SEMESTER -V

Name of the Course: B. Tech in AI & DS					
Subject: I	Probability & Statistics				
Course Co	ode: PCCAIDS 501	Semester: V			
Teaching	Scheme	Maximum Marks: 100			
Theory: 3	3 hrs./week	Examination Scheme			
Tutorial:		End Semester Exam: 70			
Practical:	0	Attendance: 5			
Credit:3		Continuous Assessment: 25			
Aim:					
SI. No.					
1.	The aim of this course is to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling various problems in the discipline.				
2.	The objective of this course is to familiarize the students with statistical techniques.				
Objective: Throughout the course, students will be expected to demonstrate their understanding of probability & statistics by being able to learn each of the following					
Sl. No.					
1.	The ideas of probability an	d random variables and various discrete and continuous			
	probability distributions ar	nd their properties.			
2.	The basic ideas of statistics	s including measures of central tendency, correlation and			
	regression.				
3.	The statistical methods of studying data samples.				
Pre-Requ	Pre-Requisite:				
Sl. No.					
1.	Knowledge of basic algebr	a, calculus.			
2.	Ability to learn and solve n	nathematical model.			

Contents			Contents
Chapter	Name of the Topic	Hours	Marks
01	Definition of Partial Differential Equations, First order partial differential equations, solutions of first order linear PDEs; Solution to homogenous and nonhomogeneous linear partial differential equations of second order by complimentary function and particular integral method. Second-order linear equations and their classification, Initial and boundary conditions, D'Alembert's solution of the wave equation; Duhamel's principle for one dimensional wave equation. Heat diffusion and vibration problems, Separation of variables method to simple problems in Cartesian coordinates. The Laplacian in plane, cylindrical and spherical polar coordinates, solutions with Bessel functions and Legendre functions. One dimensional diffusion equation and its solution by separation of variables.	16	20
02	Probability spaces, conditional probability, independence; Discrete random variables, Independent random variables, the multinomial distribution, Poisson approximation to the binomial distribution, infinite sequences of Bernoulli trials, sums of independent random variables; Expectation of Discrete Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev's Inequality. Continuous random variables and their properties, distribution functions and densities, normal, exponential and gamma densities.Bivariate distributions and their properties, distribution of sums and quotients, conditional densities, Bayes' rule.	16	25
03	Basic Statistics, Measures of Central tendency: Moments, skewness and Kurtosis - Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions, Correlation and regression – Rank correlation. Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, Tests for single mean, difference of means, and difference of standard deviations. Test for ratio of variances - Chisquare test for goodness of fit and independence of attributes.	16	25
	Sub Total:	48	70
	Internal Assessment Examination & Preparation of Semester Examination	4	30
	Total:	52	100

Assignments:						
Based on the curriculun	Based on the curriculum as covered by subject teacher.					
List of Books						
Text Books:						
Name of Author	Title of the Book	Edition/ISSN/ISBN	Name of the Publisher			
Erwin Kreyszig	Advanced Engineering Mathematics	9 th Edition	John Wiley & Sons			
N. G. Das	Statistical Methods	0070083274, 9780070083271	Tata Mc.Graw Hill			
Reena Garg	Advanced Engineering Mathematics AICTE Recommended	First Edition	Khanna Publishing			
Reference Books:			,			
P. G. Hoel, S. C. Port and C. J. Stone	Introduction to Probability Theory		Universal Book Stall			
W. Feller	An Introduction to Probability Theory and its Applications	3rd Ed.	Wiley			
Manish Sharma, Amit Gupta	The Practice of Business Statistics AICTE Recommended	First Edition	Khanna Publishing			

Operating Systems Code: PCC- CS502 Contacts: 3L

Name of the Subject:		Operating Systems	S		
Course Code: PCC-CS502		Semester: V			
Durati	ion: 6 months	Maximum Marks:100			
Teach	ing Scheme		Examination Scheme		
Theor	y:3 hrs./week		Mid Semester exam: 15		
Tutori	ial: NIL		Assignment and Quiz: 10 m	arks	
			Attendance : 5 marks		
Practi	cal: hrs./week		End Semester Exam :70 Ma	rks	
Credit	Points:	3			
Unit		Content		Hrs/U nit	Marks/ Unit
1	Introduction: Concept of Operating Systems, Generations of Operating systems, Types of Operating Systems, OS Services, System Calls, Structure of an OS - Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System.				
2	Processes: Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads, Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Preemptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF.				
3.	Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problemetc.				
4.	conditions for Dea Avoidance: Banker	Deadlocks:Definition,Necessary and sufficient5conditions for Deadlock, Deadlock Prevention, DeadlockAvoidance: Banker's algorithm, Deadlock detection and Recovery.			

5.	Memory Management: Basic concept, Logical and	8	
	Physical address map, Memory allocation: Contiguous		
	Memory allocation— Fixed and variable partition—		
	Internal and External fragmentation and Compaction;		
	Paging: Principle of operation –Page allocation		
	Hardware support for paging, Protection and		
	sharing, Disadvantages of paging.		
	Virtual Memory: Basics of Virtual Memory – Hardware		
	and control structures – Locality of reference, Page		
	fault		
	, Working Set , Dirty page/Dirty bit – Demand paging,		
	Page Replacement algorithms:		
	Optimal, First in First Out (FIFO), Second Chance (SC),		
	Not recently used (NRU) and Least Recently used(LRU).		
6.	I/O Hardware: I/O devices, Device controllers, Direct	6	
	memory access Principles of I/O Software: Goals of		
	Interrupt handlers, Device drivers, Device independent		
	I/O software, Secondary-Storage Structure: Disk		
	structure, Disk scheduling algorithms		
	File Management: Concept of File, Access methods, File		
	types, File operation, Directory structure, File System		
	structure, Allocation methods (contiguous, linked,		
	indexed), Free-space management (bit vector, linked		
	list, grouping), directory implementation (linear list,		
	hash table), efficiency andperformance.		
	Disk Management: Disk structure, Disk scheduling -		
	FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk		
	formatting, Boot-block, Bad blocks		

- 1. Operating System Concepts Essentials, 9th Edition by AviSilberschatz, Peter Galvin, Greg Gagne, Wiley Asia StudentEdition.
- 2. Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice Hall of India.
- 3. Operating System Concepts, Ekta Walia, Khanna PublishingHouse (AICTE Recommended Textbook 2018)
- 4. Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin Publishing
- 5. Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-Wesley
- 6. Design of the Unix Operating Systems, 8th Edition by MauriceBach, Prentice-Hall of India
- 7. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates

Operating System Lab Code: PCC- CS592 Contacts: 4P

Name of the Course:	Operating System Lab
Course Code: PCC- CS592	Semester: V
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

1 1. Managing Unix/Linux Operating System [8P]:

Creating a bash shell script, making a script executable, shell syntax (variables, conditions, control structures, functions, commands). Partitions, Swap space, Device files, Raw and Block files, Formatting disks, Making file systems, Superblock, I-nodes, File system checker, Mounting file systems,

Logical Volumes, Network File systems, Backup schedules and

methods Kernel loading, init and the inittab file, Run-levels, Run level scripts. Password file management, Password

security, Shadow file, Groups and the group file, Shells, restricted shells, user-management commands, homes and

permissions, default files, profiles, locking accounts, setting passwords, Switching user, Switching group, Removing users &user groups.

- 2. **Process [4P]**: starting new process, replacing a process image, duplicating aprocess image, waiting for a process,
- zombie process.
- 3. **Signal [4P]**: signal handling, sending signals, signal interface, signal sets.
- 4. **Semaphore** [6P]: programming with semaphores (use functions semctl, semget, semop, set semvalue, del semvalue, semaphore p, semaphore v).
- 5. **POSIX Threads [6P]**: programming with pthread functions (viz. pthread_create, pthread_join, pthread_exit,
- pthread_attr_init, pthread_cancel)
- 6. **Inter-process communication [6P]**: pipes(use functions pipe, popen, pclose), named pipes(FIFOs, accessing FIFO),

message passing & shared memory(IPC version V).

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Object Oriented Programming

Code: PCC-CS503
Contacts: 3L

Name of the Subject:		Object Oriented Programming			
Course Code: PCC-CS 503 Semes		Semester: V	ster: V		
Durati	ion:6 months	Maximum Ma	arks:100		
Teach	ing Scheme		Examination S	cheme	
Theor	y:3 hrs./week		Mid Semester	exam: 15	
Tutori	al: NIL		Assignment an	d Quiz : 10 mark	S
			Attendance: 5		
Practi	cal: hrs./week		End Semester	Exam:70 Marks	
Credit	: Points:		3		
Unit	C	ontent		Hrs/Unit	Marks/Unit
1	Abstract data types and their specification. How to implement an ADT. Concrete state space, concrete invariant, abstraction function. Implementing operations, illustrated by the Text example.			8	
2	 Features of object-oriented programming. Encapsulation, object identity, polymorphism but not inheritance. 			8	
3				6	
4	Model-view-controller pattern. Commands as methods and as objects. ImplementingOO language features. Memory management.			6	
5	Generic types and collections GUIs. Graphical programming with Scale and Swing. The software development process			6	

- 1. R.S. Salaria, Mastering Object-Oriented Programming Using C++, Khanna Publishing House
- 2. Rambaugh, James Michael, Blaha "Object Oriented Modelling and Design" PrenticeHall,
- 3. Ali Bahrami "Object Oriented System Development" Mc Graw Hill
- 4. Patrick Naughton, Herbert Schildt "The complete reference-Java2" TMH
- 5. R.K Das "Core Java For Beginners" VIKAS PUBLISHING
- 6. Deitel and Deitel "Java How to Program" 6th Ed. Pearson
- 7. Ivor Horton's Beginning Java 2 SDK Wrox
- 8. E. Balagurusamy "Programming With Java: A Primer" 3rd Ed. TMH

Object Oriented Programming & Java Lab

Code: PCC-CS593 Contacts: 4P

Name of the Course:	Object Oriented Programming Lab
Course Code: PCC- CS593	Semester:V
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

Laboratory Experiments:

- 1. Assignments on class, constructor, overloading, inheritance, overriding
- 2. Assignments on wrapper class, arrays
- 3. Assignments on developing interfaces- multiple inheritance, extending interfaces
- 4. Assignments on creating and accessing packages
- 5. Assignments on multithreaded programming
- 6. Assignments on applet programming

Note: Use Java for programming

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

Introduction to Industrial Management (Humanities III)

Code: HSMC-501 Contacts: 2L

		_			
Name	of the Course:	Introduction to	Industrial Mana	agement (Humar	nities III)
Cours	Course Code: HSMC-501 Semester: V				
Durat	ion:6 months	Maximum Marks	s:100		
	Teaching Scheme		Examination	Scheme	
	J				
Theor	y:2 hrs./week		Mid Semester	exam: 15	
Tutori	ial: NIL		Assignment a	nd Quiz : 10 marl	KS
			Attendance: 5		
Practi	cal: NIL		End Semester	Exam:70 Marks	
	Points:	2			
Unit	Content			Hrs/Unit	Marks/Unit
	Introduction	6		6	
1	System- concept, de				
	types, parameters,	variables and			
	behavior.	tion			
	Management – defini andfunctions.	LIOII			
	Organization str	ucture.			
	i. Definition.	actare.			
	ii. Goals.				
	iii. Factors consider	ed in			
	formulatingstructur	e.			
	iv. Types.				
	v. Advantages and	disadvantages.			
	vi. Applications.				
	Concept, meaning an				
	division of labor, scale				
	processes, span of co ofauthority, centralize	_			
	decentralization in in				
	management.	aastiiai			
	Organizational culture				
	-meaning, difference				
	affecting them.				
	Moral-factors af				
	Relationship betweer				
	andproductivity.				
	Job satisfaction- factor				
	jobsatisfaction.				
	Important provisions	of factory act			
	andlabor laws.				

2	Critical Path Method (CPM) and Programme Evaluation Review Technique (PERT):	8	
	2.1 CPM & PERT-meaning, features, difference, applications. 2.2 Understand different terms used in network diagram.		
	Draw network diagram for a real life		
	project containing 10-15 activities,		
	computation of LPO and EPO.(Take		
	minimum three examples).		
	Determination of critical path on		
	network. Floats, its types and determination of		
	floats.		
	Crashing of network, updating and its		
	applications.		
3	Materials Management:	6	
	Material management-definition,		
	functions, importance, relationship with		
	other departments. Purchase - objectives, purchasing		
	systems, purchase procedure, terms and		
	forms used in purchase department.		
	Storekeeping- functions, classification		
	of stores as centralized and decentralized		
	with their advantages, disadvantages and		
	application in actual practice.		
	Functions of store, types of records		
	maintained by store, various types and		
	applications of storage equipment, need		
	and general methods for codification of		
	stores. Inventory control:		
	i. Definition.		
	ii. Objectives.		
	iii. Derivation for expression for		
	Economic Order Quantity (EOQ) and		
	numeric examples. iv. ABC analysis and		
	other modern methods of analysis.		
	v. Various types of inventory models		
	such as Wilson's inventory model,		
	replenishment model and two bin model.		
	(Only sketch and understanding, no		
	derivation.).		
	3.6 Material Requirement Planning (MRP)- concept, applications and brief		
	details about software packages available		
	in market.		

4	Production planning and Control	8	
	(PPC):		
	Types and examples of production.		
	PPC : i. Need and importance. ii.		
	Functions. iii. Forms used and their		
	importance. iv. General approach		
	foreach type of production.		
	Scheduling- meaning and need		
	forproductivity and utilisation.		
	Gantt chart- Format and method		
	toprepare.		
	Critical ratio scheduling-method		
	andnumeric examples.		
	Scheduling using Gantt Chart (for at		
	least 5-7 components having 5-6		
	machining operations, with processes		
	machining operations, with processes, setting and operation time for each		
	,		
	component and process, resources		
	available, quantity and other		
	necessarydata), At least two		
	examples.		
	4.7 Bottlenecking- meaning, effect		
	andways to reduce. Value Analysis (VA) and Cost Control:	4	
5	5.1 VA-definition, terms used, process and	4	
	importance. 5.2 VA flow diagram. DARSIRI		
	method of VA.		
	Case study of VA-at least two.		
	·		
	Waste-types, sources and ways to reduce		
	them. Cost control-methods and important guide lines.		
6	Recent Trends in IM:	4	
	ERP (Enterprise resource planning) - concept,	4	
	features and applications.		
	Important features of MS Project.		
	Logistics- concept, need and		
	benefits.		
	Just in Time (JIT)-concept and benefits.		
	Supply chain management-concept and benefits.		
	Supply chain management-concept and benefits.		

- 1. S.C. Sharma, "Engineering Management Industrial Engineering & Management" (AICTE Recommended Textbook), Khanna Book Publishing Company, New Delhi
- L.S. Srinath—"CPM & PERT principles and Applications".
 Buffa "Modern Production Management".
 N. Nair "Materials Management".
 O. P. Khanna "Industrial Engineering & Management".
 Mikes "Value Analysis".

Cloud Computing Code: PECAIDS 501B

Contact: 3L

Name of the Course:	Cloud Computing	
Course Code: PECAIDS 501B	Semester: V	
Duration: 6 months	Maximum Marks: 100	
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical:		End Semester Exam: 70 Marks
Credit Points: 3		

Unit	Content	Hrs/ Unit	Marks/Unit
1	<u>Definition of Cloud Computing and itsBasics</u> (<u>Lectures</u>). Defining a Cloud, Cloud Types – NIST model, Cloud Cube	9	
	model, Deployment models (Public , Private, Hybrid and Community Clouds), Service Platform as a Service, Software asa Service with examples of services/ serviceproviders, models — Infrastructure as a Service, Cloud Reference model, Characteristics of Cloud Computing — a shift in paradigm Benefits and advantages of Cloud Computing, A brief introduction on Composability, Infrastructure, Platforms, Virtual Appliances, Communication Protocols, Applications, Connecting to the Cloud by Clients, IaaS —Basic concept, Workload, partitioning of virtual private server instances, Pods, aggregations, silos PaaS — Basic concept, tools and development environment with examples SaaS - Basic concept and characteristics,Open SaaS and SOA, examples of SaaS platform Identity as a Service (IDaaS) Compliance as a Service (CaaS)		

	Use of Platforms in Cloud Computing Concepts of	12	
2	Abstraction and Virtualization Virtualization	12	
2	technologies : Typesofvirtualization		
	(access, application, CPU,storage),		
	Mobility patterns (P2V, V2V, V2P, P2P, D2C, C2C, C2D,		
	D2D) Load Balancing and Virtualization: Basic		
	_		
	Concepts, Network resources for load balancing,		
	Advanced load balancing (including		
	ApplicationDelivery Controller and Application		
	Delivery Network), Mention of The Google Cloud as an		
	example of use of load balancing Hypervisors: Virtual		
	machine technology and types, VMware		
	vSphere Machine Imaging (including mention of Open		
	Virtualization Format – OVF)		
	Porting of applications in the Cloud: The simple Cloud		
	API and AppZero Virtual Application appliance,		
	Concepts of Platform as a Service, Definition of		
	services, Distinction between SaaS and PaaS		
	(knowledge of Salesforce.com and Force.com),		
	Application development		
	Use of PaaS Application frameworks,		
	Discussion of Google Applications Portfolio – Indexed		
	search, Dark Web, Aggregation and disintermediation,		
	Productivity applications and service, Adwords,		
	Google Analytics, Google Translate, a brief discussion		
	on Google Toolkit (including introduction of Google		
	APIs in brief), major features of Google App Engine		
	service., Discussion of Google Applications Portfolio –		
	Indexed search, Dark Web, Aggregation and		
	disintermediation, Productivity applications and		
	service, Adwords, Google Analytics, Google Translate, a		
	brief discussion on Google Toolkit (including		
	introduction of Google APIs in brief), major features of		
	Google App Engine service, Windows Azure platform:		
	Microsoft's approach, architecture, and main		
	elements, overview of Windows Azure AppFabric,		
	Content Delivery Network, SQL Azure, and Windows Live services,		
	LIVE 3CIVICES,		

	Cloud Management	7	
3	Cloud Management:		
	An overview of the features of network management		
	systems and a brief introduction of related products		
	from large cloud vendors, Monitoring of an entire		
	cloud computing deployment stack – an overview with		
	mention of some products, Lifecycle management of		
	cloud services (six stages of lifecycle).		
	Concepts of Cloud Security:		
	Cloud security concerns, Security boundary, Security		
	service boundary Overview of securitymapping		
	Security of data: Brokered cloudstorage access,		
	Storage location and tenancy, encryption, and		
	auditing and compliance Identity management		
	(awareness of Identityprotocol standards)		
4.	Concepts of Services and Applications:	8	
7.	Service Oriented Architecture: Basic conceptsof message-based transactions, Protocol stackfor an SOA architecture, Event-driven SOA, Enterprise Service Bus, Service catalogs,		
	Applications in the Cloud: Concepts of cloud		
	transactions, functionality mapping,		
	, 11 0,		
	Application attributes, Cloud service		
	attributes, System abstraction and Cloud		
	Bursting, Applications and Cloud APIs		
	Cloud-based Storage: Cloud storage definition		
	cioda basca storage, cioda storage acrimition		
	 Manned and Unmanned 		
	 Manned and Unmanned Webmail Services: Cloud mail services including Google Gmail, Mail2Web, WindowsLive Hotmail, Yahoo mail, concepts of Syndication services 		

- 1. Cloud Computing Bible by Barrie Sosinsky, Wiley India Pvt. Ltd, 2013
- 2. Mastering Cloud Computing by Rajkumar Buyya, Christian Vecchiola,
- S. Thamarai Selvi, McGraw Hill Education (India) Private Limited,2013
 3. Cloud computing: A practical approach, Anthony T. Velte, Tata Mcgraw-Hill
 4. Cloud Computing, Miller, Pearson
- 5. Building applications in cloud: Concept, Patterns and Projects, Moyer, Pearson
- 6. Cloud Computing Second Edition by Dr. Kumar Saurabh, Wiley India

Pattern Recognition Code: PECAIDS 501C

Contact: 3L

Name of the Subject:	Pattern Recognition		
Course Code: PECAIDS 501C	Semester: V		
Duration:6 months	Maximum Marks:1	00	
Teaching Scheme	•	Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Basics of pattern recognition	2	
2	Bayesian decision theory 8L Classifiers, Discriminant functions, Decision surfaces Normal density and discriminant functions Discrete features	8	
3	Parameter estimation methods 6L Maximum-Likelihood estimation Gaussian mixture models Expectation-maximization method Bayesian estimation	6	
4.	Hidden Markov models for sequential pattern classification 8L Discrete hidden Markov models Continuous density hidden Markov models	8	
5	Dimension reduction methods 3L 5.1. Fisher discriminant analysis 5.2Principal component analysis. Parzen-window method K-Nearest Neighbour method	3	
6	Non-parametric techniques for density estimation	2	
7	Linear discriminant function based classifier 5L Perceptron Support vector machines	5	

8	Non-metric methods for pattern classification 4L	4	
	Non-numeric data or nominal data		
	Decision trees		
9	Unsupervised learning and clustering 2L	2	
	Criterion functions for clustering		
	Algorithms for clustering: K-means,		
	Hierarchical and other methods		

- 1. R. O. Duda, P. E. Hart and D. G. Stork: Pattern Classification, John Wiley, 2001.
- 2. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009.
- 3. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Subject: G	Subject: Graph Theory				
Course Co	de: PECAIDS 501D	Semester: V			
		Maximum Marks: 100			
Teaching S	cheme	Examination Scheme			
Theory: 3 h	rs./week	End Semester Exam: 70			
Tutorial:		Attendance : 5			
Practical: 0	1	Continuous Assessment: 25			
Credit: 3		Practical Sessional internal continuous evaluation: NA			
		Practical Sessional external examination: NA			
Aim:					
Sl. No.					
1.	Understand the basic of graph theory.				
2.	2. Understand path, walks and cycle				
3.	Understand set covering	g and matches.			
4.	Understand vertex color	ring.			
Objective	1				
Sl. No.					
1.	To learn about the verte	ex, edge, path and cycle.			
2.	To learn about connecte	ed graph.			
3.	To learn about shortest path.				
4.	To learn about set covering and matching.				
5.	5. To learn about vertex coloring.				
Pre-Requi	site:				
Sl. No.					
	None				

Contents		4 Hrs./week	
Chapter	Name of the Topic	Hours	Marks
01	Introduction	7	14
	Discovery of graphs, Definitions, Subgraphs, Isomorphic graphs,		
	Matrix representations of graphs, Degree of a vertex, Directed		
	walks, paths and cycles, Connectivity in digraphs, Eulerian and		
	Hamilton digraphs, Eulerian digraphs, Hamilton digraphs,		
	Special graphs, Complements, Larger graphs from smaller		
	graphs, Union, Sum, Cartesian Product, Composition, Graphic		

	Sub Total:	36	70
05	Vertex Colorings Basic definitions, Cliques and chromatic number, Mycielski's theorem, Greedy coloring algorithm, Coloring of chordal graphs, Brooks theorem, Edge Colorings, Introduction and Basics, Gupta-Vizing theorem, Class-1 and Class-2 graphs, Edge-coloring of bipartite graphs, Class-2 graphs, Hajos union and Class-2 graphs, A scheduling problem and equitable edge-coloring.	7	14
04	Independent sets coverings and matchings Introduction, Independent sets and coverings: basic equations, Matchings in bipartite graphs, Hall's Theorem, K"onig's Theorem, Perfect matchings in graphs, Greedy and approximation algorithms.	8	14
03	Trees Definitions and characterizations, Number of trees, Cayley's formula, Kircho-matrix-tree theorem, Minimum spanning trees, Kruskal's algorithm, Prim's algorithm, Special classes of graphs, Bipartite Graphs, Line Graphs, Chordal Graphs, Eulerian Graphs, Fleury's algorithm, Chinese Postman problem, Hamilton Graphs, Introduction, Necessary conditions and sufficient conditions.	7	14
02	Connected graphs and shortest paths Walks, trails, paths, cycles, Connected graphs, Distance, Cutvertices and cut-edges, Blocks, Connectivity, Weighted graphs and shortest paths, Weighted graphs, Dijkstra's shortest path algorithm, Floyd-Warshall shortest path algorithm.	7	14
	sequences, Graph theoretic model of the LAN problem, Havel-Hakimi criterion, Realization of a graphic sequence.		

	Internal Assessment Examination & Preparation of Semester Examination						4	30
Total:							40	100
List of Bo	oks							
Text Boo	ks:							
Name of	Author	Title of the	Book	Edition/IS	SN/ISBN	Nam	e of tl	ne
						Publ	isher	
J. A. Bor R. Murty	ndy and U.S.	Graph The	ory	1 st edition		Spri	nger	
Richard	J. Trudeau	Introduction Theory	on to Graph	2 nd edition		Dov	er Pub	lications
S.B. Sing	ţh	Combinato Graph The		Third Edition	on	Kha	nna Pu	blishing
Referenc	e Books:	•		•				
Chartra	nd and	A First Course in		ISBN-10: 0486483681		Dov	er Pub	lications
Zhang		Graph Theory		ISBN-13: 978-				
					0486483689			
Maarter	n van Steen	•	•		ISBN-10: 9081540610		Maarten van Steen	
		·	letworks: An					
		Introduction		9081540612				
End Semo	ester Examin	ation Schem	e. Ma	ximum Marl	cs-70.	1	ime a	llotted-
Group	Unit	Objective	Questions		Subjectiv	e Ques	tions	
		(MCQ only						
		No of	Total	No of	То	Marl	ks	Total
		question	Marks	question	answer	per		Marks
		to be set		1 '		ques	tion	
Α	1 to 5	10	10					
В	1 to 5			5	3	5		60
С	1 to 5			5	3	15		

- Only multiple choice type questions (MCQ) with one correct answer are to be set in the objective part.
- Specific instruction to the students to maintain the order in answering objective questions should be given on top of the question paper.

Examination Scheme for end semester examination:

Group	oup Chapter M		Question to be	Question to be			
		question	set	answered			
Α	All	1	10	10			

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Artificial Intelligence and Data Science

(Applicable from the academic session 2020-2021)

В	All	5	5	3
С	All	15	5	3

Soft Computing

Code: PEC-AIDS 501A

Contacts: 3L

Name of the Course:	Soft	Computing	
Course Code: PEC-AIDS 501A Sem		ester: V	
Duration:6 months Maximum Marks: 100		mum Marks: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical:		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction: Introduction to soft computing;		
1	introduction to fuzzy sets and fuzzy logic systems;	8	
	introduction to biological and artificial neural		
	network; introduction to Genetic Algorithm		
	Fuzzy sets and Fuzzy logic systems:	10	
2	Classical Sets and Fuzzy Sets and Fuzzy relations :		
	Operations on Classical sets, properties of classical		
	sets, Fuzzy set operations, properties of fuzzy sets,		
	cardinality, operations, and properties of fuzzy		
	relations.		
	Membership functions : Features of membership		
	functions, standard forms and boundaries,		
	differentfuzzification methods.		
	Fuzzy to Crisp conversions: Lambda Cuts for fuzzy		
	sets, fuzzy Relations, Defuzzification methods.		
	Classical Logic and Fuzzy Logic: Classical predicate		
	logic, Fuzzy Logic, Approximate reasoning and Fuzzy		
	Implication Fuzzy Rule based Systems: Linguistic		
	Hedges, Fuzzy Rule based system – Aggregation of		
	fuzzy Rules, Fuzzy Inference System- Mamdani Fuzzy		
	Models – Sugeno Fuzzy Models.		
	Applications of Fuzzy Logic: How Fuzzy Logic is		
	applied in Home Appliances, General Fuzzy Logic		
	controllers, Basic Medical Diagnostic systems and		
	Weather forecasting		

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Data Science (Applicable from the academic session 2020-2021)

Introduction to Neural Networks: Advent of ModernNeuroscience, Classical AI and Neural Networks, Biological Neurons and Artificial neural network; model of artificial neuron. Learning Methods: Hebbian, competitive, Boltzman etc., Neural Network models: Perceptron, Adaline andMadaline networks; single layer network; Back- propagation and multi layer networks. Competitive learning networks: Kohonen self organizing networks, Hebbian learning; Hopfield Networks. Neuo-Fuzzy modelling: Applications of Neural Networks: Pattern Recognition andclassification Genetic Algorithms: Simple GA, crossover and mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based		Neural Network	10	
Networks, Biological Neurons and Artificial neural network; model of artificial neuron. Learning Methods: Hebbian, competitive, Boltzman etc., Neural Network models: Perceptron, Adaline andMadaline networks; single layer network; Back-propagation and multi layer networks. Competitive learning networks: Kohonen self organizing networks, Hebbian learning; Hopfield Networks. Neuo-Fuzzy modelling:Applications of Neural Networks: Pattern Recognition andclassification Genetic Algorithms: Simple GA, crossover and 10 4. mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based	3	Introduction to Neural Networks: Advent of		
network; model of artificial neuron. Learning Methods: Hebbian, competitive, Boltzman etc., Neural Network models: Perceptron, Adaline andMadaline networks; single layer network; Back- propagation and multi layer networks. Competitive learning networks: Kohonen self organizing networks, Hebbian learning; Hopfield Networks. Neuo-Fuzzy modelling:Applications of Neural Networks: Pattern Recognition andclassification Genetic Algorithms: Simple GA, crossover and 4. mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based		ModernNeuroscience, Classical AI and Neural		
Learning Methods: Hebbian, competitive, Boltzman etc., Neural Network models: Perceptron, Adaline andMadaline networks; single layer network; Backpropagation and multi layer networks. Competitive learning networks: Kohonen self organizing networks, Hebbian learning; Hopfield Networks. Neuo-Fuzzy modelling:Applications of Neural Networks: Pattern Recognition andclassification Genetic Algorithms: Simple GA, crossover and mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based		Networks, Biological Neurons and Artificial neural		
etc., Neural Network models: Perceptron, Adaline andMadaline networks; single layer network; Back- propagation and multi layer networks. Competitive learning networks: Kohonen self organizing networks, Hebbian learning; Hopfield Networks. Neuo-Fuzzy modelling: Applications of Neural Networks: Pattern Recognition andclassification Genetic Algorithms: Simple GA, crossover and 4. mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based		network; model of artificial neuron.		
andMadaline networks; single layer network; Back- propagation and multi layer networks. Competitive learning networks: Kohonen self organizing networks, Hebbian learning; Hopfield Networks. Neuo-Fuzzy modelling:Applications of Neural Networks: Pattern Recognition andclassification Genetic Algorithms: Simple GA, crossover and mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based		Learning Methods : Hebbian, competitive, Boltzman		
propagation and multi layer networks. Competitive learning networks: Kohonen self organizing networks, Hebbian learning; Hopfield Networks. Neuo-Fuzzy modelling:Applications of Neural Networks: Pattern Recognition andclassification Genetic Algorithms: Simple GA, crossover and 4. mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based		etc., Neural Network models: Perceptron, Adaline		
Competitive learning networks: Kohonen self organizing networks, Hebbian learning; Hopfield Networks. Neuo-Fuzzy modelling:Applications of Neural Networks: Pattern Recognition andclassification Genetic Algorithms: Simple GA, crossover and 4. mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based		andMadaline networks; single layer network; Back-		
organizing networks, Hebbian learning; Hopfield Networks. Neuo-Fuzzy modelling:Applications of Neural Networks: Pattern Recognition andclassification Genetic Algorithms: Simple GA, crossover and nutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based		propagation and multi layer networks.		
Networks. Neuo-Fuzzy modelling:Applications of Neural Networks: Pattern Recognition andclassification Genetic Algorithms: Simple GA, crossover and 4. mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based		Competitive learning networks: Kohonen self		
Neural Networks: Pattern Recognition andclassification Genetic Algorithms: Simple GA, crossover and mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based		organizing networks, Hebbian learning; Hopfield		
andclassification Genetic Algorithms: Simple GA, crossover and 4. mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based		Networks. Neuo-Fuzzy modelling:Applications of		
Genetic Algorithms: Simple GA, crossover and 4. mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based				
4. mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based		andclassification		
(MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based		Genetic Algorithms: Simple GA, crossover and	10	
algorithms in search and optimization, GA based	4.	_		
clustoring Algorithm Imago processing and				
		clustering Algorithm, Image processing and		
patternRecognition	_		4	
5 PSO: Other Soft Computing techniques: 4	5		4	
Simulated Annealing, Tabu search, Ant		_		
colony optimization (ACO), Particle				
Swarm Optimization (PSO).		Swarm Optimization (PSO).		

- Fuzzy logic with engineering applications, Timothy J. Ross, John Wiley and 1. Sons.
- 2. S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms",
- 3. Principles of Soft Computing, S N Sivanandam, S. Sumathi, John Wiley &
- 4. Genetic Algorithms in search, Optimization & Machine
- 5. 6.
- Learning by David E.Goldberg Neuro-Fuzzy and Soft computing, Jang, Sun, Mizutani, PHI Neural Networks: A Classroom Approach, 1/e by Kumar Satish, TMH,
- 7.
- Genetic Algorithms in search, Optimization & Machine Learning by David E.Goldberg, Pearson/PHI A beginners approach to Soft Computing, Samir Roy & Udit Chakraborty, Pearson 8.
- 9. Fuzzy Sets and Fuzzy Logic: Theory and Applications, George J. Klir and Bo Yuan, Prentice Hall
- 10. Neural Networks: A Comprehensive Foundation (2nd Edition), Simon Haykin, Prentice Hall.

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Data Science (Applicable from the academic session 2020-2021)

Data Science & Data Science Lab Code: PCCAIDS 502 & 592

Contacts: 3L+4P

Name of the Course:	Data Science
Course Code: PCCAIDS 502	Semester: V
Duration:6 months	Maximum Marks: 100 +100
Teaching Scheme	Examination Scheme
Theory: 3 hrs./week	Mid Semester exam: 15
Tutorial: NIL	Assignment and Quiz: 10 marks
Practical: 4 hrs./week	Attendance: 5 marks
Credit Points: 3+2	End Semester Exam: 70 Marks
	Practical Sessional internal continuous evaluation: 40
	Practical Sessional external examination: 60
PRE-REQUISITES	·
Introduction to Programming	
Probability	

OBJECTIVES

The objective of this course is to impart necessary knowledge of the mathematical foundations needed for data science and develop programming skills required to build data science applications.

LEARNING OUTCOMES

At end of this course, the students will be able to:

- Demonstrate understanding of the mathematical foundations needed for data science.
- Collect, explore, clean, munge and manipulate data.
- Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks and clustering.
- Build data science applications using Python based toolkits.

Unit	Content	Hrs/Unit
1	Introduction to Data Science	(4 Hours)
	Concept of Data Science, Traits of Big data, Web Scraping, Analysis	
	vs Reporting	
2	Introduction to Programming Tools for Data Science	(6 Hours)
	2.1 Toolkits using Python: Matplotlib, NumPy, Scikit-learn, NLTK	
	2.2 Visualizing Data: Bar Charts, Line Charts, Scatterplots	
	2.3 Working with data: Reading Files, Scraping the Web, Using APIs	
	(Example: Using the Twitter APIs), Cleaning and Munging,	
	Manipulating Data, Rescaling, Dimensionality Reduction	
3	Mathematical Foundations	(12 Hours)
	3.1 Linear Algebra: Vectors, Matrices,	
	3.2 Statistics: Describing a Single Set of Data, Correlation,	
	Simpson's Paradox, Correlation and Causation	
	3.3 Probability: Dependence and Independence, Conditional	
	Probability, Bayes's Theorem, Random Variables, Continuous	
	Distributions, The Normal Distribution, The Central Limit Theorem	

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Artificial Intelligence and Data Science (Applicable from the academic session 2020-2021)

3.4 Hypothesis and Infe	erence: Statistical Hypothesis Testing,	
Confidence Intervals, P	hacking, Bayesian Inference	
train/test splits, Types Unsupervised, Reinford Linear Regression- mod elastic net), Classification K-Nearest Neighbors, Id (SVM), decision trees, analysis of Time Series Dynamics, Rule Induction	. •	(16 Hours)
Case Studies of Data So Weather forecasting, S Real Time Sentiment A	tock market prediction, Object recognition,	(6 Hours)

LIST OF PRACTICALS

- 1. Write a programme in Python to predict the class of the flower based on available attributes.
- 2. Write a programme in Python to predict if a loan will get approved or not.
- 3. Write a programme in Python to predict the traffic on a new mode of transport.
- 4. Write a programme in Python to predict the class of user.
- 5. Write a programme in Python to indentify the tweets which are hate tweets and which are not.
- 6. Write a programme in Python to predict the age of the actors.
- 7. Mini project to predict the time taken to solve a problem given the current status of the user.

LIST OF SUGGESTED BOOKS

- 1. Joel Grus, "Data Science from Scratch: First Principles with Python", O'Reilly Media
- 2. Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn and Tensor Flow: Concepts, Tools, and Techniques to Build Intelligent Systems", 1st Edition, O'Reilly Media
- 3. Jain V.K., "Data Sciences", Khanna Publishing House, Delhi.
- 4. Jain V.K., "Big Data and Hadoop", Khanna Publishing House, Delhi.
- 5. Jeeva Jose, "Machine Learning", Khanna Publishing House, Delhi.
- 6. Chopra Rajiv, "Machine Learning", Khanna Publishing House, Delhi.
- 7. Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning", MIT Press http://www.deeplearningbook.org
- 8. Jiawei Han and Jian Pei, "Data Mining Concepts and Techniques", Third Edition, Morgan Kaufmann Publishers
- 9. Chopra Rajiv, Questions & Answers in AI, DS, ML, Khanna Book Publishing