<u>SEMESTER – VII</u>

Subject:	Computer Vision			
Course C	ode: PEC-AIDS 701B	Semester: VII		
Duration	: 36 Hrs.	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory: 3	3 hrs./week	End Semester Exam: 70		
Tutorial:	0	Attendance : 5		
Practical	:	Continuous Assessment:25		
Credit: 3				
Aim:				
Sl. No.				
1.	Students will learn basic pr different algorithms for rec	inciples of image formation, image processin construction and recognition from single or m	g algorith nultiple im	ms and ages
Objective	2:			
Sl. No.				
1.	To implement fundamental	image processing techniques required for con	nputer vis	ion
2.	Understand Image formatio	n process		
3.	Extract features form Image	es and do analysis of Images		
	To develop applications usi	ng computer vision techniques		
Pre-Requ	iisite:			
Sl. No.				
1.	Programming			
2.	Mathematic course			
Contents			Hrs./we	ek
Chapter	Name of the Topic		Hours	Marks
01	Overview, computer image sensing, Image analysis, pro	ing systems, lenses, Image formation and e-processing and Binary image analysis	3	10
02	Edge detection, Edge detec detection	tion performance, Hough transform, corner	6	10
03	Segmentation, Morphologic	cal filtering, Fourier transform	3	10

04	Feature extraction, shape, histogram, color, spectral, texture, usi CVIPtools, Feature analysis, feature vectors, distance /similar measures, data preprocessing				10
05	Pattern Ana	llysis:		9	20
	Clustering: K-Means, K-Medoids, Mixture of Gaussians				
	Classification Semisupervis	n: Discriminant Function, S sed	Supervised, Un-supervised,		
	Classifiers: H PCA,LDA, I	Bayes, KNN, ANN models; CA, and Non-parametric me	Dimensionality Reduction: thods.		
06	6 Recent trends in Activity Recognition, computational photography, Biometrics				10
	Sub Total:			36	70
	Internal Assessment Examination & Preparation of Semester Examination			4	30
	Total:			40	100
Assignm Based of List of E	nents: n the curriculu Books Text Boo	m as covered by subject te	acher.	I	
Nam	e of Author	Title of the Book	Edition/ISSN/ISBN	Name of t	he Publisher
Rich	ard Szeliski	Computer Vision: Algorithms and Applications			
Goodfe Ben Cou	Goodfellow, Deep Learning Bengio, and				
Referen	ce Books:	1			
Fis	sher et al	. Dictionary of Computer Vision and Image Processing			

Subject: D	ata Visualization		
Course Coo	le: PEC-AIDS 701C		
Duration:3	86 Hrs. Semeste	r: VII	
Teaching S	Scheme Maximu	n Marks:100	
Theory:3	Examina	tion Scheme	
Tutorial: 0	End Sem	ester Exam:70	
Practical:0	Attendar	ice : 5	
Credit:3	Continuc	us Assessment: 25	
Aim:			
SI. No.			
1	Ability to create visualizations from dat	a	
2	Ability to gain a better understanding of	of data from visualizations	
3	Skill to make sense of trends in data fro	om visualizations	
Objective:			
SI. No.			
1	To understand the need and benefits o	f data visualization	
2	To systematically create univariate and	bivariate graphs from data	
3	To analyse and draw conclusions from	visualizations	
Pre-Requis	site:		
SI. No.			
1	Fundamentals of Python Programming		
Contents		H	rs./week
Chapter	Name of the Topic	H	ours Marks
01	Introduction	2	2
	About data visualization, The need for	data visualization, Brief history	
	of data visualization		
02	Statistical Preliminaries	4	8
	Different types of data, Measures of Co	entrality, Measures of	
	Dispersion, Measures of Association		
03	Univariate Visualizations	6	12
	Stem-and-Leaf Plot, Pie Chart, Bar Gra	oh, Histogram, Line Chart, Box	
	Plot, Analysis and drawing conclusions		
04	Bivariate Visualizations	4	8
	Scatter Plot, Bivariate Line Chart, Hex F	Plot, Analysis and drawing	
	conclusions		
04	Python NumPy Library		16
	NumPy and its advantages, NumPy n-c	limensional array (ndarray),	
	Creating ndarrays in NumPy, Slicing nd	arrays, ndarray operations,	
	Broadcasting		
05	Data Visualizations in Python	12	2 24
	Plotting with matplotlib, Univariate gra	phs using matplotlib, Bivariate	
	graphs using matplotlib, Plotting throu	gh pandas, Improving plot	
	aesthetics		
	Sub Total:	30	5 70
	Internal Assessment Examination & Prepa	ration of Semester Examination 4	30
	Total:	4(D 100
LIST OF BOO			

Name of Author	Title of the Book	Edition/ISSN/ISBN	Name of the Publisher
Sheldon M Ross	Introduction to		Elsevier Academic Press
	Probability and Statistics		
	for Engineers and		
	Scientists		
B. Lubanovic	Introducing Python		O'Reilly
Reference Books:			
Murray R. Spiegel,	Schaum's Outlines on		McGraw-Hill
Larry J. Stephens	Statistics		
Eric Matthes	Python Crash Course		No Starch Press
Ivan Idris	Numpy Beginner's Guide		Packt Publishing

Subject: I	Deep Learning			
Course Co	de: PEC-AIDS 701D	Semester: VII		
Duration	: 36 Hrs.	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory: 3	hrs./week	End Semester Exam: 70		
Tutorial:	0	Attendance : 5		
Practical:		Continuous Assessment:25		
Credit: 3				
Aim:				
Sl. No.				
1.	To improve the performance	e of a Deep Learning model		
2.	to the reduce the optimization	on function which could be divided based on t	the classif	icationand
	the regression problems			
Objective	:			
Sl. No.				
1.	To acquire knowledge on the	e basics of neural networks.		
2.	To implement neural netwo	rks using computational tools for variety of pr	roblems.	
3.	To explore various deep lea	rning algorithms.		
Pre-Requ	isite:			
Sl. No.				
1.	Calculus, Linear Algebra			
2.	Probability & Statistics			
3.	Ability to code in R/Python			
Contents			Hrs./we	ek
Chapter	pter Name of the Topic			Marks
01	Introduction		3	5
	Various paradigms of ea deep learning frameworl techniques.	arning problems, Perspectives and Issues in k, review of fundamental learning		

02	Feed for	ward neural network			6	10
	Artificial network,	Neural Network, activation f cardinality, operations, and p	function, multi-layer neura roperties of fuzzy relations	1 s.		
03	Training	Neural Network			6	15
	Risk mir model sel	imization, loss function, back lection, and optimization.	kpropagation, regularizatio	on,		
04	Conditional Random Fields				9	15
	Linear chain, partition function, Markov network, Belief propagation, Training CRFs, Hidden Markov Model, Entropy.					
05	Deep Learning			6	15	
	Deep Feed Forward network, regularizations, training deep models, dropouts, Convolutional Neural Network, Recurrent Neural Network, Deep Belief Network.					
06	Deep Learning research				6	10
	Object re	ecognition, sparse coding, cor	nputer vision, natural lang	uage		
	Sub Tota	ıl:			36	70
	Internal Examina	Assessment Examination & tion	Preparation of Semester	r	4	30
	Total:				40	100
List of Boo Text Book	oks s:					L
Name	of Author	Title of the Book	Edition/ISSN/ISBN	Na	me of tl	he Publisher
Goo I.,Be andC	dfellow, engio,Y., Courville A.,	Deep Learning			MIT	' Press
Satish Kumar Neural Networks: A		Fata Mc	Graw-Hill			
	Classroom Approach					
Reference	e Books:					
Bishop, C. ,M.		Pattern Recognition and Machine Learning		Springer		
Yegnan	arayana, B.	Artificial NeuralNetworks		PI	H Lear	ning Pvt. Ltd
Golub, G Var	.,H., and nLoan,C.,F.	Matrix Computations			JHU	Press

SOCIAL NETWORK ANALYSIS [3 0 0 3]-PEC-AIDS 701A

Introduction to Social Web, Nodes, Edges and Network Measures, Describing Nodes and Edges, Describing Networks, Layouts, Visualizing network features, The role of Tie strength, Measuring Tie strength and its network structures, network propagation, Link prediction, entity resolution, Case study, Introduction to community discovery, communities in context, quality functions, The Kernighan-Lin algorithm, Agglomerative algorithms, spectral algorithms, multi-level graph partitioning, Markov clustering, Other approaches, Introduction to social influence, Influence related statistics, social similarity and influence, Homophily, Existential Test for social influence, Influence and actions, Influence and interactions, influence maximization in viral marketing.

References:

- 1. Jennifer Golbeck., Analysing the Social Web, Morgan Kaufmann publications, 2013
- 2. Charu C. Aggarwal, Social Network Data Analytics, Springer publications, 2011
- 3. John Scott, Social Network Analysis, (3e), Sage publications limited, 2013
- 4. Jay Goldman, Facebook Cookbook, O'Reilly, 2009
- 5. Shamanth Kumar, Fred Morstatter, Huan Liu, Twitter Data Analytics, Springer publications, 2013

Information Theory and Coding Code:PEC- AIDS702B Contact: 3L

Name	e of the Course:	Information Theo	ry and Co	ding		
Cour AIDS	se Code: PEC- 5702B	Semester: VII				
Dura	tion: 6 months	Maximum Marks:	100			
Teac	hing Scheme	1	Examina	tion Scheme		
Theo	ry: 3 hrs./week		Mid Seme	ester exam: 15		
Tutor	rial: NIL		Assignme	ent and Quiz: 10 marks		
	Attendand		ce: 5 marks			
Pract	ical:NIL		End Seme	ester Exam: 70 Marks		
Cred	it Points:	3				
Unit		Content		Hrs/Uni t	Marks/Unit	
	Source Coding [7L]					
1	Uncertainty and information, average mutual information and entropy, information measures for continuous random variables, source coding theorem, Huffman codes		7			
	Channel Capacity And Coding [7L]			7		
2	Channel models, chann	el capacity, channel o	coding,			
	information capacity th	eorem, The Shannon	limit			

3	Linear And Block Codes For Error Correction [8L] Matrix description of linear block codes, equivalent codes, parity check matrix, decoding of a linear block code, perfect codes, Hamming codes	8	
4.	Cyclic Codes [7L] Polynomials, division algorithm for polynomials, a method for generating cyclic codes, matrix description of cyclic codes, Golay codes	7	
5	BCH Codes [8L] Primitive elements, minimal polynomials, generator polynomials in terms of minimal polynomials, examples of BCH codes.	8	
6	Convolutional Codes [8L] Tree codes, trellis codes, polynomial description of convolutional codes, distance notions for convolutional codes, the generating function, matrix representation of convolutional codes, decoding of convolutional codes, distance and performance bounds for convolutional codes, examples of convolutional codes, Turbo codes, Turbo decoding	8	

Text book and Reference books:

- 1. Information theory, coding and cryptography Ranjan Bose; TMH.
- 2. Information and Coding N Abramson; McGraw Hill.
- 3. Introduction to Information Theory M Mansurpur; McGraw Hill.
- 4. Information Theory R B Ash; Prentice Hall.
- 5. Error Control Coding Shu Lin and D J Costello Jr; Prentice Hall.

Digital Signal Processing Code: PEC- AIDS702D Contacts: 3L

Name	e of the Course:	Digital Signal P	rocessing		
Cours AIDS	e Code: PEC- 702D	Semester: VII			
Durat	ion:6 months	Maximum Marks	s: 100		
Teacl	hing Scheme		Examination	n Scheme	
Theor	ry: 3 hrs./week		Mid Semeste	r exam: 15	
Tutor	ial: NIL		Assignment a	and Quiz : 10 ma	rks
			Attendance:	5 marks	
Practi	cal:		End Semeste	r Exam: 70 Mark	S.
Credi	t Points:	3			
Unit		Content		Hrs/Unit	Marks/Unit
1	Module 1: Discrete-time signals and systems (6 hours) Discrete time signals and systems: Sequences; representation of signals on orthogonal basis; Representation of discrete systems using difference equations, Sampling and reconstruction of signals - aliasing; Sampling theorem and Nyquist rate.		6		
2	Module 2: Z-transform (6 hours) z-Transform, Region of Convergence, Analysis of Linear Shift Invariant systems using z transform, Properties of z-transform for causal signals, Interpretation of stability in z- domain. Inverse z transforms		6		
3	Module 2: Discrete Fourier Transform (10 hours) Frequency Domain Analysis, Discrete Fourier Transform (DFT), Properties of DFT, Convolution of signals, Fast Fourier Transform Algorithm, Parseval's Identity Implementation of Discrete Time Systems		10		
4.	Module 3:Designof Digital filters (12 hours) Design of FIR Digital filters: Window method, Park-McClellan's method. Design of IIR Digital Filters: Butterworth, Chebyshev and Elliptic Approximations; Low-pass, Band-pass, Band stop and High-pass filters. Effect of finite register length in FIR filter design. Parametric and non-parametric spectral estimation. Introduction to multi-rate signal processing.		12		

Module 4: Applications of Digital Signal Processing	6	
(6 hours) Correlation Functions and Power Spectra,		
Stationary Processes, Optimal filtering using ARMA		
Model, Linear Mean-Square Estimation, Wiener		
Filter.		

Text book and Reference books:

- 1. S. K. Mitra, "Digital Signal Processing: A computer based approach", McGraw Hill, 2011.
- 2. A.V. Oppenheim and R. W. Schafer, "Discrete Time Signal Processing", Prentice Hall, 1989.
- 3. J. G. Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algorithms And Applications", Prentice Hall, 1997.
- 4. L. R. Rabiner and B. Gold, "Theory and Application of Digital Signal Processing", Prentice Hall, 1992.
- 5. J. R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1992.
- 6. D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss, "Digital Signal Processing", John Wiley & Sons, 1988.

E-Commerce & ERP: Code: PEC-AIDS 702A Contacts: 3L

1. Overview, Definitions, Advantages & Disadvantages of E – Commerce, Threats of E – Commerce, Managerial Prospective, Rules & Regulations For Controlling E – Commerce, Cyber Laws. [3 L]

 2. Technologies : Relationship Between E – Commerce & Networking, Different Types of Networking Commerce, Internet, Intranet & Extranet, EDI Systems Wireless Application Protocol : Definition, Hand Held Devices, Mobility & Commerce, Mobile Computing, Wireless Web, Web Security, Infrastructure Requirement For E – Commerce . [5 L]
 3. Business Models of e – commerce : Model Based On Transaction Type, Model Based On Transaction Party - B2B, B2C, C2B, C2C, E – Governance. [2 L]

4. E – strategy : Overview, Strategic Methods for developing E – commerce. [2 L]

5. Four C's : (Convergence, Collaborative Computing, Content Management & Call Center). Convergence : Technological Advances in Convergence – Types, Convergence and its implications, Convergence & Electronic Commerce. Collaborative Computing : Collaborative product development, contract as per CAD, Simultaneous Collaboration, Security. Content Management : Definition of content, Authoring Tools & Content Management, Content – partnership, repositories, convergence, providers, Web Traffic & Traffic Management ; Content Marketing. Call Center : Definition, Need, Tasks Handled, Mode of Operation, Equipment , Strength & Weaknesses of Call Center, Customer Premises Equipment (CPE). [6 L]

7. Supply Chain Management : E – logistics, Supply Chain Portal, Supply Chain Planning Tools (SCP Tools), Supply Chain Execution (SCE), SCE - Framework, Internet's effect on Supply Chain Power. [3 L]

8. E – Payment Mechanism : Payment through card system, E – Cheque, E – Cash, E – Payment Threats & Protections. [1 L]

9. E – Marketing :. Home –shopping, E-Marketing, Tele-marketing [1 L]

10. Electronic Data Interchange (EDI) : Meaning, Benefits, Concepts, Application, EDI Model, Protocols (UN EDI FACT / GTDI, ANSI X – 12), Data Encryption (DES / RSA). [2 L] 11. Risk of E – Commerce : Overview, Security for E – Commerce, Security Standards, Firewall, Cryptography, Key Management, Password Systems, Digital certificates, Digital signatures. [4 L]

12. Enterprise Resource Planning (ERP) : Features, capabilities and Overview of Commercial Software, re-engineering work processes for IT applications, Business Process Redesign, Knowledge engineering and data warehouse . Business Modules: Finance, Manufacturing (Production), Human Resources, Plant Maintenance, Materials Management,

QualityManagement, Sales&Distribution ERPPackage, ERP Market: ERP Market Place, SAP AG, PeopleSoft, BAAN, JD Edwards, Oracle Corporation ERP-Present and Future: Enterprise Application Integration (EAI), ERP and E-Commerce, ERP and Internet, Future Directions in ERP [10]

Reference :

- 1. E-Commerce, M.M. Oka, EPH
- 2. Kalakotia, Whinston : Frontiers of Electronic Commerce , Pearson Education.
- 3. Bhaskar Bharat : Electronic Commerce Technologies & Applications.TMH
- 4. Loshin Pete, Murphy P.A. : Electronic Commerce , Jaico Publishing Housing.
- 5. Murthy : E Commerce , Himalaya Publishing.
- 6. E Commerce : Strategy Technologies & Applications, Tata McGraw Hill.
- 7. Global E-Commerce, J. Christopher & T.H.K. Clerk, University Press
- 8. Beginning E-Commerce, Reynolds, SPD
- 9. Krishnamurthy, E-Commerce Mgmt, Vikas

Name of th	e subject: D	ATA SECURITY AND A	ACCESS CON	NTROL
Course Coo	le: PECAIDS702-C So	emester: VII		
Duration:	6 month M	laximum marks: 100		
Teaching S	Scheme E	Examination Scheme		
Theory: 3 h	rs./week N	Iid Semester exam: 15 Ma	arks	
Tutorial : Nil Assignment and Quiz: 10 marks				
Practical: h	Practical: hr./week End Semester exam: 70 marks			
Credit : 3				a
	CONTENTS		Hr./Wk.	Contents
Chapter	Name of the Topic		Hours	Marks
	Software and System Security		8	10
	Control hijacking attacks – buffer overf	flow, integer overflow.	0	10
01	bypassing browser memory protection	on, Sandboxing and		
01	Isolation, Tools and techniques for writing rob	oust application software		
	Security vulnerability detection tools, and	l techniques – program	8	15
02	analysis (static, concolic and dynamic ana	lysis), Privilege, access		
	control, and Operating System Security, Exploitation techniques, and			
	Fuzzing			
	Network Security & Web Security		10	20
	Security Issues in TCP/IP – TCP, DNS, R	Routing (Topics such as		
03	basic problems of security in TCP/IP, IPse	c, BGP Security, DNS		
	Detection Filtering DNSSec NSec3 Distrib	uted Eirewalls, Intrusion		
	Detection, Thering, Divisee, Nisees, Distribution	Service Attacks DOS-		
	proof network			
	architecture			
	Security architecture of World Wide Web,	Security Architecture of	10	25
04	WebServers, and Web Clients			
	Web Application Security – Cross Site Script	ing Attacks, Cross Site		
	RequestForgery, SQL Injection Attacks, Cont	tent Security Policies		
	(CSP) in web Session Management and User	Authentication, Session		
	other comprehensiveanproaches to network d	Attack Surfaces, and		
	Security in Mobile Platforms	icsign for security	6	15
05	Android vs. ioS security model, threat mode	els, information tracking.	0	15
	rootkits, Threats in mobile applications, anal	lyzer for mobile apps to		
	discover security vulnerabilities, Viruses, sp	bywares, and keyloggers		
	and malware detection			
	Issues in Critical Infrastructure and SCAI	DA Security	6	15
06	Security issues in SCADA, IP Convergence	Cyber Physical System		
	Security threats, Threat models in SCADA	and various protection		
	approaches, Machine learning and SCADA Se	ecurity		

Required Textbooks

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining, by Glenn J. Myatt

Recommended Texts

- > The Visual Display of Quantitative Information, by Edward R. Tufte
- > Visualizing Data: Exploring and Explaining Data with the Processing Environment, by Ben Fry
- > Exploratory Data Mining and Data Cleaning, by Tamraparni Dasu

Internet of Things Code: OEC-AIDS701A Contacts: 3L

Course Code	OEC-AIDS 701A
Course Name	Internet of Things
Credits	3
Pre-Requisites	Wireless Networks
LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1: Environmental Parameters Measurement and Monitoring: Why	7
measurement and monitoring are important, effects of adverse	
parameters for the living being for IOT	
Unit 2: Sensors: Working Principles: Different types; Selection of	8
Sensors for Practical Applications	
Introduction of Different Types of Sensors such as Capacitive,	
Resistive, Surface Acoustic wave for Temperature, Pressure,	
Humidily, Toxic Gas elc	1.1
Unit 3: Important Characteristics of Sensors: Determination of the	11
Fractional order element: Constant Phase Impedance for sensing	
applications such as humidity, water quality milk quality	
Impedance Spectroscopy: Equivalent circuit of Sensors and Modelling	
of Sensors	
Importance and Adoption of Smart Sensors	
Unit 4: Architecture of Smart Sensors: Important components, their	10
features Fabrication of Sensor and Smart Sensor: Electrode fabrication:	
Screen printing, Photolithography, Electroplating Sensing film	
deposition: Physical and chemical	
Vapor, Anodization, Sol-gel	
Unit 5: Interface Electronic Circuit for Smart Sensors and Challenges	7
for Interfacing the Smart Sensor, Usefulness of Silicon Technology in	
Smart Sensor	
And Future scope of research in smart sensor	
Unit 6: Recent trends in smart sensor for day to day life, evolving	5
sensors and their architecture.	

References:

- 1. Yasuura, H., Kyung, C.-M., Liu, Y., Lin, Y.-L., Smart Sensors at the IoT Frontier, Springer International Publishing
- 2. Kyung, C.-M., Yasuura, H., Liu, Y., Lin, Y.-L., Smart Sensors and Systems, Springer International Publishing
- 3. Jeeva Jose, Internet of Things, Khanna Publishing House.
- 4. Internet of Things, Arsheep Bahga and Vijay Madisetti

Subject: Bi	ioinformatics					
Course Coo	le: OECAIDS 701B	Semester: VII				
Duration: 3	36 Hrs.	Maximum Marks: 100				
Teaching S	cheme	Examination Scheme				
Theory: 3h	rs./week	End Semester Exam: 70				
Tutorial:		Attendance : 5				
Practical: 0		Continuous Assessment: 25				
Credit:3		Practical Sessional internal continuous	evaluatio	on: NA		
		Practical Sessional external examinatio	n: NA			
Aim:						
SI. No.						
1.	1.To give students an introduction to the basic practical techniques of bioinformatics. Emphasis will be given to the application of bioinformatics and biological databases to problem solving in real research problems.					
2.	The students will become a biological database and wi	familiar with the use of a wide variety of inter Il be able to apply these methods to research p	net applic problems.	ations,		
Objective	•					
SI. No.	No. After completion of the course, students will be able to:					
1.	1. Describe the contents and properties of the most important bioinformatics databases, perform text- and sequence-based searches, and analyze and discuss the results in light of molecular biological knowledge					
2.	Explain the major steps in for, and execute pairwise s	pairwise and multiple sequence alignment, ex equence alignment by dynamic programming	plain the	principle		
3.	Predict the secondary and t	tertiary structures of protein sequences.				
Contents			3 Hrs./v	veek		
Chapter	Name of the Topic		Hours	Marks		
01	Name of the ropicHoursHoursHoursConcepts of Cell, tissue, types of cell, components of cell, organelle.712Functions of different organelles. Concepts of DNA: Basic Structure of DNA; Double Helix structure; Watson and crick model. Exons and Introns and Gene Concept. Concepts of RNA : Basic structure, Difference between RNA and DNA. Types of RNA. Concept of Protein: Basic components and structure. Introduction to Central Dogma: Transcription and Tranlation Introduction to Metabolic Pathways12					
02	Sequence Databases 2 Introduction to Bioinformatics. Recent714challenges in Bioinformatics. Protein Sequence Databases, DNAsequence databases. sequence database search programs like BLASTand FASTA. NCBI different modules: GenBank; OMIM, Taxonomy browser, PubMed;browser, PubMed;					
03	DNA SEQUENCE ANAI Technology) Up to Fourth Mapping and Assembly : Polymerase Chain Reaction	LYSIS 14 Syllabus for B.Tech(Information Year Revised Syllabus of B.Tech IT DNA Size of Human DNA ,Copying DNA: on (PCR), Hybridization and Microarrays,	8	18		

	Cutting DNA into Fragments. Sequencing Short DNA Molecules,					
	Mapping 1	Long DNA Molecules.	DeBruijn Graph. Sequ	ence		
	Alignment:	Introduction, local and g	lobal alignment, pair wise	and		
	multiple alig	gnment, Dynamic Program	ming Concept. Alignment			
	algorithms: Needleman and Wunsch algorithm, Smith-Waterman.					
04	Introduction Probabilistic models used in Computational Biology 8 7					12
	Probabilistic	e Models; Hidden M	arkov Model : Conc	epts,		
	Architecture	e, Transition matrix, esti	mation matrix. Application	n of		
	HMM in H	Bioinformatics : Genefind	ing, profile searches, mul	tiple		
	sequence a	lignment and regulatory	site identification. Baye	esian		
	networks M	odel : Architecture, Princip	le, Application in			
	Bioinformat	tics.				
05	Biological I	Data Classification and Clu	stering 6 Assigning protein		7	14
	function and	l predicting splice sites: De	cision Tree			
	Sub Total:				36	70
	Internal As	sessment Examination	& Preparation of Semeste	er	4	30
	Examinatio	on				
	Total:				40	100
List of Boo	ks					
Text Books	5:					
Name of A	uthor	Title of the Book	Edition/ISSN/ISBN	Na	me of th	۵ ۵
		The of the book		Duk	hlichor	-
Dertiterte	$(\mathbf{\Gamma}_{1}^{1}, \mathbf{t}_{2}, \mathbf{r})$		ISDN: 079	F UL		TT. ''-
Willia Tayl	is (Editor),	Bioinformatics:	ISBN: 978-		alora	University
white Taylo	01.	sequence, Structure	019903/904. 1st edition		288.	
		Dreatical Approach	1st eattion,			
David W N	Tount	Pioinformatics:	ISBN: 078 0870607120		Id anni	ng harbor
	Iouni.	Sequence and Genome	ISDN: 978-0879097129		oratory n	ress
		A polyeis	2nd adition	lat	poratory p	1088.
Defenses	Deelee	Allalysis	2liu cuttoli,			
Reference	BOOKS:					
					F 1	
		Introduction to	ISBN: 978-8178085074	Pe	arson Edi	ication.
		Bioinformatics	1st edition			
		Bioinformatics: A	ISBN: 978-	Jol	hn Wiley	& Sons,
		Practical Guide to	0471478782.	Inc	c., Publica	ation.
		the Analysis of				
		Conoc and Brotoinc	Second Edition,			
		Genes and Proteins				
End Semes	ter Examin	ation Scheme. Ma	iximum Marks-70. Ti	ime a	allotted-	3hrs.
Group	Unit	Objective Questions	Subjective	Que	stions	
		(MCQ only with the				

correct answer)

		No of	Total	No of	То	Marks	Total
		question	Marks	question	answer	per	Marks
		to be set		to be set		question	
Α	1 to 5	10	10				
В	1 to 5			5	3	5	60
с	1 to 5			5	3	15	

- Only multiple choice type questions (MCQ) with one correct answer are to be set in the objective part.
- Specific instruction to the students to maintain the order in answering objective questions should be given on top of the question paper.

Examination Scheme for end semester examination:

			1	1
Group	Chapter	Marks of each	Question to be	Question to be
		question	set	answered
Α	All	1	10	10
В	All	5	5	3
С	All	15	5	3

Robotics Code: OEC-AIDS 701C Contacts: 3L

Name of the Course: R		Rob	ootics	
Course Code: OEC-AIDS 701C Se		Semester: VII		
Duration: 6 months Ma		Maximum Marks: 100		
Teaching Scheme			Examination Scheme	
Theory: 3 hrs./week			Mid Semester exam: 15	
Tutorial: NIL			Assignment and Quiz: 10 marks	
			Attendance: 5 marks	
Practical: NIL			End Semester Exam: 70 Marks	
Credit Points:	3			

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction :Introduction brief history, types,		
	classification and usage, Science and Technology of		
	robots, Some useful websites, textbooks and research		
	journals.		
	Elements of robots – links, joints, actuators, and		
2	sensors	5	
	Position and orientation of a rigid body, Homogeneous		
	transformations, Representation of joints, link		

	representation using D-H parameters, Examples of D-H parameters and link transforms, different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo motor, Types of transmissions, Purpose of sensors, internal and external sensors, common sensors – encoders, tachometers, strain gauge based force-torque sensors, proximity and distance measuring sensors and vision		
	Kinematics of serial robots Introduction Direct and		
3	Kinematics of serial robots introduction, Direct and inverse kinematics problems, Examples of kinematics of common serial manipulators, workspace of a serial robot, Inverse kinematics of constrained and redundant robots, Tractrix based approach for fixed and free robots and multi-body systems, simulations and experiments, Solution procedures using theory of elimination, Inverse kinematics solution for the general 6R serial manipulator.	4	
4.	Kinematics of parallel robots Degrees-of-freedom of parallel mechanisms and manipulators, Active and passive joints, Constraint and loop-closure equations, Direct kinematics problem, Mobility of parallel manipulators, Closed-from and numerical solution, Inverse kinematics of parallel manipulators and mechanisms, Direct kinematics of Gough-Stewart platform.	5	
5.	Velocity and static analysis of robot manipulators Linear and angular velocity of links, Velocity propagation, Manipulator Jacobians for serial and parallel manipulators, Velocity ellipse and ellipsoids, Singularity analysis for serial and parallel manipulators, Loss and gain of degree of freedom, Statics of serial and parallel manipulators, Statics and force transformation matrix of a Gough-Stewart platform, Singularity analysis and statics.	5	
6	Dynamics of serial and parallel manipulators Mass and inertia of links, Lagrangian formulation for equations of motion for serial and parallel manipulators, Generation of symbolic equations of motion using a computer, Simulation (direct and inverse) of dynamic equations of motion, Examples of a planar 2R and four-bar mechanism, Recursive dynamics, Commercially available multi-body simulation software (ADAMS) and Computer algebra software Maple.	4	
7	Motion planning and control Joint and Cartesian space trajectory planning and generation, Classical	6	

	control concepts using the example of control of a single link, Independent joint PID control, Control of a multi- link manipulator, Non-linear model based control schemes, Simulation and experimental case studies on serial and parallel manipulators, Control of constrained manipulators, Cartesian control, Force control and hybrid position/force control, Advanced topics in non- linear control of manipulators. 8 Module 8: Modeling and		
8	Modeling and control of flexible robots Models of flexible links and joints, Kinematic modeling of multi- link flexible robots, Dynamics and control of flexible link manipulators, Numerical simulations results, Experiments with a planar two-link flexible manipulator.	4	
9	Modeling and analysis of wheeled mobile robots 3Introduction and some well known wheeled mobile robots (WMR), two and three-wheeled WMR on flat surfaces, Slip and its modeling, WMR on uneven terrain, Design of slip-free motion on uneven terrain, Kinematics, dynamics and static stability of a three- wheeled WMR's on uneven terrain, Simulations using Matlab and ADAMS.	3	
10	Selected advanced topics in robotics Introduction to chaos, Non-linear dynamics and chaos in robot equations, Simulations of planar 2 DOF manipulators, Analytical criterion for unforced motion. Gough- Stewart platform and its singularities, use of near singularity for fine motion for sensing, design of Gough- Stewart platform based sensors. Over- constrained mechanisms and deployable structures, Algorithm to obtain redundant links and joints, Kinematics and statics of deployable structures with pantographs or scissor-like elements (SLE's).	3	

Text book and Reference books:

- 1. Robotics Process Automation, Khanna Publishing House
- Saha, S.K., "Introduction to Robotics, 2nd Edition, McGraw-Hill Higher Education, New Delhi, 2014
- 3. Ghosal, A., "Robotics", Oxford, New Delhi, 2006.

Compiler Design Code: OEC-AIDS 701D Contact: 3L

Name of the Course:	Compiler Design		
Course Code: OEC-AIDS 701D Semester: V		VII	
Duration:6 months	Maximum	1 Marks:100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction to Compiling [3L]		
1	Compilers, Analysis of the source program, The	3	
	phases of the compiler, Cousins of the compiler.		
2	Lexical Analysis [6L]	6	
	The role of the lexical analyzer, Tokens, Patterns,		
	Lexemes, Input buffering, Specifications of a token,		
	Recognition of a		
	tokens, Finite automata, From a regular expressionto an		
	NFA, From a regular expression to NFA, From a regular		
	expression to DFA, Design of a lexical analyzer generator		
	(Lex).		
3	Syntax Analysis [9L]	9	
	The role of a parser, Context free grammars, Writing		
	a grammar, Top down Parsing, Non- recursive		
	Predictive parsing		
	(LL), Bottom up parsing, Handles, Viable prefixes,		
	Operator precedence parsing, LR parsers (SLR,		
	LALR), Parser generators (YACC). Error Recovery		
4	Strategies for different parsing techniques.	5	
4	Syntax directed translation [5L]	5	
	Syntax director definitions, Construction of Syntaxtrees,		
	attributed definitions. Bottom up avaluation of inherited		
	attributes		
5	Type checking [4]	1	
5	Type systems Specification of a simple type	4	
	checker Equivalence of type expressions Type		
	conversions		
		1	

6	Run time environments [5L]	5	
	Source language issues (Activation trees, Controlstack,		
	scope of declaration, Binding of names),		
	Storage organization		
	(Subdivision of run-time memory, Activation records),		
	Storage allocation strategies, Parameterpassing (call by		
	value, call by reference, copy restore, call by name),		
	Symbol tables, dynamic storage allocation techniques.		
7	Intermediate code generation [4L]	4	
	Intermediate languages, Graphical representation, Three-		
	address code, Implementation of three address statements		
	(Quadruples, Triples, Indirect triples).		
8	Code optimization [5L]	5	
	Introduction, Basic blocks & flow graphs, Transformation		
	of basic blocks, Dag representation of basic blocks, The		
	principle sources of optimization, Loops in flowgraph,		
	Peephole optimization.		
9	Code generations [4L]	4	
	Issues in the design of code generator, a simple code		
	generator, Register allocation & assignment.		

Text book and Reference books:

1. Aho, Sethi, Ullman - "Compiler Principles, Techniques and Tools" - Pearson Education.

2. Holub - "Compiler Design in C" - PHI.

Project Management and Entrepreneurship Code: HSMC 701 **Contact:** 2L

Name of the Course:	Project Management and Entrepreneurship	
Course Code: HSMC 701	Semester: VII	
Duration: 6 months	Maximum Marks: 100	
Teaching Scheme		Examination Scheme
Theory: 2 hrs./week		Mid Semester exam: 15
Tutorial: 1hr		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	2	

ENTREPRENEURSHIP

- 1. Introduction: Meaning and Concept of Entrepreneurship, Innovation and entrepreneurship, Contributions of entrepreneurs to the society, risk-opportunities perspective and mitigation of risks [2L]
- Entrepreneurship An Innovation: Challenges of Innovation, Steps of Innovation Management, Idea Management System, Divergent v/s Convergent Thinking, Qualities of a prospective Entrepreneur [2L]
- 3. Idea Incubation: Factors determining competitive advantage, Market segment, blue ocean strategy, Industry and Competitor Analysis (market structure, market size, growth potential), Demand-supply analysis [4L]
- 4. Entrepreneurial Motivation: Design Thinking Driven Innovation, TRIZ (Theory of Inventive Problem Solving), Achievement motivation theory of entrepreneurship Theory of McClelland, Harvesting Strategies [2L]
- Information: Government incentives for entrepreneurship, Incubation, acceleration. Funding new ventures – bootstrapping, crowd sourcing, angel investors, Government of India's efforts at promoting entrepreneurship and innovation – SISI, KVIC, DGFT, SIDBI, Defense and Railways [4L]
- 6. Closing the Window: Sustaining Competitiveness, Maintaining Competitive Advantage, the Changing Role of the Entrepreneur. [2L]
- 7. Applications and Project Reports Preparation [4L]
- 8. PROJECT MANAGEMENT : Definitions of Project and Project Management, Issues and Problems in Project Management, Project Life Cycle - Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase [4L]
- 9. Project Feasibility Studies Pre-Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L]
- Project Planning Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L]

11. Project Scheduling and Costing – Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade-off Analysis, Project Cost Reduction Methods. [6L]

- 12. Project Monitoring and Control Role of Project Manager, MIS in Project Monitoring, Project Audit [2L]
- 13. Case Studies with Hands-on Training on MS-Project [4L]

Text Books and References

- 1. Innovation and Entrepreneurship by Drucker, P.F.; Harper and Row
- 2. Business, Entrepreneurship and Management: Rao, V.S.P. ;Vikas
- 3. Entrepreneurship: Roy Rajeev; OUP.
- 4. Text Book of Project Management: Gopalkrishnan, P. and Ramamoorthy, V.E.; McMillan
- 5. Project Management for Engineering, Business and Technology: Nicholas, J.M., and Steyn, H.; PHI
- 6. Project Management: The Managerial Process: Gray, C.F., Larson, E.W. and Desai, G.V.; MGH

Project-I Code: PROJ-AIDS 781 Contact: 12P Credit-6

Project work I

The object of Project Work I is to enable the student to take up investigative study in the broad field of Electronics & Communication Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on an individual basis or two/three students in a group, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work.