SEMESTER –V

Name of t	the Course: B. Tech in CSE(/	AI & ML)				
Subject: Probability & Statistics						
Course Co	ode: PCCAIML 501	Semester: V				
Teaching	Scheme	Maximum Marks: 100				
Theory: 3	hrs./week	Examination Scheme				
Tutorial:		End Semester Exam: 70				
Practical:	0	Attendance: 5				
Credit:3		Continuous Assessment: 25				
Aim:						
Sl. No.						
1.	The aim of this course is to	o equip the students with standard concepts and tools at an				
	intermediate to advanced	level that will serve them well towards tackling various problems				
2.	The objective of this cours	e is to familiarize the students with statistical techniques.				
Objective	: Throughout the course, st	udents will be expected to demonstrate their understanding of				
probabilit	y & statistics by being able	to learn each of the following				
SI. No.						
1.	The ideas of probability ar	nd random variables and various discrete and continuous				
	probability distributions a	nd their properties.				
2.	The basic ideas of statistic	s including measures of central tendency, correlation and				
	regression.					
3.	The statistical methods of	studying data samples.				
Pre-Requi	isite:					
SI. No.						
1.	Knowledge of basic algeb	ra, calculus.				
2.	Ability to learn and solve i	mathematical model.				

Contents		Hrs./we	Contents
		CR	
Chapter	Name of the Topic	Hours	Marks
01	Definition of Partial Differential Equations, First order partial differential equations, solutions of first order linear PDEs; Solution to homogenous and nonhomogeneous linear partial differential equations of second order by complimentary function and particular integral method. Second-order linear equations and their classification, Initial and boundary conditions, D'Alembert's solution of the wave equation; Duhamel's principle for one dimensional wave equation. Heat diffusion and vibration problems, Separation of variables method to simple problems in Cartesian coordinates. The Laplacian in plane, cylindrical and spherical polar coordinates, solutions with Bessel functions and Legendre functions. One dimensional diffusion equation and its solution by separation of variables.	16	20
02	Probability spaces, conditional probability, independence; Discrete random variables, Independent random variables, the multinomial distribution, Poisson approximation to the binomial distribution, infinite sequences of Bernoulli trials, sums of independent random variables; Expectation of Discrete Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev's Inequality. Continuous random variables and their properties, distribution functions and densities, normal, exponential and gamma densities.Bivariate distributions and their properties, distribution of sums and quotients, conditional densities, Bayes' rule.	16	25
03	Basic Statistics, Measures of Central tendency: Moments, skewness and Kurtosis - Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions, Correlation and regression – Rank correlation. Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, Tests for single mean, difference of means, and difference of standard deviations. Test for ratio of variances - Chi- square test for goodness of fit and independence of attributes.	16	25
	Sub Total:	48	70
	Internal Assessment Examination & Preparation of Semester Examination	4	30
	Total:	52	100

Assignments:

Based on the curriculum as covered by subject teacher.

List of Books

Text Books:

Name of Author	Title of the Book	Edition/ISSN/ISBN	Name of the Publisher
Erwin Kreyszig	Advanced Engineering Mathematics	9 th Edition	John Wiley & Sons
N. G. Das	Statistical Methods	0070083274, 9780070083271	Tata Mc.Graw Hill
Reena Garg	Advanced Engineering Mathematics	First Edition	Khanna Publishing
Reference Books:			
P. G. Hoel, S. C. Port and C. J. Stone	Introduction to Probability Theory		Universal Book Stall
W. Feller	An Introduction to Probability Theory and its Applications	3rd Ed.	Wiley
Manish Sharma, Amit Gupta	The Practice of Business Statistics	First Edition	Khanna Publishing House

Operating Systems Code: PCC- CS502 Contacts: 3L

Name	e of the Subject:	Operating Systems	6				
Cours	e Code: PCC-CS502	Semester: V	Semester: V				
Durat	ion: 6 months	Maximum Marks:1	00				
Teach	ning Scheme		Examination Scheme				
Theor	ry:3 hrs./week		Mid Semester exam: 15				
Tutor	Futorial: NILAssignment and Quiz: 10 r						
Practi	Practical: hrs./week End Semester Exam :70 Ma						
Credi	Credit Points: 3						
Unit		Content		Hrs/U	Marks/		
				nit	Unit		
	Introduction: Co	oncept of Opera	ting Systems,	3			
1	Generations of	Operating syste	ms, Types of				
	Operating Systems	, OS Services, Systen	n Calls, Structure				
	of an OS - Layered	l, Monolithic, Microl	kernel Operating				
	Systems, Concept	of Virtual Machine	. Case study on				
	UNIX and WINDOW	VS Operating System					
	Processes: Definit	ion, Process Relatio	onship, Different	10			
2	states of a Proces	s, Process State trai	nsitions, Process				
	Control Block (PCB)), Context switching					
	Thread: Definition,	, Various states, Ben	efits of threads,				
	Types of threads, C	oncept of multithrea	ads,				
	Process Scheduli	ng: Foundation a	and Scheduling				
	objectives, Types	of Schedulers, Sch	eduling criteria:				
	CPU utilization. Th	, roughput. Turnarour	nd Time. Waiting				
	Time. Response	Time: Scheduling	algorithms: Pre-				
	emptive and Non	pre-emptive. FCFS.	SJF. RR:				
	Multiprocessor sch	eduling: Real Time	scheduling: RM				
	and EDF.						
	Inter-process Com	munication: Critical	Section, Race				
3.	Conditions Mutual	Exclusion Hardware	e Solution	5			
	Strict Alternation	Peterson's Solution	The Producer				
	Consumer Probler	n Semanhores Ev	ent Counters				
	Monitors Messa	n, Schapholes, Ew	I IPC Problems:				
	Poodor's & Writer	ge Fassing, Classica Droblom Dinning Dhi	ilocophor				
	Reduer S & Writer	Problem, Dinning Ph	nosopher				
Problemetc.							
4.	Deadlocks: Defin	ition, Necessary	and sufficient	5			
	conditions for Dead	dlock, Deadlock Prev	ention, Deadlock				
	Avoidance: Banker	's algorithm, Deadlo	ck				
	detection and Reco	overy.					

5.	Memory Management: Basic concept, Logical and	8	
	Physical address map, Memory allocation: Contiguous		
	Memory allocation– Fixed and variable partition–		
	Internal and External fragmentation and Compaction;		
	Paging: Principle of operation – Page allocation		
	Hardware support for paging, Protection and		
	sharing, Disadvantages of paging.		
	Virtual Memory: Basics of Virtual Memory – Hardware		
	and control structures – Locality of reference, Page		
	fault		
	, Working Set , Dirty page/Dirty bit – Demand paging,		
	Page Replacement algorithms:		
	Optimal, First in First Out (FIFO), Second Chance (SC),		
	Not recently used (NRU) and Least Recently used(LRU).		
6.	I/O Hardware: I/O devices, Device controllers, Direct	6	
	memory access Principles of I/O Software: Goals of		
	Interrupt handlers, Device drivers, Device independent		
	I/O software, Secondary-Storage Structure: Disk		
	structure, Disk scheduling algorithms		
	File Management: Concept of File, Access methods, File		
	types, File operation, Directory structure, File System		
	structure, Allocation methods (contiguous, linked,		
	indexed), Free-space management (bit vector, linked		
	list, grouping), directory implementation (linear list,		
	hash table), efficiency andperformance.		
	Disk Management: Disk structure, Disk scheduling -		
	FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk		
	formatting, Boot-block, Bad blocks		

- 1. Operating System Concepts Essentials, 9th Edition by AviSilberschatz, Peter Galvin, Greg Gagne, Wiley Asia StudentEdition.
- 2. Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice Hall of India.
- 3. Operating System Concepts, Ekta Walia, Khanna PublishingHouse (AICTE Recommended Textbook 2018)
- 4. Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin Publishing
- 5. Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt,Addison- Wesley
- 6. Design of the Unix Operating Systems, 8th Edition by MauriceBach, Prentice-Hall of India
- 7. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates

Operating System Lab Code: PCC- CS592 Contacts: 4P

Name of the Course:	Operating System Lab
Course Code: PCC- CS592	Semester: V
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

1 1. Managing Unix/Linux Operating System [8P]:

Creating a bash shell script, making a script executable, shell syntax (variables, conditions, control structures, functions, commands). Partitions, Swap space, Device files, Raw and Block files, Formatting disks, Making file systems, Superblock, I-nodes, File system checker, Mounting file systems,

Logical Volumes, Network File systems, Backup schedules and

methods Kernel loading, init and the inittab file, Run-levels, Run level scripts. Password file management, Password

security, Shadow file, Groups and the group file, Shells, restricted shells, user-management commands, homes and

permissions, default files, profiles, locking accounts, setting passwords, Switching user, Switching group, Removing users &user groups.

2. **Process [4P]**: starting new process, replacing a process image, duplicating aprocess image, waiting for a process,

zombie process.

3. Signal [4P]: signal handling, sending signals, signal interface, signal sets.

4. **Semaphore [6P]**: programming with semaphores (use functions semctl, semget, semop, set_semvalue, del_semvalue, semaphore_p, semaphore_v).

5. POSIX Threads [6P]: programming with pthread functions (viz. pthread_create,

pthread_join, pthread_exit,

pthread_attr_init, pthread_cancel)

6. Inter-process communication [6P]: pipes(use functions pipe, popen, pclose), named pipes(FIFOs, accessing FIFO),

message passing & shared memory(IPC version V).

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Object Oriented Programming Code: PCC-CS503 Contacts: 3L

Name	of the Subject:	Object Oriente	ed Programming				
Cours	e Code: PCC-CS 503	Semester: V					
Durat	ion:6 months	Maximum Ma	arks:100				
Teach	ing Scheme		Examination Scheme				
Theor	y:3 hrs./week		Mid Semester	exam: 15			
Tutori	ial: NIL		Assignment ar	nd Quiz : 10 mark	S		
			Attendance: 5	marks			
Practi	cal: hrs./week	End Semester	Exam:70 Marks				
Credit	: Points:		3				
Unit	Unit Content			Hrs/Unit	Marks/Unit		
	Abstract data types an	d their		8			
1	specification.How to ir	nplement an Al	DT.				
	Concrete state space,	ant,					
	abstraction function.						
	Implementingoperatio	ons,					
	illustrated by the Text	example.					
2	Features of object-orie	ented programn	ning.	8			
	Encapsulation, object i	dentity, polymo	orphism				
	-but not inheritance.						
3	Inheritance in OO desi	gn.		6			
	Design patterns. Intro	duction and clas	sification.				
	Theiterator pattern.						
4	Model-view-controller p	battern.		6			
	Commands as methods	and as objects.					
	ImplementingOO langua	age teatures.					
	Memory management.						
5	Generic types and collect	ctions		6			
	GUIS. Graphical program	iming with Scal	е				
	and SWINg .	ont process					
	i ne soltware developm	ent process					

- 1. R.S. Salaria, Mastering Object Oriented Programming Using C++, Khanna Publishing House.
- 2. Rambaugh, James Michael, Blaha "Object Oriented Modelling and Design" Prentice Hall, India
- 3. Ali Bahrami "Object Oriented System Development" Mc Graw Hill
- 4. Patrick Naughton, Herbert Schildt "The complete reference-Java2" TMH
- 5. R.K Das "Core Java For Beginners" VIKAS PUBLISHING
- 6. Deitel and Deitel "Java How to Program" 6th Ed. Pearson
- 7. Ivor Horton's Beginning Java 2 SDK Wrox
- 8. E. Balagurusamy " Programming With Java: A Primer" 3rd Ed. TMH

Object Oriented Programming & Java Lab Code: PCC-CS593 Contacts: 4P

Name of the Course:	Object Oriented Programming Lab
Course Code: PCC- CS593	Semester:V
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

Laboratory Experiments:

1. Assignments on class, constructor, overloading, inheritance, overriding

- 2. Assignments on wrapper class, arrays
- 3. Assignments on developing interfaces- multiple inheritance, extending interfaces
- 4. Assignments on creating and accessing packages

5. Assignments on multithreaded programming

6. Assignments on applet programming

Note: Use Java for programming

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Subject Co	t Code Subject Name L T P C								
PCCAIML	502	Introduction to Machine Le	arning	3	0	0		3	
Pre-requisite		NIL							
Course Objectives:									
1. Ability to comprehend the concept of supervised and unsupervised learning techniques									
2. Differentiate	regress	on, classification and clustering techniques and	to impleme	ent ti	neir a	algorit	nms	•	
3. To analyze t	he pert	ormance of various machine learning technique	es and to se	elect	арр	ropri	ate		
featuresfor tra	ining m	achine learning algorithms.							
5									
Expected Cour	se Outo	ome:							
		epts of various machine learning strategies.							
2. Handle comp		al data and learn ANN learning models.							
3. Solve real wo	rid app	ications by selecting suitable learning model.							
4. Boost the pe	rforma	nce of the model by combining results from diffe	erent appro	bach	es.				
5. Recognize an	d classi	y sequencing patterns using HMM.							
6. Infer the asso	ociation	and relationship between the data objects.							
7. Construct ma	achine le	earning model for unseen data and can solve rea	l world app	licat	ion.				
DA a da da a d	l								
Iviodule:1		uction to Machine Learning	nine Davad			!!	3	nours	
Introduction to	o iviach	ine Learning (ML); Feature engineering; Lear	ning Parad	igm,	Gei	herall	zatic	on of	
hypothesis, VC	Dimens	on, PAC learning, Applications of ML.							
Modulo:2	Data	landling and ANN					1	hours	
Woulde.z	Data						4	nours	
Feature selecti	on Meo	hanisms, Imbalanced data, Outlier detection-	Artificial ne	eura	l net	work	s inc	luding	
backpropagatio	n- Appl	cations							
								-	
Module:3	MLM	odels and Evaluation					6	hours	
Regression: Mu	lti-varia	ble regression; Model evaluation; Least squares r	egression;	Reg	ulari	zation	; LAS	SSO;	
Applications of	regress	on, Classification – KNN, Naïve Bayes, SVM, Dec	cision Tree;	Trai	ning	and t	estir	ng	
classifier mode	ls; Cros	s-validation; Model evaluation (precision, recall	, F1-mesur	e, a	ccura	асу, а	rea	under	
curve); Statistic	cal deci	sion theory including discriminant functions and	d decision s	surfa	ces				
	-							-	
Module:4	Mode	Assessment and Inference					4	hours	
Model assessn	nent a	d Selection – Ensemble Learning – Boosting	g, Bagging,	, Mo	bdel	Infer	ence	e and	
Averaging, Baye	esian Th	eory, EM Algorithm							
No desta F	112-1-1							h =	
IVIOQUIE:5	HIDDE	n warkov woodels	م م بالغام م	<u> </u>		- مام -	ا ک	nours	
		s (mivily) with forward-backward and vierbi a	igoritnms;	sequ	ience		SIIICa		
using HIVIIVI; Co	Unaltion	ai random fields; Applications of sequence cla	issification	suci	1 as	part-o	or-sp	eech	
lagging									
Modulo:6	٨٠٠٠	ation Rules					2	hours	
	A330L						3	10413	

Mining	Association	Rules in Large Databases. Mining Frequent Patterns basic concepts - Ef	ficient and
Scalabit			
Modul	e:7	Clustering	5 hours
К Меа	ns, Hierarch	ical Clustering – Single, complete, Average linkage; Ward's algorithm;	Minimum
spannir	ng tree cluste	ering; BIRCH clustering	
Modul	e:8	Recent Trends	2 hours
Recent	Trends and	case study	
		Total Lecture hours:	30 hours
Text B	ook(s)		
1.	Ethem Alpa	aydin, Introduction to Machine Learning, MIT Press, Pearson, Third Edition,	2014.
2.	Friedman	Jerome, Trevor Hastie, and Robert Tibshirani. The Elements of Statis	tical
	Learning.		
	Springer-V	erlag, 2nd Edition, 2013.	
3.	Jeeva Jose	, Introduction to Machine Learning, Khanna Book Publishing.	
Refere	nce Books		
1.	Kevin P. M	urphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.	
2.	Peter Flac Data",	h, "Machine Learning: The Art and Science of Algorithms that Make Se	ense of
	Cambridge	University Press, 2012.	
3.	Rajiv Chop	ora, Machine Learning, Khanna Book Publishing.	

Subject Code		Subject Name	L	Т	Ρ		C	
	PCCAIML 592 Machine Learning Lab		0	0	4		2	
Pre-re	equisite	NIL						
Lab Ex	ab Experiments							
1.	1. Implement Decision Tree learning				2 ho	urs		
2.		Implement Logistic Regression			2 ho	urs		
3.	Imp	lement classification using Multilayer perceptron			2 ho	urs		
4.		Implement classification using SVM			2 ho	urs		
5.		Implement Adaboost			2 ho	urs		
6.	. Implement Bagging using Random Forests 2 hours							
7.	Impleme	nt K-means Clustering to Find Natural Patterns in Data			2 ho	urs		
8.		Implement Hierarchical clustering			2 ho	urs		
9.		Implement K-mode clustering			2 ho	urs		
10	Implement Association Rule Mining using FP Growth				2 ho	urs		
11.		Classification based on association rules			2 ho	urs		
12.	Implement Ga			2 ho	urs			
13	Evaluating ML algorithm with balanced and unbalanced datasets				2 ho	urs		
14		Comparison of Machine Learning algorithms				2 hours		
15		Implement k-nearest neighbour algorith			2 ho	urs		
		Total Lecture hours:		:	30 hc	ours		

Introduction to Industrial Management (Humanities III) Code: HSMC-501 Contacts: 3L

Name	e of the Course:	Introduction to	Industrial Mana	agement (Huma	nities III)	
Cours	e Code: HSMC-501	Semester: V				
Durat	ion:6 months	Maximum Mark	um Marks:100			
	Teaching Scheme		Examination	Scheme		
Theor	ry:2 hrs./week		Mid Semester exam: 15 Assignment and Quiz : 10 marks			
Tutor	ial: NIL		Assignment and Quiz : 10 marks			
			Attendance: 5	marks		
Practi	ical: NIL	1	End Semester	Exam: /0 Marks		
Crean	t Points:	2	Hrc/Linit Marke/Linit			
Unit				Hrs/Unit	warks/Unit	
1	System- concept of	lefinition		б		
T	types narameters	variables and				
	hehavior	variables and				
	Management – defir	nition				
	andfunctions.					
	Organization st	ructure:				
	i. Definition.					
	ii. Goals.					
	iii. Factors conside	red in				
	formulatingstructu	re.				
	iv. Types.					
	v. Advantages and vi. Applications.	l disadvantages.				
	Concept, meaning a	nd importance of				
	division of labor, sca	lar & functional				
	processes, span of co	ontrol, delegation				
	ofauthority, centrali	zation and				
	decentralization in in	ndustrial				
	management.	an and alterate				
	Organizational cultu	re and climate				
	-meaning, unterenc	es anu factors				
	Moral-factors a	offecting moral				
	Relationship betwee	n moral				
	andproductivity.					
	Job satisfaction- fact	ors influencing				
	jobsatisfaction.					
	Important provision	s of factory act				
	andlabor laws.	,				

2	Critical Path Method (CPM) and	8	
	Programme Evaluation Review		
	Technique (PERT):		
	2.1 CPM & PERT-meaning, features,		
	difference, applications. 2.2 Understand		
	different terms used in network diagram.		
	Draw network diagram for a real life		
	project containing 10-15 activities,		
	computation of LPO and EPO.(Take		
	minimum three examples).		
	Determination of critical path on		
	network.		
	Floats, its types and determination of		
	floats.		
	Crashing of network, updating and its		
	applications.		
3	Materials Management:	6	
•			
	Material management-definition,		
	functions, importance, relationship with		
	other departments.		
	Purchase - objectives, purchasing		
	systems, purchase procedure, terms and		
	forms used in purchase department.		
	Storekeeping- functions, classification		
	of stores as centralized and decentralized		
	with their advantages, disadvantages and		
	application in actual practice.		
	Functions of store, types of records		
	maintained by store, various types and		
	applications of storage equipment, need		
	and general methods for codification of		
	stores.		
	Inventory control:		
	i. Definition.		
	ii. Objectives.		
	iii. Derivation for expression for		
	Economic Order Quantity (EOQ) and		
	numeric examples. iv. ABC analysis and		
	other modern methods of analysis.		
	v. Various types of inventory models		
	such as Wilson's inventory model,		
	replenishment model and two bin model.		
	(Only sketch and understanding, no		
	derivation.).		
	3.6 Material Requirement Planning		
	(MRP)- concept, applications and brief		
	details about software packages available		
	in market.		

4	Production planning and Control	8	
	(PPC):		
	Types and examples of production.		
	PPC : i. Need and importance. ii.		
	Functions. iii. Forms used and their		
	importance. iv. General approach		
	foreach type of production.		
	Scheduling- meaning and need		
	forproductivity and utilisation.		
	Gantt chart- Format and method		
	toprepare.		
	Critical ratio scheduling-method		
	andnumeric examples.		
	Scheduling using Gantt Chart (for at		
	least 5-7 components having 5-6		
	machining operations, with processes,		
	setting and operation time for each		
	component and process, resources		
	available, quantity and other		
	necessarydata), At least two		
	examples.		
	4.7 Bottlenecking- meaning, effect		
	andways to reduce.		
5	Value Analysis (VA) and Cost Control:	4	
	5.1 VA-definition, terms used, process and		
	importance. 5.2 VA flow diagram. DARSIRI		
	method of VA.		
	Case study of VA-at least two.		
	Waste-types, sources and ways to reduce		
	them. Cost control-methods and important		
(guide lines.		
6	Recent Trends in IVI:	4	
	features and applications		
	Important factures of MS Project		
	Important reactives of IVIS Project.		
	Logistics- concept, need and		
	Just in Time (IIT)-concent and henefits		
	Supply chain management concept and henefits.		
	Supply chain management-concept and benefits.		

- 1. L.S. Srinath- "CPM & PERT principles and Applications".
- 2. Buffa "Modern Production Management".
- 3. N. Nair "Materials Management".
- 4. O. P. Khanna "Industrial Engineering & Management".
- 5. Mikes "Value Analysis".
- 6. S.C. Sharma, "Engineering Management Industrial Engineering & Management", Khanna Book Publishing Company, New Delhi

Cloud Computing Code: PECAIML501A Contact: 3L

Name of the Course:	Cloud Computing	
Course Code: PECAIML501A	Semester: V	
Duration: 6 months	Maximum Marks: 1	.00
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical:		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/ Unit	Marks/Unit
1	Definition of Cloud Computing and itsBasics(Lectures). Defining a Cloud,Cloud Types – NIST model, Cloud Cubemodel, Deployment models (Public , Private,Hybrid and Community Clouds), Service Platformas a Service, Software asa Service with examples ofservices/ serviceproviders, models – Infrastructureas a Service, Cloud Reference model,	9 9	
	Characteristics of Cloud Computing – a shift in paradigm Benefits and advantages of Cloud Computing, A brief introduction on Composability, Infrastructure, Platforms, Virtual Appliances, Communication Protocols, Applications, Connecting to the Cloud by Clients, IaaS –Basic concept, Workload, partitioning of virtual private server instances, Pods, aggregations, silos PaaS – Basic concept, tools and development environment with examples SaaS - Basic concept and characteristics,Open SaaS and SOA, examples of SaaS platform Identity as a Service (IDaaS) Compliance as a Service (CaaS)		

	Use of Platforms in Cloud Computing Concepts of	12	
2	Abstraction and Virtualization Virtualization		
	technologies : Typesofvirtualization		
	(access, application, CPU, storage),		
	Mobility patterns (P2V, V2V, V2P, P2P, D2C, C2C, C2D,		
	D2D) Load Balancing and Virtualization: Basic		
	Concepts, Network resources for load balancing,		
	Advanced load balancing (including		
	Application Delivery Controller and Application		
	Delivery Network), Mention of The Google Cloud as an		
	example of use of load balancing Hypervisors: Virtual		
	machine technology and types, VMware		
	vSphere Machine Imaging (including mention of Open		
	Virtualization Format – OVF)		
	Porting of applications in the Cloud: The simple Cloud		
	API and AppZero Virtual Application appliance,		
	Concepts of Platform as a Service, Definition of		
	services, Distinction between SaaS and PaaS		
	(knowledge of Salesforce.com and Force.com),		
	Application development		
	Use of PaaS Application frameworks,		
	Discussion of Google Applications Portfolio – Indexed		
	search, Dark Web, Aggregation and disintermediation,		
	Productivity applications and service, Adwords,		
	Google Analytics, Google Translate, a brief discussion		
	on Google Toolkit (including introduction of Google		
	APIs in brief), major features of Google App Engine		
	service., Discussion of Google Applications Portfolio –		
	Indexed search, Dark Web, Aggregation and		
	disintermediation, Productivity applications and		
	service, Adwords, Google Analytics, Google Translate, a		
	brief discussion on Google Toolkit (including		
	introduction of Google APIs in brief), major features of		
	Google App Engine service, Windows Azure platform:		
	Microsoft's approach, architecture, and main		
	elements, overview of Windows Azure AppFabric,		
	Live services		

3	Cloud Infrastructure: Cloud Management: An overview of the features of network management systems and a brief introduction of related products from large cloud vendors, Monitoring of an entire cloud computingdeployment stack – an overview with mention of some products, Lifecycle management of cloud services (six stages of lifecycle). Concepts of Cloud Security: Cloud security concerns, Security boundary,Security service boundary Overview of securitymapping Security of data: Brokered cloudstorage access, Storage location and tenancy,encryption, and auditing and compliance Identity management (awareness of Identityprotocol standards)	7	
4.	<u>Concepts of Services and Applications :</u> Service Oriented Architecture: Basic conceptsof message-based transactions, Protocol stackfor an SOA architecture, Event-driven SOA, Enterprise Service Bus, Service catalogs, Applications in the Cloud: Concepts of cloud transactions, functionality mapping,	8	

Application attributes, Cloud service	
attributes, System abstraction and Cloud	
Bursting, Applications and Cloud APIs	
Cloud-based Storage: Cloud storage definition – Manned and Unmanned	
Webmail Services: Cloud mail services including Google Gmail, Mail2Web, WindowsLive Hotmail, Yahoo mail, concepts of Syndication services	

- 1. Cloud Computing Bible by Barrie Sosinsky, Wiley India Pvt. Ltd, 2013
- 2. Mastering Cloud Computing by Rajkumar Buyya, Christian Vecchiola,
- S. Thamarai Selvi, McGraw Hill Education (India)
- Private Limited,2013
- 3. Cloud computing: A practical approach, Anthony T. Velte, Tata Mcgraw-Hill
- 4. Cloud Computing, Miller, Pearson
- 5. Building applications in cloud:Concept, Patterns and Projects, Moyer, Pearson
- 6. Cloud Computing Second Edition by Dr. Kumar Saurabh, Wiley India

Pattern Recognition Code: PECAIML501B Contact: 3L

Name of the Subject:	Pattern Recognition	
Course Code: PECAIML501B	Semester: V	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points: 3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Basics of pattern recognition	2	
	Bayesian decision theory 8L	8	
2	Classifiers, Discriminant functions, Decision		
	surfaces		
	Normal density and discriminant		
	functions Discrete features		
	Parameter estimation methods 6L	6	
3	Maximum-Likelihood estimation		
	Gaussian mixture models		
	Expectation-maximization method		
	Bayesian estimation		
	Hidden Markov models for sequential pattern	8	
4.	classification 8L		
	Discrete hidden Markov models		
	Continuous density hidden Markov		
	models		
5	Dimension reduction methods 3L	3	
	5.1. Fisher discriminant analysis		
-	5.2Principal component analysis.	_	
	Parzen-window method		
	K-Nearest Neighbour method		
6	Non-parametric techniques for density	2	
	estimation		
7	Linear discriminant function based classifier 5L	5	
	Perceptron		
	Support vector machines		

8	Non-metric methods for pattern classification 4L	4	
	Decision trees		
9	Unsupervised learning and clustering 2L	2	
	Criterion functions for clustering		
	Algorithms for clustering: K-means,		
	Hierarchical and other methods		

- 1. R. O. Duda, P. E. Hart and D. G. Stork: Pattern Classification, John Wiley, 2001.
- 2. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009.
- 3. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Subject: Graph Theory			
Course Co	de: PECAIML501C	Semester: V	
		Maximum Marks: 100	
Teaching S	cheme	Examination Scheme	
Theory: 3 h	nrs./week	End Semester Exam: 70	
Tutorial:		Attendance : 5	
Practical: 0		Continuous Assessment: 25	
Credit: 3		Practical Sessional internal continuous evaluation: NA	
		Practical Sessional external examination: NA	
Aim:			
SI. No.			
1.	Understand the basic of	graph theory.	
2.	Understand path, walks	and cycle	
3.	Understand set covering	g and matches.	
4.	Understand vertex color	ring.	
Objective			
SI. No.			
1.	To learn about the verte	ex, edge, path and cycle.	
2.	To learn about connected graph.		
3.	To learn about shortest	path.	
4.	To learn about set cover	ring and matching.	
5.	To learn about vertex co	ploring.	
Pre-Requi	site:		

SI. No.			
	None		
Contents	Contents		
Chapter	Name of the Topic	Hours	Marks
01	Introduction	7	14
	Discovery of graphs, Definitions, Subgraphs, Isomorphic graphs,		
	Matrix representations of graphs, Degree of a vertex, Directed		
	walks, paths and cycles, Connectivity in digraphs, Eulerian and		
	Hamilton digraphs, Eulerian digraphs, Hamilton digraphs,		
	Special graphs, Complements, Larger graphs from smaller		
	graphs, Union, Sum, Cartesian Product, Composition, Graphic		

	sequences, Graph theoretic model of the LAN problem, Havel- Hakimi criterion, Realization of a graphic sequence.		
02	Connected graphs and shortest paths Walks, trails, paths, cycles, Connected graphs, Distance, Cut- vertices and cut-edges, Blocks, Connectivity, Weighted graphs and shortest paths, Weighted graphs, Dijkstra's shortest path algorithm, Floyd-Warshall shortest path algorithm.	7	14
03	Trees Definitions and characterizations, Number of trees, Cayley's formula, Kircho-matrix-tree theorem, Minimum spanning trees, Kruskal's algorithm, Prim's algorithm, Special classes of graphs, Bipartite Graphs, Line Graphs, Chordal Graphs, Eulerian Graphs, Fleury's algorithm, Chinese Postman problem, Hamilton Graphs, Introduction, Necessary conditions and sufficient conditions.	7	14
04	Independent sets coverings and matchings Introduction, Independent sets and coverings: basic equations, Matchings in bipartite graphs, Hall's Theorem, K"onig's Theorem, Perfect matchings in graphs, Greedy and approximation algorithms.	8	14

05	Vertex Colorings Basic definitions, Cliques and chromatic number, Mycielski's theorem, Greedy coloring algorithm, Coloring of chordal graphs, Brooks theorem, Edge Colorings, Introduction and Basics, Gupta-Vizing theorem, Class-1 and Class-2 graphs, Edge- coloring of bipartite graphs, Class-2 graphs, Hajos union and Class-2 graphs, A scheduling problem and equitable edge- coloring.							14	
Sub Total:							36	70	
Internal Assessment Examination & Preparation of Semester						ter	4	30	
	Examination								
Total:							40	100	
List of Boo	oks								
Text Book	s:			- 1 /10/					
Name of A	Author	Title of the	tle of the Book		Edition/ISSN/ISBN		Name of the		
				st		Put	Publisher		
J. A. Bondy and U. S. R. Murty		Graph Theory		1 st edition		Sp	Springer		
Richard J. Trudeau		Introduction to Graph		2 nd edition		Dover Publications		lications	
		Theory							
S.B. Singh		Combinatorics and Graph Theory		Third Edition		Khanna Publishing			
Reference	Books:	-	-						
Chartrand and		A First Course in		ISBN-10: 0486483681 D		Do	Dover Publications		
Zhang		Graph Theory		ISBN-13: 978- 0486483689					
Maarten van Steen		Graph Theory and Complex Networks: An		ISBN-10: 9081540610 M		Aaarten van Steen			
				ISBN-13: 978-					
		Introductio	Introduction		9081540612				
End Seme	ster Examin	ation Schem	e. Max	kimum Marl	(s-70.		Time a	llotted-	
3hrs.			0		<u> </u>				
Group	Unit		Questions	Subjective Que			stions		
		(IVICQ ONLY WITH THE							
			Total	No.of	То	N/~	rkc	Total	
			Marks			IVIA	1 K 5	Marke	
		to be set	IVIALKS	to be set	answer	per	oction	IVIDIKS	
Δ	1 to 5	10 DE SEL	10			que	511011		
~	1 10 5	10	10						

Maulana Abul Kalam Azad University of Technology, West Bengal <i>(Formerly West Bengal University of Technology)</i> Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning) (Applicable from the academic session 2020-2021)									
В	1 to 5			5	3	5		60	
с	1 to 5			5	3	15			
• Only multiple choice type questions (MCQ) with one correct answer are to be set in									
the objective part.									
 Specific instruction to the students to maintain the order in answering objective 									
questions should be given on top of the question paper.									
Examination Scheme for end semester examination:									
Group		Chapter	Marks of each		Question to be		Question to be		
			question		set		answered		
Α		All	1		10		10		
В		All	5		5		3		
С		All	15		5		3		