6

Text books/ reference books:

1. John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson Education Asia.

2. Dr. R.B.Patel, Theory of Computation, Khanna Publishing House

3. Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation, Pearson Education Asia.

4. Dexter C. Kozen, Automata and Computability, Undergraduate Texts in Computer Science, Springer.

5. Michael Sipser, Introduction to the Theory of Computation, PWS Publishing.

6. John Martin, Introduction to Languages and The Theory of Computation, TataMcGraw Hill., PEARSON.

Course Outcomes:

On completion of the course students will be able to

403.1 Write a formal notation for strings, languages and machines.

403.2 Design finite automata to accept a set of strings of a language.

403.3 For a given language determine whether the given language is regular or not.

403.4 Design context free grammars to generate strings of context free language.

403.5 Determine equivalence of languages accepted by Push Down Automata and languages generated by context free grammars

403.6 Write the hierarchy of formal languages, grammars and machines.

403.7Distinguish between computability and non-computability and Decidability and undecidability.

(Formerly West Bengal University of Technology) Draft Syllabus for B. Tech in AI and Data Science

(Applicable from the academic session 2020-2021)

Design and Analysis of Algorithms Code: PCCCS 404 Contacts: 3L

Name	e of the Course:	Design and Analysis of Algorithms	
Cours	se Code: PCCCS 404	Semester: IV	
Durat	tion: 6 months	Maximum Marks	s:100
Teac	hing Scheme	1	Examination Scheme
The set			Mid Competence 15
	ry: 3 hrs./week		Mid Semester exam: 15
Tutor	rial: NIL		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Pract	ical: hrs./week		End Semester Exam: 70 Marks
Credi	t Points:	3	
Objed	ctive:		
1	The aim of this mod	dule is to learn ho	w to develop efficient algorithms for simple
	computational tasks and reasoning about the correctness of them		
2	Through the complexity measures, different range of behaviors of algorithms		
	and the notion of tractable and intractable problems will be understood.		
Pre-Requisite:			
1	To know data-structure and basic programming ability		

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction: Characteristics of algorithm.		
1	Analysis of algorithm: Asymptotic analysis of	8	
	complexity bounds – best, average and worst-case		
	behavior; Performance measurements of		
	Algorithm, Time and space trade-offs, Analysis of		
	recursive algorithms through recurrence relations:		
	Substitution method, Recursion tree method and		
	Masters' theorem		
	Fundamental Algorithmic Strategies: Brute-Force,		
2	Greedy, Dynamic Programming, Branch and-	8	
	Bound and Backtracking methodologies for the	-	
	design of algorithms; Illustrations of these		
	techniques for Problem-Solving, Bin Packing, Knap		
	Sack TSP. Heuristics – characteristics and their		
	application domains.		

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science (Applicable from the academic session 2020-2021)

3	Graph and Tree Algorithms: Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm. Tractable and Intractable Problems: Computability	6	
4.	of Algorithms, Computability classes – P,NP, NP- complete and NP-hard. Cook's theorem, Standard NP-complete problems and Reduction techniques.	10	
5	Advanced Topics: Approximation algorithms, Randomized algorithms, Class of problems beyond NP – P SPACE	4	

Text books/ reference books:

1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald

- L Rivest and Clifford Stein, MIT Press/McGraw-Hill.
- 2. Fundamentals of Algorithms E. Horowitz et al.
- 3. Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House (AICTE Recommended Textbook 2018)
- 4. Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson.

5. Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.

6. Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading, MA

7. Algorithms Design and Analysis, Udit Agarwal, Dhanpat Rai

Course Outcomes

On completion of the course students will be able to

404.1 For a given algorithms analyze worst-case running times of algorithms based on asymptotic analysis and justify the correctness of algorithms.

404.2 Describe the greedy paradigm and explain when an algorithmic design situation calls for it. For a given problem develop the greedy algorithms.

404.3 Describe the divide-and-conquer paradigm and explain when an algorithmic design situation calls for it. Synthesize divide-and-conquer algorithms. Derive and solve recurrence relation.

404.4 Describe the dynamic-programming paradigm and explain when an algorithmic design situation calls for it. For a given problems of dynamic-programming and

404.5 develop the dynamic programming algorithms, and analyze it to determine its computational complexity.

404,6 For a given model engineering problem model it using graph and write the corresponding algorithm to solve the problems.

404.7 Explain the ways to analyze randomized algorithms (expected running time, probability of error).

404.8 Explain what an approximation algorithm is. Compute the approximation factor of an approximation algorithm (PTAS and FPTAS).

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Draft Syllabus for B. Tech in AI and Data Science (Applicable from the academic session 2020-2021)

Biology Code: BSC 401 Contacts: 2L

Name o	of the Course:	e: Biology	
Course Code: BSC-401 Semester: IV			
Duratio	on: 6 months	Maximum Marks:100)
Teachi	ng Scheme		Examination Scheme
Theory	: 2hrs./week		Mid Semester exam: 15
Tutoria	ıl:		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Practic	al: NIL		End Semester Exam: 70 Marks
Credit	Points:	2	
Object	ive:		
1	Bring out the fundamental differences between science and engineering		
2	Discuss how biological observations of 18th Century that lead to major		
	discoveries		
Pre-Requisite:			
1	Basic knowledge of Physics ,Chemistry and mathematics		

Unit	Content	Hrs/Unit	Marks/Unit
1	To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlight the fundamental importance of observations in any scientific inquiry.	2	
2	The underlying criterion, such as morphological, biochemical or ecological be highlighted. Hierarchy of life forms at phenomenological level. A common thread weaves this hierarchy Classification. Discuss classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c)	3	

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science (Applicable from the academic session 2020-2021)

	(Applicable from the academic session 20	
3	energy and Carbon utilisation -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricoteliec, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" Mendel's laws, Concept of segregation and independent	4
	assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics.	
4.	Biomolecules: To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids.	4
5	Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis.	4
6	Information Transfer:The molecular basis of coding and decoding genetic information is universal Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA	4

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science (Applicable from the academic session 2020-2021)

	(Applicable from the academic session 20	20 2021)	
	structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.		
7	Macromolecular analysis: How to analyse biological processes at the reductionist level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.	5	
8	Metabolism: The fundamental principles of energy transactions are the same in physical and biological world. Thermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of K _{eq} and its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO ₂ + H ₂ O (Glycolysis and Krebs cycle) and synthesis of glucose from CO ₂ and H ₂ O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge	4	
9	Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.	3	

Text books/ reference books:

1. Uma Nath, General Biology, Khanna Publishing, New Delhi

2. Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.;

Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd

3. Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H. John Wiley and Sons

4. Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H. Freeman and Company

5. Molecular Genetics (Second edition), Stent, G. S.; and Calender, R. W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher

6. Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C. Brown Publishers

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science

(Applicable from the academic session 2020-2021)

Course Outcomes:

On completion of the course students will be able to

BSC-401.1 Describe how biological observations of 18th Century that lead to major discoveries.

BSC-401.2 Convey that classification *per se* is not what biology is all about but highlight the underlying

criteria, such as morphological, biochemical and ecological

BSC-401.3 Highlight the concepts of recessiveness and dominance during the passage of genetic material

from parent to offspring

BSC-401.4 Convey that all forms of life have the same building blocks and yet the manifestations are as

diverse as one can imagine

BSC-401.5 Classify enzymes and distinguish between different mechanisms of enzyme action.

BSC-401.6 Identify DNA as a genetic material in the molecular basis of information transfer.

BSC-401.7 Analyse biological processes at the reductionistic level

BSC-401.8 Apply thermodynamic principles to biological systems.

BSC-401.9 Identify and classify microorganisms.

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science (Applicable from the academic session 2020-2021)

Design & Analysis Algorithm Lab Code: PCCCS 494 Contact: 4P

Name of the Course:	Design & Analysis Algorithm Lab
Course Code: PCCCS 49	94 Semester: IV
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement: 60
Practical: 4 hrs./week	Distribution of marks: 40
Credit Points:	2
Course Outcomes:	
1 402.1	
2 402.2	
3 402.3	
Pre-Requisite:	
Pre-Requisite as in : 4	404

Laborat	tory Experiments:		
Divide a	and Conquer:		
1	Implement Binary Search using Divide and Conquer approach		
	Implement Merge Sort using Divide and Conquer approach		
2	Implement Quick Sort using Divide and Conquer approach		
	Find Maximum and Minimum element from a array of integer using Divide		
	and Conquer approach		
3	Find the minimum number of scalar multiplication needed for chain of		
	matrix		
4	Implement all pair of Shortest path for a graph (Floyed- Warshall Algorithm)		
	Implement Traveling Salesman Problem		
5	Implement Single Source shortest Path for a graph (Dijkstra , Bellman Ford Algorithm		
Brunch	and Bound:		
6	Implement 15 Puzzle Problem		
Backtra	icking:		
7	Implement 8 Queen problem		
8	Graph Coloring Problem		
	Hamiltonian Problem		
Greedy	method		
9	Knapsack Problem		
	Job sequencing with deadlines		
10	Minimum Cost Spanning Tree by Prim's Algorithm		
	Minimum Cost Spanning Tree by Kruskal's Algorithm		
Graph T	Traversal Algorithm:		

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science

(Applicable from the academic session 2020-2021)

11	Implement Breadth First Search (BFS)
	Implement Depth First Search (DFS)

Artificial Intelligence Code: PCCAIDS 401 Contacts: 3L

Name of the Course:	Artificial Intelligence			
Course Code: PCCAIDS 401	Semester: IV	Semester: IV		
Duration: 6 months	Maximum Marks:1	00		
Teaching Scheme		Examination Scheme		
Theory:3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance : 5 marks		
Practical: NIL		End Semester Exam :70 Marks		
Credit Points: 3				

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Introduction [2]	6	
1	Overview of Artificial intelligence- Problems of AI, AI technique, Tic		
	- Tac - Toe problem.		
	Intelligent Agents [2]		
	Agents & environment, nature of environment, structure of agents,		
	goal based agents, utility based agents, learning agents.		
	Problem Solving [2]		
	Problems, Problem Space & search: Defining the problem as state		
	space search, production system, problem characteristics,		
	issues in the design of search programs.		

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science

	$(A = 1] = 11, f_{abs} = 1 = 1 = 1 = 1 = 1 = 1 = 2 = 2020, 2021)$		
2.	(Applicable from the academic session 2020-2021) Search techniques [5]	13	
2.	Solving problems by searching :problem solving agents, searching for	15	
	solutions; uniform search strategies: breadth first		
	-		
	bidirectional search, comparing uniform search strategies.		
	Heuristic search strategies [5]		
	Greedy best-first search, A* search, memory bounded heuristic search:		
	local search algorithms & optimization problems:		
	Hill climbing search, simulated annealing search, local beam search,		
	genetic algorithms; constraint satisfaction problems,		
	local search for constraint satisfaction problems.		
	Adversarial search [3]		
	Games, optimal decisions & strategies in games, the minimax search		
	procedure, alpha-beta pruning, additional refinements,		
	iterative deepening.		
3	Knowledge & reasoning [3]	3	
	Knowledge representation issues, representation & mapping,		
	approaches to knowledge representation, issues in knowledge		
	representation.		
4	Using predicate logic [2]	6	
_	Representing simple fact in logic, representing instant & ISA		
	relationship, computable functions & predicates, resolution,		
	natural deduction.		
	Probabilistic reasoning [4]		
	Representing knowledge in an uncertain domain, the semantics of		
	Bayesian networks, Dempster-Shafer theory, Fuzzy sets &		
	fuzzy logics.		
=			
5	Natural Language processing [2]	6	
	Introduction, Syntactic processing, semantic analysis, discourse &		
	pragmatic processing.		
	Learning [2]		
	Forms of learning, inductive learning, learning decision trees,		
	explanation based learning, learning using relevance		
	information, neural net learning & genetic learning.		
	information, neural net learning & genetic learning. Expert Systems [2]		
	 information, neural net learning & genetic learning. Expert Systems [2] Representing and using domain knowledge, expert system shells, 		
	information, neural net learning & genetic learning. Expert Systems [2]		
	 information, neural net learning & genetic learning. Expert Systems [2] Representing and using domain knowledge, expert system shells, 		

Text book and Reference books:

- 1. Artificial Intelligence, Ritch & Knight, TMH
- 2. Artificial Intelligence A Modern Approach, Stuart Russel Peter Norvig Pearson
- 3. Introduction to Artificial Intelligence & Expert Systems, Patterson, PHI
- 4. Poole, Computational Intelligence, OUP
- 5. Logic & Prolog Programming, Saroj Kaushik, New Age International
- 6. Expert Systems, Giarranto, VIKAS
- 7. M.C. Trivedi, Artificial Intelligence, Khanna Publishing House, New Delhi (AICTE Recommended Textbook 2018)

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Draft Syllabus for B. Tech in AI and Data Science (Applicable from the academic session 2020-2021)

Environmental Sciences

Code: MC-401 Contacts: 2L

Name	Name of the Course:Environmental Sciences				
Cours	ourse Code: MC-401 Semester: IV				
Durati	Duration:6 months Maximum Marks:100				
Teaching Scheme		Examination Second	cheme		
	y:2hrs./week		Mid Semester ex		
Tutori	al: NIL		Assignment and	Quiz : 10 n	narks
			Attendance : 5 n	narks	
Practi	cal: NIL		End Semester E	xam :70 Ma	urks
Credit	Credit Points: 2				
Objec	ctive:				
1	Be able to understand the natural environment and its relationships with human				
	activities.				
2		the fundamental knowle	edge of science and	l engineerin	g to assess
	environmental ar	nd health risk.			
3	Be able to unders	stand environmental law	s and regulations t	to develop g	uidelines and
		ealth and safety issues.			
4	Be able to solve	scientific problem-solvi	ng related to air, w	ater, noise	& land
	pollution				
Pre-Requisite:					
1	Basic knowledge of Environmental science				
Unit		Content Hrs/Unit Marks/Unit			Marks/Unit

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science

	(Applicable from the academic session 2020-20)21)	
	Basic ideas of environment, basic concepts, man, society	_	
1	&environment, their interrelationship (1L)	6	
	Mathematics of population growth and associated problems, Importance of population study in environmentalengineering, definition of resource, types of resource, renewable, non-renewable, potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development. (2L)		
	Materials balance: Steady state conservation system, steadystate system with non-conservative pollutants, step function. (1L)		
	Environmental degradation: Natural environmental Hazards like Flood, earthquake, Landslide-causes, effects and control/management; Anthropogenic		
	degradation like Acid rain-cause, effects and control. Nature and scope of Environmental Science and Engineering. (2L)		
2	Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem- components types and function. (1L)	6	
	Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain [definition and one example of each food chain], Food web.(2L)		
	Biogeochemical Cycle- definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur]. (1L)		
	Biodiversity- types, importance, Endemic species, Biodiversity Hot-spot, Threats to biodiversity, Conservation of biodiversity.(2L)		
i			

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science

	(Applicable from the academic session 2020-20	021)	
3	Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesopause. (1L)	11	
	Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model [Earth as a black body, earth as albedo], Problems.(1L)		
	Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth's heat budget.(1L)		
	Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).(2L)		
	Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L)		
	Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria		
	pollutant. Sources and effect of different air pollutants- Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN. (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L)		
	Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)		

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science

Drajt Synabus for B. Tech in AI and Data Science						
	(Applicable from the academic session 2020-2021)					
4.	Hydrosphere, Hydrological cycle and Natural water. Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal	9				
	application, heavy metals, pesticides, volatile organic compounds. (2L)					
	River/Lake/ground water pollution: River: DO, 5-day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river [deoxygenation, reaeration], COD, Oil, Greases, pH. (2L)					
	Lake: Eutrophication [Definition, source and effect]. (1L)					
	Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only)(1L)					
	Standard and control: Waste water standard [BOD, COD, Oil, Grease],					
	Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening] Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated sludge, sludge treatment, oxidation ponds] tertiary treatment definition. (2L)					
	Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic (1L)					
5	Lithosphere; Internal structure of earth, rock and soil (1L)	3				

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science

(4	١p	plicable from the acad	emic	session	2020	-2021)

	(Applicable from the academic session 2020	-2021)				
	Solid Waste: Municipal, industrial, commercial,					
	agricultural, domestic, pathological and hazardous solid					
	wastes;					
	Recovery and disposal method- Open dumping, Land					
	filling, incineration, composting, recycling.					
	Solid waste management and control (hazardous and					
	biomedical waste).(2L)					
6	Definition of noise, effect of noise pollution, noise	3				
	classification [Transport noise, occupational noise,					
	neighbourhood noise] (1L)					
	Definition of noise frequency, noise pressure, noise					
	intensity, noise threshold limit value, equivalent noise					
	level,					
	L10 (18hr Index), n Ld. Noise pollution control. (1L)					
7	Environmental impact assessment, Environmental	2				
	Audit, Environmental laws and protection act of India,					
	Different international environmental treaty/					
	agreement/ protocol. (2L)					

Text books/ reference books:

1. M.P. Poonia & S.C. Sharma, Environmental Studies, Khanna Publishing House (AICTE Recommended Textbook – 2018)

2. M.P. Poonia, S.C. Sharma, Santosh Kumar, Environmental Engineering, Khanna Publishing House (AICTE Recommended Textbook)

3. Masters, G. M., "Introduction to Environmental Engineering and Science", Prentice-Hall of India Pvt. Ltd., 1991.

4. De, A. K., "Environmental Chemistry", New Age International

Course Outcomes:

On completion of the course students will be able to

MC-401.1 To understand the natural environment and its relationships with human activities.

MC-401.2 To apply the fundamental knowledge of science and engineering to assess environmental and health risk.

MC-401.3 To develop guidelines and procedures for health and safety issues obeying the environmental laws and regulations.

MC-401.4 Acquire skills for scientific problem-solving related to air, water, noise& land pollution.

(Formerly West Bengal University of Technology) Draft Syllabus for B. Tech in AI and Data Science (Applicable from the academic session 2020-2021)

Artificial Intelligence Lab Code: PCCAIDS 491 Contacts: 4P

LIST OF EXPERIMENTS:

- 1. Study of Prolog.
- 2. Write simple fact for the statements using PROLOG.

3. Write predicates One converts centigrade temperatures to Fahrenheit, the other checks if a temperature is below freezing.

4. Write a program to solve the Monkey Banana problem.

5. WAP in turbo prolog for medical diagnosis and show the advantage and disadvantage of green and red cuts.

6. WAP to implement factorial, fibonacci of a given number.

7. Write a program to solve 4-Queen problem.

8. Write a program to solve traveling salesman problem.

9. Write a program to solve water jug problem using LISP Any experiment specially designed by the college.

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

IT Workshop-2 (MATLAB/SCILAB) Code: PCCAIDS 492 Contacts: 4P

Name of the Course:	IT Workshop			
Course Code: PCCAIDS 492	Semester: III			
Duration: 6 months	Maximum Marks: 100			
Teaching Scheme:				

(Formerly West Bengal University of Technology)

Draft Syllabus for B. Tech in AI and Data Science

(Applicab)	le fror	n the	academic	sessio	n 2020-2021))
	0	· •	Τ.	1 4		-

(Applicable from the academic session 2020-2021)				
Theory: NIL		Continuous Internal Assessment		
Tutorial: NIL		External Assesement: 60		
Practical: 4 hrs./week		Distribution of marks: 40		
Credit Points:		2		
Course Outcomes:				
1	To master an understanding of scripting & the contributions of scripting languages			
2	Design real life problems and think creatively about solutions			
3	Apply a solution in a program using R/Matlab/Python.			
4	To be exposed to advanced applications of mathematics, engineering and natural			
	sciences to program real life problems.			
Pre-Requisite:				
1.	Knowledge of Programming Logic			
2.	Experience with a high level language (C/C++,) is suggested.			
3.	Prior knowledge of a scripting language and Object-Oriented concepts is helpful but			
	not mandatory.			
D				

Programming in Matlab

Introduction

Why MATLAB?, History, Its strengths, Competitors, Starting MATLAB, Using MATLAB as a calculator, Quitting MATLAB

Basics

Familiar with MATLAB windows, Basic Operations, MATLAB-Data types, Rules about variable names, Predefined variables

Programming-I

Vector, Matrix, Array Addressing, Built-in functions, Mathematical Operations, Dealing with strings (Array of characters), Array of array (cell) concept

Programming-II

Script file, Input commands, Output commands, Structure of function file, Inline functions, Feval command, Comparison between script file and function file

Conditional statements and Loop

Relational and Logical Operators, If-else statements, Switch-case statements, For loop, While loop, Special commands (Break and continue), Import data from large database, Export data to own file or database

2D Plotting

In-built functions for plotting, Multiple plotting with special graphics, Curve fitting, Interpolation, Basic fitting interface

3D Plotting

Use of meshgrid function, Mesh plot, Surface plot, Plots with special graphics