Semester-VI

Design and Analysis of Algorithms Code: PCC-CSBS601

Name of the Course:	Design and	Design and Analysis of Algorithms	
Course Code: PCC-CSBS601	Semester: V	1	
Duration: 6 months	Maximum M	larks:100	
Teaching Scheme	·	Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: 1 hr./week		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: hrs./week		End Semester Exam: 70 Marks	
Credit Points: 3			
Objective:	·		
1 The aim of this mo	The aim of this module is to learn how to develop efficient algorithms for simple		
computational tas	computational tasks and reasoning about the correctness of them		
2 Through the comp	Through the complexity measures, different range of behaviors of algorithms and		
the notion of tractable and intractable problems will be understood.			
Pre-Requisite:			
1 To know data-stru	To know data-structure and basic programming ability		

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Characteristics of algorithm.Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurements of Algorithm, Time and space trade-offs, Analysis of recursive algorithms through recurrence relations: Substitution method, Recursion tree method andMasters' theorem	8	
2	Fundamental Algorithmic Strategies: Brute-Force, Greedy, Dynamic Programming, Branch and-Bound and Backtracking methodologies for the design of algorithms; Illustrations of these techniques for Problem-Solving, Bin Packing, Knap Sack TSP. Heuristics –characteristics and theirapplication domains.	8	
3	Graph and Tree Algorithms: Traversal algorithms:Depth First Search (DFS) and Breadth First Search(BFS); Shortest path algorithms, Transitiveclosure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm.	56	

	Tractable and Intractable Problems: Computability		
4.	of Algorithms, Computability classes – P,NP, NP- complete and NP-hard. Cook's theorem, Standard NP-complete problems and Reduction techniques.	10	
5	Advanced Topics: Approximation algorithms, Randomized algorithms, Class of problems beyond NP – P SPACE	4	

Text books/ reference books:

Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, RonaldL Rivest and Clifford Stein, MIT Press/McGraw-Hill.

Fundamentals of Algorithms – E. Horowitz et al.

Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson.

Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.

Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading,MA Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House (AICTE Recommended Textbook – 2018)

Algorithms Design and Analysis, Udit Agarwal, Dhanpat Rai

Course Outcomes

On completion of the course students will be able to

PCC-CSBS601.1 For a given algorithms analyze worst-case running times of algorithmsbased on asymptotic analysis and justify the correctness of algorithms.

PCC-CSBS601.2 Describe the greedy paradigm and explain when an algorithmic designsituation calls for it. For a given problem develop the greedy algorithms.

PCC-CSBS601.3 Describe the divide-and-conquer paradigm and explain when an algorithmic design situation calls for it. Synthesize divide-and-conquer algorithms. Deriveand solve recurrence relation. PCC-CSBS601.4 Describe the dynamic-programming paradigm and explain when an algorithmic design situation calls for it. For a given problems of dynamic-programming and

PCC-CSBS601.5 develop the dynamic programming algorithms, and analyze it to determineits computational complexity.

PCC-CSBS601,6 For a given model engineering problem model it using graph and write thecorresponding algorithm to solve the problems.

PCC-CSBS601.7 Explain the ways to analyze randomized algorithms (expected runningtime, probability of error).

PCC-CSBS601.8 Explain what an approximation algorithm is. Compute the approximationfactor of an approximation algorithm (PTAS and FPTAS).

Operating Systems Code: PCC-CSBS602

Name of the Course:	Operating Systems		
Course Code: PCC-CSBS602	Semester: VI		
Duration: 6 months	Maximum Marks:	100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: 1 hr/week		Assignment and Quiz: 10 marks	
		Attendance : 5 marks	
Practical: hrs./week		End Semester Exam :70 Marks	
Credit Points:	3		
Objective:			
1 To learn the mechan	isms of OS to hand	lle processes and threads and their	
communication			
2 To learn the mechan	isms involved in n	nemory management in contemporary OS	
3 To gain knowledge of	on distributed oper	ating system concepts that includes	
architecture,Mutual	exclusion algorithm	ms, deadlock detection algorithms and	
agreement protocols	agreement protocols		
4 To know the compo	To know the components and management aspects of concurrency management		
Pre-Requisite:			

1 Computer Organization & Architecture

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Introduction: Concept of Operating	3	
1	Systems, Generations of Operating systems,		
	Types of		
	Operating Systems, OS Services, System Calls, Structure of an OS -		
	Layered, Monolithic, Microkernel Operating Systems, Concept of		
	Virtual Machine. Case study on UNIX and WINDOWS Operating		
	System.		

2	 Processes: Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads, Process Scheduling: Foundation and Schedulingobjectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF. 	10	
3.	Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems:Reader's & Writer Problem, Dinning Philosopher Problemetc.	5	
4.	Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery.	5	
5.	 Memory Management: Basic concept, Logical andPhysical address map, Memory allocation: Contiguous Memory allocation– Fixed and variable partition– Internal and External fragmentation and Compaction; Paging: Principle of operation –Page allocation Hardware support for paging, Protection and sharing, Disadvantages of paging. Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality ofreference, Page fault , Working Set , Dirty page/Dirtybit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently 	8	

used(LRU).	

6.	I/O Hardware: I/O devices, Device controllers, Direct memory	6	
	access Principles of I/O Software: Goals ofInterrupt handlers, Device		
	drivers, Device independent I/O software, Secondary-Storage		
	Structure: Disk structure, Disk scheduling algorithms		
	File Management: Concept of File, Access methods, File types, File		
	operation, Directory structure, File System structure, Allocation		
	methods (contiguous, linked, indexed), Free-space management (bit		
	vector,linked list, grouping), directory implementation (linear list,		
	hash table), efficiency andperformance.		
	Disk Management: Disk structure, Disk scheduling -FCFS, SSTF,		
	SCAN, C-SCAN, Disk reliability, Diskformatting, Boot-block, Bad		
	blocks		
			1

Text book and Reference books:

Operating System Concepts Essentials, 9th Edition by AviSilberschatz,Peter Galvin, Greg Gagne, Wiley Asia Student Edition.

Operating Systems: Internals and Design Principles, 5th Edition, WilliamStallings, Prentice Hall of India.

Operating System Concepts, Ekta Walia, Khanna Publishing House(AICTE Recommended Textbook – 2018)

Operating System: A Design-oriented Approach, 1st Edition by CharlesCrowley, Irwin Publishing Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-Wesley Design of the Unix Operating Systems, 8th Edition by Maurice Bach,Prentice-Hall of India Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, MarcoCesati, O'Reilly and Associates

Course Outcomes:

On completion of the course students will be able to

Create processes and threads.

Develop algorithms for process scheduling for a given specification of CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time.

For a given specification of memory organization develop the techniques for optimally allocating memory to processes by increasing memory utilization and for improving the access time. Design and implement filemanagement system.

For a given I/O devices and OS (specify) develop the I/O management functions in OS as part of a uniform device abstraction by performing operations for synchronization between CPU and I/O controllers.

Pattern Recognition Code: ESC-CSBS601

Name of the Course:	Pattern Recognition	
Course Code: ESC-CSBS601	Semester: VI	
Duration:6 months	Maximum Marks:	100
Teaching Scheme		Examination Scheme
_		
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: 1 hr/ week		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Basics of pattern recognition	2	
2	Bayesian decision theory 8L Classifiers, Discriminant functions, Decisionsurfaces Normal density and discriminant functionsDiscrete features	8	
3	Parameter estimation methods 6L Maximum-Likelihood estimation Gaussian mixture models Expectation- maximization method Bayesian estimation	6	
4.	Hidden Markov models for sequential patternclassification 8L Discrete hidden Markov models Continuous density hidden Markovmodels	8	
5	Dimension reduction methods 3L Fisher discriminant analysis, Principal component analysis, Parzen-window method, K-Nearest Neighbour method	3	
6	Non-parametric estimation techniques for Density estimation	2	

7	Linear discriminant function based classifier	5	
	5L		
	Perceptron		
	Support vector machines		
8	Non-metric methods for pattern classification	4	
	4L		
	Non-numeric data or nominal		
	dataDecision trees		
9	Unsupervised learning and clustering 2L	2	
	Criterion functions for clustering		
	Algorithms for clustering: K-means,		
	Hierarchical and other methods		

Text book and Reference books:

- 1. R. O. Duda, P. E. Hart and D. G. Stork: Pattern Classification, John Wiley, 2001.
- 2. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009.
- 3. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Information Security Code: PEC-CSBS601 A

Name	of the Course:	Information Security	
Cours	e Code: PEC-CSBS601A	Semester: VI	
Durat	ion: 6 months	Maximum Marks:	100
Teach	hing Scheme		Examination Scheme
Theor	ry: 3 hrs./week		Mid Semester exam: 15
Tutor	ial: 1 hr/Week	Assignment and Quiz: 10 marks	
Attendance: 5 marks		Attendance: 5 marks	
Practi	Practical: NIL End Semester Exam: 70 Marks		End Semester Exam: 70 Marks
Credit	t Points:	3	
Objec	Objective:		
1	To develop an understanding of modern network architectures from a design and performance perspective.		
2	To introduce the student to the major concepts involved in wide-area networks		
	(WANs), local area networks (LANs) and Wireless LANs (WLANs).		
3	To provide an opportunity to do network programming		
4	To provide a WLAN measurement ideas.		

Unit	Content	Hrs/Uni	Marks/Unit
		t	

	Introduction: Introduction to Cyber Security,		
1	Importance and challenges in Cyber Security,	6	
	Cyberspace, Cyber threats, Cyberwarfare, CIA		
	Triad, Cyber Terrorism, Cyber Security of		
	CriticalInfrastructure, Cybersecurity -		
	Organizational		
	Implications.		
	Hackers and Cyber Crimes: Types of Hackers,	7	
2	Hackers and Crackers, Cyber-Attacks and		
	Vulnerabilities, Malware threats, Sniffing, Gaining		
	Access, Escalating Filvineges, Executing Applications Hiding Files Covering Tracks		
	Worms, Trojans, Viruses, Backdoors.		
	Ethical Hacking and Social Engineering: Ethical	8	
3	Hacking Concepts and Scopes, Threats and Attack		
	Vectors, Information Assurance, Threat		
	Modelling, Enterprise Information Security		
	Penetration Testing Types of Social Engineering		
	Insider Attack, Preventing Insider Threats, Social		
	Engineering		
	Targets and Defence Strategies.		
	Cyber Forensics and Auditing: Introduction to	10	
4.	CyberForensics, Computer Equipment and		
	associated storage media, Role of forensics		
	Investigator, Forensics Investigation Process,		
	Collecting Networkbased Evidence, Writing		
	Computer Forensics Reports, Auditing, Plan an		
	audit against a set of audit criteria, Information		
	Security Management System Management.		
	Introduction to ISO 27001:2013		
5	Cyber Ethics and Laws: Introduction to Cyber	5	
	Laws,E-Commerce and E-Governance, Certifying		
	Authority and Controller, Offences under IT Act,		
	Computer Offences and its penalty under IT Act		
	2000, Intellectual Property Rights in Cyberspace.		
	at Network Layer-IPSec.		

Text book and Reference books:

- 1. Cyber security , Nina Gobole & Sunit Belapune; Pub: Wiley India.
- 2. Information Security and Cyber Laws, Pankaj Agarwal
- 3. Donaldson, S., Siegel, S., Williams, C.K., Aslam, A., Enterprise Cybersecurity -How toBuild a Successful Cyberdefense Program

Against Advanced Threats, A-press

- 4. Nina Godbole, SumitBelapure, Cyber Security, Willey
- 5. Hacking the Hacker, Roger Grimes, Wiley
- 6. Cyber Law By Bare Act, Govt Of india, It Act 2000.
- 7. Information Security & Cyber Laws, Gupta & Gupta, Khanna Publishing House, (AICTERecommended Textbook- 2018)

Human Computer Interaction Code: PEC-CSBS601B

Name	e of the Course:	Human Computer Interaction	
Cours	e Code: PEC-CSBS601B	Semester: VI	
Durat	tion: 6 months	Maximum Marks	:100
Teaching Scheme			Examination Scheme
Theor	ry:3 hrs./week		Mid Semester exam: 15
Tutor	ial: 1 hr/Week		Assignment and Quiz: 10 marks
			Attendance : 5 marks
Practi	ical: NIL		End Semester Exam :70 Marks
Credi	t Points:	3	
Objec	ctive:		
1	Learn the foundation	s of Human Comp	uter Interaction
2	Be familiar with the d	lesign technologie	s for individuals and persons with
	disabilities		
3	Be aware of mobile H	uman Computer i	nteraction
4	Learn the guidelines	for user interface.	
Pre-R	Pre-Requisite:		
1	Computer Organizati	on & Architecture	

Unit	Content	Hrs/	Marks
		Unit	/Unit
		9	
1	Human: I/O channels – Memory – Reasoning and problem solving;The computer: Devices – Memory – processing and networks;		
	Interaction: Models – frameworks – Ergonomics – styles – elements –interactivity- Paradigms.		

2	Interactive Design basics – process – scenarios – navigation – screendesign – Iteration and prototyping. HCI in software process – software life cycle – usability engineering – Prototyping in practice – design rationale. Design rules – principles, standards, guidelines, rules. Evaluation Techniques –Universal Design.	11	
3.	Cognitive models –Socio-Organizational issues and stake holder requirements –Communication and collaboration models- Hypertext,Multimedia and WWW.	8	
4.	Mobile Ecosystem: Platforms, Application frameworks- Types ofMobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.	8	
5.	Designing Web Interfaces – Drag & Drop, Direct Selection, ContextualTools, Overlays, Inlays and Virtual Pages, Process Flow. CaseStudies.	8	
6.	Recent Trends: Speech Recognition and Translation, Multimodal System	3	

Text book and Reference books:

1. Theodor Richardson, Charles N Thies, Secure Software Design, Jones & Bartlett 2. Kenneth R. van Wyk, Mark G. Graff, Dan S. Peters, Diana L. Burley, Enterprise SoftwareSecurity, Addison Wesley.

Course Outcomes:

On completion of the course students will be able to

- 1. Differentiate between various software vulnerabilities.
- 2. Software process vulnerabilities for an organization.
- 3. Monitor resources consumption in a software.
- 4. Interrelate security and software development process.

Cloud Computing Code: PEC-CSBS601C

Name of the Course:	Cloud Computing	
Course Code: PEC-CSBS601C	Semester: VI	
Duration: 6 months	Maximum Marks:	100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: 1 hr/ Week		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical:		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Definition of Cloud Computing and		
1	<u>itsBasics (Lectures)</u> . Defining a	9	
	Cloud,		
	Cloud Types – NIST model, Cloud Cube		
	model, Deployment models (Public ,		
	Private, Hybrid and Community Clouds),		
	Service Platform as a Service, Software		
	as a Service with examples of services/		
	service providers, models –		
	Infrastructure as a Service, Cloud		
	Reference model, Characteristics of		
	Cloud Computing – a shift in paradigm		
	Benefits and advantages of Cloud		
	Computing, A brief introduction on		
	Distructure,		
	Platforms, Virtual		
	Appliances,		
	Connecting to the Cloud by Clients Jack		
	- Basic concept Workload partitioning		
	of virtual private server instances. Pods		
	aggregations silos PaaS - Basic concent		
	tools and development environment		
	with examples		
	SaaS - Basic concept and		
	characteristics.Open SaaS and SOA.		
	examples of SaaSplatform Identity as a		
	Service (IDaaS) Compliance as a Service		
	(CaaS)		

	Use of Platforms in Cloud Computing	12	
2	Concepts of Abstraction and Virtualization		
2	Virtualization technologies : Types of		
	virtualization (access, application,		
	(CPII storage) Mobility patterns		
	(P2V V2V V2P P2P D2C C2C C2D D2D)		
	Load Balancingand Virtualization: Basic		
	Concents Networkresources for load		
	halancing Advanced loadhalancing		
	(including Application		
	DeliveryController and		
	Application Delivery Network) Mention of		
	The Google Cloud as an example fuse of		
	load balancing Hypervisors: Virtual		
	machine technology and types		
	VMware		
	vSphere Machine Imaging (including		
	mention of Open Virtualization Format –		
	OVF)		
	Porting of applications in the Cloud: The		
	simple Cloud API and AppZero Virtual		
	Application appliance. Concepts of Platform		
	as a Service. Definition of services.		
	Distinction between SaaS and PaaS		
	(knowledge of Salesforce.com and		
	Force.com). Application development		
	Use of PaaS Application frameworks.		
	FF	1 1	

Discussion of Google Applications Portfolio	
- Indexed sourch Dark Web Aggregation	
- Indexed Search, Dark Web, Aggregation	
and disintermediation, Productivity	
applications and service, Adwords, Google	
Analytics, Google Translate, a brief	
discussion on Google Toolkit (including	
introduction of GoogleAPIs in brief), major	
features of Google App Engine service.,	
Discussion of Google Applications Portfolio	
 Indexed search, Dark Web, Aggregation 	
and disintermediation, Productivity	
applications and service, Adwords, Google	
Analytics, Google Translate, a brief	
discussion on Google Toolkit (including	
introduction of Google APIs in brief), major	
features of Google App Engine service,	
Windows Azure platform: Microsoft's	
approach, architecture, and main elements,	
overview of Windows Azure AppFabric,	
Content Delivery Network, SQL Azure,	

	and Windows Live services,		
3	Cloud Infrastructure:Cloud Management:An overview of the features of networkmanagement systems and a briefintroduction of related products from largecloud vendors, Monitoring of an entirecloud computing deployment stack – anoverview with mention of some products,Lifecycle management of cloud services (sixstages of lifecycle).Concepts of Cloud Security:Cloud security concerns, Security boundary,Security service boundary Overview ofsecurity mapping Security of data: Brokeredcloud storage access, Storage location andtenancy, encryption, and auditing andcomplianceIdentity management (awareness ofIdentity protocol standards)	7	
4.	<u>Concepts of Services and Applications :</u>	8	
4.	Concepts of Services and Applications : Service Oriented Architecture: Basic conceptsof message-based transactions, Protocol stack for an SOA architecture, Event-driven SOA, Enterprise Service Bus, Service catalogs, Applications in the Cloud: Concepts of cloudtransactions, functionality mapping,	8	
4.	Concepts of Services and Applications :Service Oriented Architecture: Basic conceptsof message-based transactions, Protocol stack for an SOA architecture, Event-driven SOA, Enterprise Service Bus, Service catalogs,Applications in the Cloud: Concepts of cloudtransactions, functionality mapping,Application attributes, Cloud service attributes, System abstraction and CloudBursting, Applications and Cloud APIs	8	
4.	 Concepts of Services and Applications : Service Oriented Architecture: Basic conceptsof message-based transactions, Protocol stack for an SOA architecture, Event-driven SOA, Enterprise Service Bus, Service catalogs, Applications in the Cloud: Concepts of cloudtransactions, functionality mapping, Application attributes, Cloud service attributes, System abstraction and CloudBursting, Applications and Cloud APIs Cloud-based Storage: Cloud storage definition – Manned and Unmanned 	8	

Text book and Reference books:

- 1. Cloud Computing Bible by Barrie Sosinsky, Wiley India Pvt. Ltd, 2013
- Mastering Cloud Computing by Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, McGraw Hill Education (India) Private Limited, 2013
- 3. Cloud computing: A practical approach, Anthony T. Velte, Tata Mcgraw-Hill
- 4. Cloud Computing, Miller, Pearson
- 5. Building applications in cloud: Concept, Patterns and Projects, Moyer, Pearson
- 6. Cloud Computing Second Edition by Dr. Kumar Saurabh, Wiley India

Data Mining & Analytics Code: PEC-CSBS601D

Г

Name of the Course:	Data Mining & Ai	nalytics
Course Code: PEC-CSBS601D	Semester: VI	
Duration: 6 months	Maximum Marks: 100	
Teaching Scheme	·	Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: 1 hr/ Week		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical:		End Semester Exam: 70 Marks
Credit Points:	3	•

PU	IRPOSE	To acquire knowledge of Data mining techniques	
At	the end of the	course, students will be able to	
1	Understand th	e concepts of Data Mining	
2	Familiarize wi	ith association rule mining	
3	Familiarize va	rious classification algorithms	
4	Understand th	e concepts of Cluster analysis	
5	Implement the	e Data mining concepts with various domains	
			Contact
	Session	Description of Topic	hours
	Session	Description of Topic UNIT I: Introduction	hours 9
	Session 1	Description of Topic UNIT I: Introduction Introduction to Data Mining – Kinds of Data	hours 9 2
	Session 1 2	Description of TopicUNIT I: IntroductionIntroduction to Data Mining – Kinds of DataData mining Functionalities – Interesting Patterns	hours 9 2 2
	Session 1 2 3	Description of TopicUNIT I: IntroductionIntroduction to Data Mining – Kinds of DataData mining Functionalities – Interesting PatternsTask Primitives	hours 9 2 2 1
	Session 1 2 3 4	Description of TopicUNIT I: IntroductionIntroduction to Data Mining – Kinds of DataData mining Functionalities – Interesting PatternsTask PrimitivesIssues in Data Mining	hours 9 2 2 1 1
	Session 1 2 3 4 5	Description of TopicUNIT I: IntroductionIntroduction to Data Mining – Kinds of DataData mining Functionalities – Interesting PatternsTask PrimitivesIssues in Data MiningData Preprocessing	contact hours 9 2 1 1 3

	UNIT II: Association Rules	8
6	Basic Concepts	1
7	Frequent Item Set Mining Methods	3
8	Association Rules	2
9	Correlation analysis	2
	UNIT III: Classification and Prediction	9
10	Issues Regarding Classification and Prediction	1
11	Decision Tree Induction Classification	2
12	Bayesian and Rule Based Classification	3
13	Support Vector Machine	2
14	Prediction	1
	UNIT IV: Cluster Analysis	9
15	What is Cluster Analysis	1
16	Types of Data in Cluster Analysis	2
17	Categorization of Clustering Methods	3
18	Hierarchical Methods	3
	UNIT V: PLASTIC ANALYSIS	10
19	Applications and Trends in Data Mining	3
20	Machine learning	3
21	Big data	2
22	Cloud computing	2
	Total contact hours	45
LEARNING RE	SOURCES	
Sl. No.	TEXT BOOKS	
1. Jiawei Han and Micheline Kamber,"Data Mining – Concepts and Techniques", Second Edition, Morgan Kaufmann Publishers, 2006.		rts and ers, 2006.
REFERENCE F	BOOKS/OTHER READING MATERIAL	
2.	2. M. H. Dunham, "Data Mining: Introductory and Advanced Topics", Pearso Education. 2001.	
3.	3. D. Hand, H. Mannila and P. Smyth, "Principles of Data Mining", Prentice Hall. 2001.	
4. I H. Witten and E. Frank, "Data Mining: Practical Machine Learning Tools and Techniques", Morgan Kaufmann. 2000.		Learning Tools

5.	Nathan Marz, James Warren, "Big Data-Principles and best practices of scalable real-time data systems", DreamTech Press, 2015
6.	Arshdeep Bahga, Vijay Madisetti, "Cloud Computing: A Hands-On Approach", University Press, 2016

Compiler Design Code: PEC-CSBS602A

Name	of the Course:	Compiler Design	
Cours	e Code: PEC-CSBS602A	Semester: VI	
Durat	ion:6 months	Maximum Marks:	100
Teach	hing Scheme		Examination Scheme
Theor	ry:3 hrs./week		Mid Semester exam: 15
Tutor	ial: 1 hr/Week		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Practi	ical: NIL		End Semester Exam:70 Marks
Credit	t Points:	3	
Objective:			
1	1 To understand and list the different stages in the process of compilation.		
2	2 Identify different methods of lexical analysis		
3	Design top-down and	l bottom-up parsers	5
4	4 Identify synthesized and inherited attributes		
5	5 Develop syntax directed translation schemes		
6	5 Develop algorithms to generate code for a target machine		

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction to Compiling [3L]		
1	Compilers, Analysis of the source program, The	3	
	phases of the compiler, Cousins of the compiler.		
2	Lexical Analysis [6L]	6	
	The role of the lexical analyzer, Tokens, Patterns,		
	Lexemes, Input buffering, Specifications of a		
	token,		
	Recognition of a		
	tokens, Finite automata, From a regular		
	expressionto an NFA, From a regular		
	expression to NFA, From a regular expression		
	to DFA, Design of a lexical analyzer generator		
	(Lex).		

		1	1
3	Syntax Analysis [9L]	9	
	The role of a parser, Context free		
	grammars, Writing a grammar, Top down		
	Parsing, Non-recursive Predictive parsing		
	(LL), Bottom up parsing, Handles, Viable		
	prefixes, Operator precedence parsing, LR		
	parsers (SLR, LALR), Parser generators (YACC).		
	Error Recoverystrategies for different parsing		
	techniques.		
4	Syntax directed translation [5L]	5	
	Syntax director definitions, Construction of		
	syntaxtrees, Bottom-up evaluation of S		
	attributed definitions, L attributed definitions,		
	Bottom-up evaluation of inherited attributes.		
5	Type checking [4L]	4	
	Type systems, Specification of a simple type		
	checker, Equivalence of type expressions,		
	Туре		
	conversions		
6	Run time environments [5L]	5	
	Source language issues (Activation trees,		
	Controlstack, scope of declaration, Binding of		
	names),		
	Storage organization		
	(Subdivision of run-time memory, Activation		
	records), Storage allocation strategies,		
	Parameterpassing (call by value, call by		
	reference, copy restore, call by name), Symbol		
	tables, dynamic storage allocation techniques.		
7	Intermediate code generation [4L]	4	
	Intermediate languages, Graphical		
	representation,Three-address code,		
	Implementation of three address statements		
	(Quadruples, Triples, Indirect triples).		
8	Code optimization [5L]	5	
	Introduction, Basic blocks & flow graphs,		
	Transformation of basic blocks, Dag		
	representationof basic blocks, The		
	principle sources of optimization, Loops in		
	flowgraph, Peephole optimization.		
9	Code generations [4L]	4	
	Issues in the design of code generator, a		
	simple code generator, Register allocation &		
	assignment.		

Text book and Reference books:

Aho, Sethi, Ullman - "Compiler Principles, Techniques and Tools" - Pearson Education.
 Holub - "Compiler Design in C" - PHI.

Course Outcomes:

On completion of the course students will be able to

- 1. Understand given grammar specification develop the lexical analyser
- 2. Design a given parser specification design topdownand bottom-up parsers
- 3. Develop syntax directed translation schemes
- 4. Develop algorithms to generate code for a target machine

Image Processing Code: PEC-CSBS602 B

Name of the Course: Image Processi		
Course Code: PEC-CSBS602 B	Semester: VI	
Duration:6 months	Maximum Marks:1	100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: 1 hr/ Week		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points: 3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction [3L]	9	
	Background, Digital Image		
	Representation, Fundamental steps in		
	Image Processing, Elements of Digital		
	Image Processing - Image Acquisition,		
	Storage, Processing, Communication,		
	Display.		
	Digital Image Formation [4L]	4	
2	A Simple Image Model, Geometric Model- Basic		
	Transformation (Translation, Scaling, Rotation),		
	Perspective Projection, Sampling & Quantization		
	-Uniform & Non uniform.		
	Mathematical Preliminaries[9L]	9	
3	Neighbour of pixels, Connectivity, Relations,		
	Equivalence & Transitive Closure; Distance		
	Measures, Arithmetic/Logic Operations,		
	Fourier Transformation, Properties of The		
	Two Dimensional Fourier Transform, Discrete		
	Fourier		
	Transform, Discrete Cosine & SineTransform.		

	Image Enhancement [8L]	8	
4.	Spatial Domain Method, Frequency Domain		
	Method, Contrast Enhancement -Linear &		
	Nonlinear Stretching, Histogram		
	Processing; Smoothing - Image Averaging,		
	Mean Filter, Low-pass Filtering; Image		
	Sharpening. High- pass Filtering, High-		
	boost Filtering, Derivative Filtering,		
	Homomorphic Filtering; Enhancement in		
	the frequency domain - Low pass filtering,		
	High pass filtering.		
5	Image Restoration [7L]	7	
	Degradation Model, Discrete Formulation,		
	Algebraic Approach to Restoration -		
	Unconstrained & Constrained;		
	Constrained Least Square Restoration,		
	Restoration by Homomorphic Filtering,		
	Geometric Transformation - Spatial		
	Transformation,		
	Gray Level Interpolation.		
6	Image Segmentation [7L]	7	
C	Point Detection. Line Detection. Edge		
	detection. Combined detection. Edge		
	Linking & Boundary Detection - Local		
	Processing, Global Processing via The		
	Hough Transform; Thresholding -		
	Foundation, Simple Global Thresholding,		
	Optimal Thresholding; Region Oriented		
	Segmentation - Basic Formulation,		
	Region Growing by Pixel Aggregation,		
	Region Splitting & Merging.		

Text book and Reference books:

1. Hearn, Baker – "Computer Graphics (C version 2nd Ed.)" – Pearson education

2. Z. Xiang, R. Plastock - " Schaum's outlines Computer Graphics (2nd Ed.)" - TMH

3. D. F. Rogers, J. A. Adams – "Mathematical Elements for Computer Graphics (2nd Ed.)" –TMH

Robotics and Embedded Systems Code: PEC-CSBS602 C

Name of the Course: Robotics and Embedded Systems				
Course Code: PEC-CSBS602 C	Semester: VI			
Duration: 6 months Maximum Marks: 100				
Teaching Scheme	Examination Scheme			
Theory: 3 hrs./week	Mid Semester exam: 15			
Tutorial: 1 hr./week	Assignment and Quiz: 10 marks			
	Attendance: 5 marks			
Practical: hrs./week	End Semester Exam: 70 Marks			
Credit Points:	3			
Objective:				
Electronics/Electric and Microprocesson many more. But th course. This course opportunity to the s to interface differen do different project sectors in our indus in this course studen	al, different types Sensors and Actuators, Microcontrollers rs, different types of communication protocols and about ney do not get scope to use that knowledge during their is especially designed to bridge that gap by providing an students, so that they can write embedded C/C++ programs at types of input/output devices with the Microcontroller to s. Now robotics is an emerging field of technology. In many stry, robots are replacing humans very rapidly. That is why nts will also get some insight of robotics.			
Course outcome				
After completion of	the training, students will able to:			
 Understand the Identify differ Co-related em Identify differ Know about d Write embedded platforms. Interfaced differ Design mecha Understand the Interface differ 	 ine importance of embedded systems and robotics in our daily life. ent embedded devices. bedded systems with their university courses. ent components of embedded systems and robotics. ifferent features of a microcontroller. led C/C++ programs in different embedded systems programming ferent input/output devices with a microcontroller. nical structure of a robot. ie robot configuration and sub-systems erent components of robot with microcontroller. 			

- Design different types of robots for different purposes.
- Design wide varieties of embedded systems projects.
- Do their Diploma/B Tech projects themselves.

Unit	Content	Hrs/Unit	Marks/Unit
	AVR Microcontroller		
1	Introduction to AVR Microcontroller, Mega AVR	10	
_	Microcontroller series, Introduction to ATmeg16/32,		
	Features, Architecture, Pin configurations, I/O ports,		
	Port operation registers, Interrupts, ADC,		
	Timers/counters, SPI,		
	USART, Memory programming, etc.		
	Embedded C/C++		
2	Introduction to C/C++, Use of Loops, Array, Function,	10	
—	etc in C/C++, Introduction to Embedded C/C++		
	platform like; Atmel Studio and Proteus, Introduction		
	to port operation registers programming,		
	Programming to		
	interface LED with ATmega16, etc.		
	Robotics – Interfacing of Sensors, Motors, Display		
3	devices, etc :	8	
	Introduction concept and mechanism of Robotics,		
	Applications of Robotics, Introductions to Robotics		
	components like; Motors, Sensors, Display devices, etc,		
	Programming and interfacing of DC Motors, Stepper		
	Motor, Servo Motors, Sensors (Analog & Digital),		
	LCD, Communications modules		
	like; Bluetooth, Xbee, etc.		
	Application:	8	
	Digital notice board, Object counter, Digital		
	temperature monitoring system, Range finder, Project		
	using external interrupts, Stopwatch, Velocity control		
	of DC Motor, Line follower Robot, Object avoider Robot,		
	Intelligent home automation system, Solar seeker		
	Robot, Robot communication using		
	Bluetooth, RF Module, Xbee module, etc.		

SOFTWARE DESIGN USING UML Code: PEC-CSBS602D

Name of the Course: SOFTWARE DESIGN USING UML		SING UML	
Course Code: PEC-CSBS602D	Semester: VI		
Duration: 6 months	Maximum Marks:100		
Teaching Scheme	Exa	mination Scheme	
Theory: 3 hrs./week	Mid	Semester exam: 15	
Tutorial: 1 hr./week	Assi	gnment and Quiz: 10 marks	
,	Atte	ndance: 5 marks	
Practical: hrs./week	End	Semester Exam: 70 Marks	
Credit Points:	3		
Objective:			
 To understand the fundamentals of object modeling To understand and differentiate Unified Process from other approaches To design with static UML diagrams 			
• To design with the UML dynamic and implementation diagrams		mentation diagrams	
• To improve the software design with design patterns.		n patterns.	
• To test the software	against its requiremen	ts specification	
Course outcome			
Upon Completion of the	course, the students sh	ould be able to:	
Express software de	• Express software design with UML diagrams		
Design software app	• Design software applications using 00 concepts.		
Identify various scenarios based on software requirements			
Transform UML based software design into pattern based design using design pa			
 Understand the various testing methodologies for OO software 			

Unit	Content	Hrs/Unit	Marks/Unit
1	UNIFIED PROCESS AND USE CASE DIAGRAMS Introduction to OOAD with OO Basics - Unified Process - UML diagrams – Use Case –Case study – the Next Gen POS system, Inception -Use case Modelling – Relating Use cases – include, extend and generalization – When to use Use-cases.	8	
2	STATIC UML DIAGRAMS Class Diagram Elaboration – Domain Model – Finding conceptual classes and description classes – Associations – Attributes – Domain model refinement – Finding conceptual class Hierarchies – Aggregation and Composition - Relationship between sequence diagrams and use cases – When to use Class Diagrams.	8	
3	DYNAMIC AND ARCHITECTURAL MODELING UML DIAGRAMS Dynamic Diagrams – UML interaction diagrams - System sequence diagram – Collaboration diagram – When to use Communication Diagrams - State machine diagram and Modelling – When to use State Diagrams - Activity diagram – When to use activity diagrams Implementation Diagrams - UML package diagram – When to use package diagrams - Component and Deployment Diagrams – When to use Component and Deployment diagrams.	8	
4	DESIGN PATTERNS AND ELEMENTS DESIGN PATTERNSGRASP-Designing objects with responsibilities - Applying GoF design patterns - Creational Patterns Structural Patterns , Behavioral Patterns, Design Elements: Architectural design elements - Interface design elements - Component level diagram elements - Deployment level design elements, Mapping design to code.	8	

5.	AGILE METHODOLOGY	8	
	Theories for Agile Management – Agile Software Development – Traditional Model vs. Agile Model - Classification of Agile Methods – Agile Manifesto and Principles – Agile Project Management – Agile Team Interactions – Ethics in Agile Teams - Agility in Design, Testing – Agile Documentations – Agile		
	Drivers, Capabilities and values		

Big Data Analytics

Code: OEC-CSBS601A Contacts: 3L

Name of the Course: Big Data Analytics		
Course Code :OEC-CSBS601A	Semester:VI	
Duration:6 months	Maximum Mark	s: 100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz : 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points: 3		

Total Number of Lectures: 48

COURSE OBJECTIVE	
Understand big data for business intelligence. Learn business case studie analytics. Understand nosql big data management. Perform map-reduce Hadoop and related tools	s for big data analytics using
LECTURE WITH BREAKUP	NO. OF LECTUR
Unit 1: What is big data, why big data, convergence of key trends, unstructured data, industry examples of big data, web analytics, big data and marketing, fraud and big data, risk and big data, credit risk management, big data and algorithmic trading, big data and healthcare, big data in medicine, advertising and big data, big data technologies, introduction to Hadoop, open source technologies, cloud and big data, mobile business intelligence, Crowd sourcing analytics, inter and trans firewall analytics.	8
Unit 2: Introduction to NoSQL, aggregate data models, aggregates, key-value and document data models, relationships, graph databases, schemaless databases, materialized views, distribution models, sharding, master-slave replication, peer-peer replication, sharding and replication, consistency, relaxing consistency, version stamps, map-reduce, partitioning and combining, composing map-reduce calculations.	8
Unit 3: Data format, analyzing data with Hadoop, scaling out, Hadoop streaming, Hadoop pipes, design of Hadoop distributed file system (HDFS), HDFS concepts, Java interface, data flow, Hadoop I/O, data integrity, compression, serialization, Avro, file-based data structures	9

Unit 4:	
MapReduce workflows, unit tests with MRUnit, test data and local tests, anatomy of MapReduce job run, classic Map-reduce, YARN, failures in classic	10
Map-reduce and YARN, job scheduling, shuffle and sort, task execution, MapReduce types, input formats, output formats	
Unit 5:	7
Hbase, data model and implementations, Hbase clients, Hbase	
examples, praxis.Cassandra, Cassandradata model, Cassandra examples,Cassandra clients,	
Hadoop integration.	
Unit 6:	
Pig, Grunt, pig data model, Pig Latin, developing and testing Pig Latin scripts.	6
Hive, data types and file formats, HiveQL data definition, HiveQL	C C
datamanipulation, HiveQL queries.	

References:

- 1. Michael Minelli, Michelle Chambers, and AmbigaDhiraj, "Big Data, Big Analytics: Emerging
- 2. V.K. Jain, Big Data and Hadoop, Khanna Publishing House, New Delhi (2017).
- 3. V.K. Jain, Data Analysis, Khanna Publishing House, New Delhi (2019).
- 4. Business Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013.
- 5. P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the EmergingWorld of Polyglot Persistence", Addison-Wesley Professional, 2012.
- 6. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- 7. Eric Sammer, "Hadoop Operations", O'Reilley, 2012.
- 8. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 9. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 10. Eben Hewitt, "Cassandra: The Definitive Guide", O'Reilley, 2010.
- 11. Alan Gates, "Programming Pig", O'Reilley, 2011.

Cyber Law and Ethics

Code: OEC-CSBS601B Contacts: 3L

Name of the Course:	Cyber Law and Ethics		
Course Code: OEC-CSBS601B	Semester:VI		
Duration:6 months	Maximum Mark	s: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz : 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points: 3			

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction of Cybercrime: What is cybercrime?,		
1	Forgery, Hacking, Software Piracy, Computer	8	
	Network intrusion[4L].		
	Category of Cybercrime: how criminals plan		
	attacks, passive attack, Active attacks,		
	cyberstalking. [4L]		
	Cybercrime Mobile & Wireless devices: Security		
2	challenges posted by mobile devices, cryptographic	8	
	security for mobile devices, Attacks on		
	mobile/cellphones, Theft, Virus, Hacking.		
	Bluetooth; Different viruses on laptop [8L]		
	Tools and Methods used in Cyber crime: Proxy		
3	servers, panword checking, Random checking,	8	
	TrojanHorses and Backdoors; DOS & DDOS		
	attacks; SQL		
	injection: buffer over flow. [8L]		
	Phishing & Identity Theft: Phising methods,		
4.	IDTheft; Online identity method. [4L]	8	
	Cybercrime & Cybersecurity: Legal aspects,		
	indianlaws, IT act, Public key certificate. [4L]		

Text book and Reference books:

- 1. Cyber security by Nina Gobole & Sunit Belapune; Pub: Wiley India.
- 2. Information Security & Cyber laws, Gupta & Gupta, Khanna Publishing House

Mobile Computing

Code: OEC-CSBS601C Contacts: 3L

Name of the Course:Mobile Computing		
Course Code: OEC-CSBS601C	Semester: VI	
Duration: 6 months	Maximum Mark	rs: 100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: 3L		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	3	·

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction to Personal Communications Services (PCS): PCS Architecture, Mobility management, Networks signalling. Global System for Mobile Communication (GSM) system overview: GSM Architecture, Mobility management, Network signalling.	5	
2	General Packet Radio Services (GPRS): GPRS Architecture, GPRS Network Nodes. Mobile Data Communication: WLANs (Wireless LANs) IEEE 802.11 standard, Mobile IP.	5	
3	Wireless Application Protocol (WAP): The Mobile Internet standard, WAP Gateway and Protocols, wireless mark up Languages (WML). Wireless Local Loop(WLL): Introduction to WLL Architecture, wireless Local Loop Technologies.	7	
4.	Third Generation (3G) Mobile Services: Introduction to International Mobile Telecommunications 2000 (IMT 2000) vision, Wideband Code Division Multiple Access (W-CDMA), and CDMA 2000, Quality of services in 3G	7	
5	Global Mobile Satellite Systems; case studies of theIRIDIUM and GLOBALSTAR systems. Wireless Enterprise Networks: Introduction to Virtual Networks,Blue tooth technology, Blue tooth Protocols.	7	
6	Server-side programming in Java, Pervasive web application architecture, Device independent example	8	

application	

Text book and Reference books:

1. "Pervasive Computing", Burkhardt, Pearson

2. "Mobile Communication", J. Schiller, Pearson

3. "Wireless and Mobile Networks Architectures", Yi-Bing Lin & Imrich Chlamtac, John Wiley& Sons, 2001

4. "Mobile and Personal Communication systems and services", Raj Pandya, Prentice Hall ofIndia, 2001.

5. "Guide to Designing and Implementing wireless LANs", Mark Ciampa, Thomson learning, Vikas Publishing House, 2001.

6. "Wireless Web Development", Ray Rischpater, Springer Publishing,

7. "The Wireless Application Protocol", Sandeep Singhal, Pearson.

8. "Third Generation Mobile Telecommunication systems", by P.Stavronlakis, Springer Publishers,

9. Brijesh Gupta "Mobile Computing", Khanna Publishing House, New Delhi

Bio Informatics Code: OEC-CSBS601D Contacts: 3L

Name of the Course:	Bio Informatics	
Course Code: OEC-CSBS601D	Semester: VI	
Duration: 6 months	Maximum Ma	rks: 100
Teaching Scheme	•	Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points: 3		

Unit	Content	Hrs/Unit	Marks/Unit
	INTRODUCTION TO MOLECULAR BIOLOGY		
1	Concepts of Cell, tissue, types of cell, components of	5	
	cell, organelle. Functions of different organelles.		
	Concepts of DNA: Basic Structure of DNA; Double		
	Helix structure; Watson and crick model. Exons and		
	Introns and Gene Concept. Concepts of RNA : Basic		
	Structure, Difference between KNA and DNA.		
	and structure Introduction to Control Dogma:		
	Transcription and Tranlation Introduction to		
	Metabolic Pathways.		
	Sequence Databases Introduction to		
2	Bioinformatics. Recent challenges in Bioinformatics.	2	
	Protein Sequence Databases, DNA sequence		
	databases. sequence database search programs like		
	BLAST and FASTA.		
	NCBI different modules: GenBank; OMIM,		
	Taxonomybrowser, PubMed;		
2	DNA SEQUENCE ANALYSIS	1.4	
3	DNA Mapping and Assembly : Size of Human DNA	14	
	, Copying DNA: Polymerase Chain Reaction (PCR),		
	Fragmenta Sequencing Short DNA Meloculos		
	Mapping Long DNA Molecules. DeBruijn Graph.		
	Sequence Alignment: Introduction, local and global		
	alignment, pair wise and multiple alignment,		
	Dynamic Programming Concept. Alignment		
	algorithms: Needleman and Wunsch algorithm,		
	Smith-Waterman.		

	Introduction Probabilistic models used in		
4.	Computational Biology	8	
	Probabilistic Models; Hidden Markov Model :		
	Concepts, Architecture, Transition matrix,		
	estimation matrix. Application of HMM in		
	Bioinformatics : Genefinding, profile searches,		
	multiple sequence alignment and regulatory site		
	identification. Bayesian networks Model		
	:Architecture, Principle ,Application		
	in Bioinformatics.		
5.	Biological Data Classification and Clustering	6	
	Assigning protein function and predicting splice		
	sites:Decision Tree		

Numerical Methods

Code: OEC-CSBS601E Contact: 3L

Name of the Course:	Numerical Methods	
Course Code: OEC-CSBS601E	Semester: VI	
Duration:6 months	Maximum Marks:100	
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Approximation in numerical computation: Truncation and rounding errors, Fixed and floating-point arithmetic, Propagation of errors.	2	
2	Interpolation: Newton forward/backward	8	
	interpolation, Lagrange's and Newton's		
	divideddifference Interpolation.		
3	Numerical integration: Trapezoidal rule, Simpson's1/3 rule, Expression for corresponding error terms.	3	

4.	Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU	8	
	Factorization method, Gauss-Seidel iterative method.		
5	Numerical solution of Algebraic equation: Bisection method, Regula-Falsi method,Newton-Raphson method.	3	
6	Numerical solution of ordinary differential equation:Euler's method, Runge-Kutta methods, Predictor- Corrector methods and Finite Difference method.	2	

Text book and Reference books:

- 1. R.S. Salaria: Computer Oriented Numerical Methods, Khanna Publishing House
- 2. C.Xavier: C Language and Numerical Methods.
- 3. Dutta & Jana: Introductory Numerical Analysis.
- 4. J.B.Scarborough: Numerical Mathematical Analysis.
- 5. Jain, Iyengar, & Jain: Numerical Methods (Problems and Solution).
- 6. Balagurusamy: Numerical Methods, Scitech.
- 7. Baburam: Numerical Methods, Pearson Education.
- 8. N. Dutta: Computer Programming & Numerical Analysis, Universities Press.

Introduction to Industrial Management (Humanities III)

Code: HSMC-CSBS601

Contacts: 2L

Name of the Course:	Introduction to	o Industrial Management (Humanities III)
Course Code: HSMC- CSBS601	Semester: VI	
Duration:6 months	Maximum Mark	rs:100
Teaching Scheme		Examination Scheme
Theory:2 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz : 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	2	

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction	6	
1	System- concept, definition,		
	types, parameters, variables and		
	behavior.		
	Management – definition		
	andfunctions.		
	Organization structure:		
	i. Definition.		
	ii. Goals.		
	iii. Factors considered in		
	formulatingstructure		
	iv Types		
	v Advantages and disadvantages		
	vi Applications		
	Concent meaning and importance		
	of division of labor, scalar &		
	functional processes and of control		
	delegation of outbority controlization		
	and decontrolization in industrial		
	management.		
	Organizational culture and		
	climate – meaning, differences and		
	factors affecting them.		
	Moral-lactors allecting moral.		
	Relationship between moral		
	andproductivity.		
	Job satisfaction- factors		
	influencingjob satisfaction.		
	Important provisions of factory		
	actand labor laws.		
2	Critical Path Method (CPM)	6	
	and Programme Evaluation		
	Review Technique (PERT):		
	2.1 CDM 0 DEDT manufact for trans		
	2.1 CPM & PERT-meaning, features,		
	difference, applications. 2.2		
	Understand different terms used in		
	network diagram.		
	Draw network diagram for a real		
	lifeproject containing 10-15		
	activities, computation of LPO and		
	EPO.(Take minimum three		
	examples).		
	Determination of critical path		
	onnetwork.		
	Floats, its types and determination		
	offloats.		
	Crashing of network, updating		
	andits applications.		

3	Materials Management:	6	
	Material management-definition,		
	functions, importance, relationship		
	withother departments.		
	Purchase - objectives, purchasing		
	systems, purchase procedure, terms		
	andforms used in purchase		
	department.		
	Storekeeping- functions,		
	classification of stores as centralized		
	and decentralized with their		
	advantages, disadvantages and		
	application in actual practice.		
	Functions of store, types of		
	records maintained by store, various		
	types and applications of storage		
	equipment, needand general		
	methods for codification ofstores.		
	Inventory control:		
	i. Definition.		
	ii. Objectives.		
	iii. Derivation for expression for		
	Economic Order Quantity (EOQ) and		
	numeric examples. iv. ABC analysis		
	andother modern methods of		
	analysis.		
	v. Various types of inventory models		
	such as Wilson's inventory model,		
	replenishment model and two bin		
	model.(Only sketch and		
	understanding, no derivation.).		
	3.6 Material Requirement Planning		
	(MRP)- concept, applications and brief		
	details about software packages		
	availablein market.		

4	Production planning and Control(PPC): Types and examples of production.PPC : i. Need and importance. ii. Functions. iii. Forms used and their importance. iv. General approach foreach type of production. Scheduling- meaning and need forproductivity and utilisation. Gantt chart- Format and method toprepare. Critical ratio scheduling-method andnumeric examples.	6	
	Scheduling using Gantt Chart (for atleast 5-7 components having 5-6		
	machining operations, with processes, setting and operation time for each component and process, resources available, quantity and other necessarydata), At least two examples. 4.7 Bottlenecking- meaning, effect andways to reduce.		
5	Value Analysis (VA) and Cost Control: 5.1 VA-definition, terms used, process andimportance. 5.2 VA flow diagram. DARSIRI method of VA. Case study of VA-at least two. Waste-types, sources and ways to reduce them. Cost control-methods and important guide lines.	3	
6	Recent Trends in IM: ERP (Enterprise resource planning) - concept,features and applications. Important features of MS Project. Logistics- concept, need and benefits. Just in Time (JIT)-concept and benefits. Supply chain management-concept and benefits.	3	

Text book and Reference books:

- 1. L.S. Srinath- "CPM & PERT principles and Applications".
- 2. Buffa "Modern Production Management".
- 3. N. Nair "Materials Management".
- 4. O. P. Khanna " Industrial Engineering & Management".
- 5. Mikes "Value Analysis".
- 6. S.C. Sharma, "Engineering Management Industrial Engineering & Management", Khanna Book Publishing Company, New Delhi

Course Outcomes:

On completion of the course students will be able to

- 1. Interpret given organization structure, culture, climate and major provisions of factoryacts and laws.
- 2. Explain material requirement planning and store keeping procedure.
- 3. Plot and analyze inventory control models and techniques.
- 4. Prepare and analyze CPM and PERT for given activities.
- 5. List and explain PPC functions.

Design and Analysis of Algorithms Lab Code: PCC-CSBS691 Contact: 4P

Name of the Course:	Design and Analysis of Algorithms Lab
Course Code: PCC-CSBS691	Semester: VI
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assessment: 60
Practical: 4 hrs./week	Distribution of marks: 40
Credit Points:	2
Pre-Requisite:	
Pre-Requisite as in : PCC-CSBS601	

Laboratory Experiments:		
Divide and Conquer:		
1	Implement Binary Search using Divide and Conquer approach	
	Implement Merge Sort using Divide and Conquer approach	
2	Implement Quick Sort using Divide and Conquer approach	
	Find Maximum and Minimum element from a array of integer using Divide	
	and Conquer approach	
3	Find the minimum number of scalar multiplication needed for chain of	
	matrix	

4	Implement all pair of Shortest path for a graph (Floyed- Warshall Algorithm)
	Implement Traveling Salesman Problem
5	Implement Single Source shortest Path for a graph (Dijkstra , Bellman Ford
_	Algorithm
Brunch	and Bound:
6	Implement 15 Puzzle Problem
Backtra	cking:
7	Implement 8 Queen problem
8	Graph Coloring Problem
	Hamiltonian Problem
Greedy	method
9	Knapsack Problem
	Job sequencing with deadlines
10	Minimum Cost Spanning Tree by Prim's Algorithm
	Minimum Cost Spanning Tree by Kruskal's Algorithm
Graph T	raversal Algorithm:
11	Implement Breadth First Search (BFS)
	Implement Depth First Search (DFS)

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Operating System Lab Code: PCC-CSBS692 Contacts: 4P

Name of the Course:	Operating System Lab
Course Code: PCC-	Semester: VI
CSBS692	
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

1 1. Managing Unix/Linux Operating System [8P]:

Creating a bash shell script, making a script executable, shell syntax (variables, conditions, control structures, functions,

commands). Partitions, Swap space, Device files, Raw and Block files, Formatting disks, Making file systems, Superblock, I-nodes, File system checker, Mounting file systems, Logical Volumes, Network File systems, Backup schedules and methods Kernel loading, init and the inittab file, Run-levels, Run level scripts. Passwordfile management, Password security, Shadow file, Groups and the group file, Shells, restricted shells, usermanagementcommands, homes and permissions, default files, profiles, locking accounts, setting passwords, Switching user, Switching group, Removing users & user groups. 2. **Process [4P]**: starting new process, replacing a process image, duplicating a processimage, waiting for a process. zombie process. 3. **Signal [4P]**: signal handling, sending signals, signal interface, signal sets. 4. Semaphore [6P]: programming with semaphores (use functions semctl, semget, semop, set semvalue, del semvalue, semaphore p, semaphore v). 5. POSIX Threads [6P]: programming with pthread functions (viz. pthread_create,pthread_join, pthread_exit, pthread_attr_init, pthread_cancel) 6. Inter-process communication [6P]: pipes(use functions pipe, popen, pclose), namedpipes(FIFOs, accessing FIFO), message passing & shared memory(IPC version V).

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)