<u>SEMESTER – VI</u>

Machine learning Applications Code: PCC- AIML601 Contacts: 2L

Name of the Course:	Machine learning Applications			
Course Code: PCC- AIML601	Semester: VI			
Duration: 6 months	Maximum Marks:100			
Teaching Scheme	Examination Scheme			
Theory:2 hrs./week		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance : 5 marks		
Practical: NIL		End Semester Exam :70 Marks		
Credit Points:	2			

- Introduction to linear regression (and multivariate linear regression)
- Logistic Regression and regularization
- Practical aspects of implementation
- Decision trees and pruning, implementation of decision trees
- Support vector machines and making them work in practice
- Boosting implementing different boosting methods with decision trees.
- Using the algorithms for several tasks how to set up the problem, debug, select features and develop the learning algorithm.
- Unsupervised learning k-means, PCA, hierarchical clustering.
- Implementing the clustering algorithms
- Parallelizing the learning algorithms
- Applications
- Choosing from multiple algorithms What will work?

Machine learning Applications Lab Code: PCC- AIML 691 Contacts: 4P

Name of the Course:	Machine learning Applications Lab
Course Code: PCC- AIML 691	Semester: VI
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

1. Explore visualization features of the tool for analysis and WEKA.

2. Perform data preprocessing tasks and Demonstrate performing association rule mining on data sets

- 3. Demonstrate performing classification on data sets
- 4. Demonstrate performing clustering on data sets
- 5. Sample Programs using German Credit Data

6. One approach for solving the problem encountered in the previous question is using cross-validation? Describe what is cross validation briefly. Train a decision tree again using cross validation and report your results. Does accuracy increase/decrease? Why?

7. Check to see if the data shows a bias against "foreign workers" or "personal-status".. Did removing these attributes have any significantly effect? Discuss

8. Another question might be, do you really need to input so many attributes to get good results? Try out some combinations.

9. Train your decision tree and report the Decision Tree and cross validation results. Are they significantly different from results obtained in problem 6

10. How does the complexity of a Decision Tree relate to the bias of the model?

11. One approach is to use Reduced Error Pruning. Explain this idea briefly. Try reduced error pruning for training your Decision Trees using cross validation and report the Decision Trees you obtain? Also Report your accuracy using the pruned model Does your Accuracy increase?

12.How Can you Convert Decision Tree in to "If then else Rules".Make Up your own Small Decision Tree consisting 2-3 levels and convert into a set of rules. Report the rule obtained by training a one R classifier. Rank the performance of j48,PART,oneR.

Subject: I	Deep Learning						
Course Co	de: PCCAIML 602	Semester: VI					
Duration: 36 Hrs. Maximum Marks: 100							
Teaching	Scheme	Examination Scheme					
Theory: 3	b hrs./week	End Semester Exam: 70					
Tutorial:	0	Attendance : 5					
Practical:		Continuous Assessment:25					
Credit: 3							
Aim:							
Sl. No.							
1.	To improve the performance	e of a Deep Learning model					
2.	2. to the reduce the optimization function which could be divided based on the classification and the regression problems						
	the regression problems						
Objective	:						
Sl. No.							
1.	To acquire knowledge on th	e basics of neural networks.					
2.	To implement neural netwo	rks using computational tools for variety of pa	roblems.				
3.	To explore various deep lea	rning algorithms.					
Pre-Requ	isite:						
Sl. No.							
1.	Calculus, Linear Algebra						
2.	Probability & Statistics						
3.	3. Ability to code in R/Python						
Contents			Hrs./we	ek			
Chapter	Name of the Topic		Hours	Marks			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning)

(Applicable from the academic session 2020-2021)

01	Introduction	3	5
	Various paradigms of earning problems, Perspectives and Issues in deep learning framework, review of fundamental learning		
	techniques.		
02	Feed forward neural network	6	10
	Artificial Neural Network, activation function, multi-layer neural network, cardinality, operations, and properties of fuzzy relations.		
03	Training Neural Network	6	15
	Risk minimization, loss function, backpropagation, regularization, model selection, and optimization.		
04	Conditional Random Fields	9	15
	Linear chain, partition function, Markov network, Belief propagation, Training CRFs, Hidden Markov Model, Entropy.		
05	Deep Learning	6	15
	Deep Feed Forward network, regularizations, training deep models, dropouts, Convolutional Neural Network, Recurrent Neural Network, Deep Belief Network.		
06	Deep Learning research	6	10
	Object recognition, sparse coding, computer vision, natural language		
	Sub Total:	36	70
	Internal Assessment Examination & Preparation of Semester Examination	4	30
	Total·	40	100

Name of Author	Title of the Book	Edition/ISSN/ISBN	Name of the Publisher
Rajiv Chopra	Dep Learning (AICTE Recommended Textbook)	First Edition	Khanna Book Publishing
Goodfellow, I.,Bengio,Y., andCourville A.,	Deep Learning		MIT Press
Satish Kumar	Neural Networks: A Classroom Approach		Tata McGraw-Hill
Reference Books:			

Bishop, C. ,M.	Pattern Recognition and Machine Learning	Springer
Yegnanarayana, B.	Artificial Neural Networks	PHI Learning Pvt. Ltd
Golub, G.,H., and VanLoan,C.,F.	Matrix Computations	JHU Press

Soft Computing Code: PECAIML603 & PECAIML693 **Contacts: 3L** + **4P**

Name of the Course:	Soft Computing
Course Code: PECAIML603 &	Semester: VI
PECAIML693	
Duration:6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs./week	Mid Semester exam: 15
Tutorial: NIL	Assignment and Quiz : 10 marks
	Attendance: 5 marks
Practical: 4 hrs./week	End Semester Exam: 70 Marks
	Practical Sessional internal continuous
	evaluation:40
	Practical Sessional external examination: 60
Credit Points:	3+2

Unit	Content	Hrs/U	Marks/Unit
		nit	
1	Introduction: Introduction to soft computing; introduction to fuzzy sets and fuzzy logic systems; introduction to biological and artificial neural network; introduction to Genetic Algorithm	8	

(Formerly West Bengal University of Technology) Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning)

(Applicable from the academic session 2020-2021)

	Fuzzy sets and Fuzzy logic systems:	10	
2	Classical Sets and Fuzzy Sets and Fuzzy relations :	-	
	Operations on Classical sets, properties of classical		
	sets, Fuzzy set operations, properties of fuzzy sets,		
	cardinality, operations, and properties of fuzzy		
	relations.		
	Membership functions : Features of membership		
	functions, standard forms and boundaries, different		
	fuzzification methods.		
	Fuzzy to Crisp conversions: Lambda Cuts for fuzzy		
	sets, fuzzy Relations, Defuzzification methods.		
	Classical Logic and Fuzzy Logic: Classical predicate		
	logic, Fuzzy Logic, Approximate reasoning and Fuzzy		
	Implication Fuzzy Rule based Systems: Linguistic		
	Hedges, Fuzzy Rule based system – Aggregation of		
	fuzzy Rules, Fuzzy Inference System- Mamdani Fuzzy		
	Models – Sugeno Fuzzy Models.		
	Applications of Fuzzy Logic: How Fuzzy Logic is		
	applied in Home Appliances, General Fuzzy Logic		
	controllers, Basic Medical Diagnostic systems and		
	Weather forecasting		

	Neural Network	10	
3	Introduction to Neural Networks: Advent of Modern		
	Neuroscience, Classical AI and Neural Networks,		
	Biological Neurons and Artificial neural network; model		
	of artificial neuron.		
	Learning Methods : Hebbian, competitive, Boltzman etc.,		
	Neural Network models: Perceptron, Adaline and Madaline		
	networks; single layer network; Back- propagation and		
	multi layer networks.		
	Competitive learning networks: Kohonen self		
	organizing networks, Hebbian learning; Hopfield		
	Networks. Neuo-Fuzzy modelling: Applications of		
	Neural Networks: Pattern Recognition and		
	classification		
	Genetic Algorithms: Simple GA, crossover and mutation,	10	
4.	Multi-objective Genetic Algorithm (MOGA).		
	Applications of Genetic Algorithm: geneticalgorithms in		
	search and optimization, GA based		
	clustering Algorithm, Image processing and pattern		
	Recognition		
5	PSO: Other Soft Computing techniques:	4	
	Simulated Annealing, Tabu search, Ant		
	colony optimization (ACO), Particle Swarm		
	Optimization (PSO).		

Practical:

Skills to be developed:

1. Able to apply Soft Computing techniques to solve a number of real life problems.

Assignments: : Assignment from theory

List of Books

Text Books:

Name of Au	ithor	Title of the Book	Edition/ISSN/ISBN	Name of the Publisher	
Timothy J.	Ross,	Fuzzy logic with			
JohnWiley	and Sons	engineering applications			
S. Rajaseka	ran	Neural Networks, Fuzzy		PHI	
andG.A.V.I	Pai	Logic and Genetic			
		Algorithms			
S N Sivanar	ndam,	Principles of Soft			
S.Sumathi, John		Computing			
Reference E	Books:				
George J. K	lir and	Fuzzy Sets and Fuzzy		Prentice Hall	
BoYuan		Logic: Theory and			
		Applications			
Simon Hayl	kin	Neural Networks: A		Prentice Hall.	
		Comprehensive			
		Foundation			
End Semester Examination Scheme		ion Scheme. Maximu	um Marks-70.	Time allotted-3hrs.	
Group	Unit	Objective Questions	Subjective Questions		

Group	Unit	Objective Q	uestions	Subjective Questions			
		(MCQ only w correct answ	ith the er)				
		No of	Total	No of	To answer	Marks per	Total
		question to	Marks	question to		question	Marks
		be set		be set			
Α	ALL	10		5	3	15	
			10				70
В	All						
с	All			5	3	45	
 Only multiple choice type question (MCQ) with one correct answer are to be set in the objectivepart. Specific instruction to the students to maintain the order in answering objective questions should be given on top of the question paper. 							

Examination Scheme for end semester examination:

(Formerly West Bengal University of Technology) Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning) (Applicable from the academic session 2020-2021)

Group	Chapter	Marks of question	each	Question to be set	Question to be answered
A	ALL	1		10	10
В	ALL	5		5	3
С	ALL	15		5	3
Examination Scheme	for Practical S	essional e	xaminatio	on:	
Practical Internal Sessional Continuous Evaluation					
Internal Examination:					
Continuous evaluation 40					
External Examination: Examiner-					
C' 1T 1 A '		10			

Signed Lab Assignments	10	
On Spot Experiment	40	
Viva voce	10	60

Name of th	ne Course:	Computer Networks			
Course Co	de: PCC-CS602	Semester: VI			
Duration:6	months	Maximum Marks:	100		
Teaching	Scheme		Examination Sch	eme	
Theory:3 h	rs./week		Mid Semester exa	m: 15	
Tutorial: N	IIL		Assignment and Q	Quiz: 10 mar	ks
Attendance: 5 marks					
Practical:	tical: hrs./week End Semester Exam:70 Marks				
Credit Poir	nts:	3			
Objective:					
1 7	Fo develop an underst	tanding of modern n	etwork architectures	from a des	ign and
l I	performance perspective.				
2 7	To introduce the student to the major concepts involved in wide-area networks				
	(WANs), local area networks (LANs) and Wireless LANs (WLANs).				
3 7	To provide an opportunity to do network programming				
4 7	To provide a WLAN measurement ideas.				
Unit	Content Hrs/Unit Marks/Unit				

(Formerly West Bengal University of Technology) Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning) (Applicable from the academic session 2020-2021)

1	Data communication Components: Representation of data and its flow Networks, Various Connection Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless LANs, Connecting LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing - Frequency division, Time division and Wave division, Concepts on spread spectrum.	9	
2	Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back – N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols - Pure ALOHA, Slotted ALOHA,CSMA/CD,CDMA/CA	8	
3	Network Layer: Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols.	14	
4.	Transport Layer: Process to Process Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.	8	
5	Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography.	8	

Text book and Reference books:

1. Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.

2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.

3. "Algorithm Design" by Kleinberg and Tardos.

4. Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House, New Delhi

Course Outcomes:

On completion of the course students will be able to

- 1. Understand research problem formulation.
- 2. Analyze research related information
- 3. Follow research ethics
- 4. Understand that today's world is controlled by Computer, Information Technology, but tomorrow

(Formerly West Bengal University of Technology) Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning) (Applicable from the academic session 2020-2021)

world will be ruled by ideas, concept, and creativity.

- 5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- 6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Computer Networks Lab Code: PCC-CS692 Contacts: 4P

Name of the Course:	Computer Networks Lab
Course Code: PCC- CS692	Semester: VI
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

1) NIC Installation & Configuration (Windows/Linux)

2) Understanding IP address, subnet etc

Familiarization with

- Networking cables (CAT5, UTP)
- Connectors (RJ45, T-connector)
- Hubs, Switches

3) TCP/UDP Socket Programming

- Simple, TCP based, UDP based
- Multicast & Broadcast Sockets
- Implementation of a Prototype Multithreaded Server

4) Implementation of

Data Link Layer Flow Control Mechanism (Stop & Wait, Sliding Window)

- □ □ Data Link Layer Error Detection Mechanism (Cyclic Redundancy Check)
- □ □ Data Link Layer Error Control Mechanism (Selective Repeat, Go Back N)
- 5) Server Setup/Configuration

FTP, TelNet, NFS, DNS, Firewall

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Big Data Analytics Code: PECAIML601A Contacts: 3L

Name of the Course:	Big Data Analy	tics	
Course Code: PECAIML601A	Semester: VI		
Duration:6 months	Maximum Marks	s: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week Mid Semester exam: 15			
Tutorial: NIL		Assignment and Quiz : 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points:	3	1	
LECTURE WITH BREAK	UP		NO. OF LECTUR
What is big data, why big data, convergence of key trends, unstructured data, industry examples of big data, web analytics, big data and marketing, fraud and big data, risk and big data, credit risk management, big data and algorithmic trading, big data and healthcare, big data in medicine, advertising and big data, big data technologies, introduction to Hadoop, open source technologies, cloud and big data, mobile business intelligence, Crowd sourcing analytics, inter and trans firewall analytics. Unit 2:		8	
Introduction to NoSQL, aggregate data models, aggregates, key-value and document data models, relationships, graph databases, schemaless databases, materialized views, distribution models, sharding, master-slave replication, peer-peer replication, sharding and replication, consistency, relaxing consistency, version stamps, map-reduce, partitioning and combining, composing map-reduce calculations.		8	
Unit 3: Data format, analyzing data with Hadoop, scaling out, Hadoop streaming, Hadoop pipes, design of Hadoop distributed file system (HDFS), HDFS concepts, Java interface, data flow, Hadoop I/O, data integrity, compression, serialization, Avro, file-based datastructures		9	
Unit 4: MapReduce workflows, unit of MapReduce job run, classi and YARN, job scheduling, s MapReduce types, input form	tests with MRUnit c Map-reduce, YA shuffle and sort, ta nats, output format	t, test data and local tests, anatomy RN, failures in classic Map-reduce sk execution, ts	10
Unit 5:			7
Hbase, data model an examples, praxis.Cassandra Cassandra clients, Hadoop in	nd implementat , Cassandra dat tegration.	ions, Hbase clients, Hbase a model, Cassandra examples,	

Unit 6:

Pig, Grunt, pig data model, Pig Latin, developing and testing Pig Latin scripts.	6
Hive, data types and file formats, HiveQL data definition, HiveQL data	0
manipulation, HiveQL queries.	

References:

- 1. Michael Minelli, Michelle Chambers, and AmbigaDhiraj, "Big Data, Big Analytics: Emerging
- 2. V.K. Jain, Big Data and Hadoop, Khanna Publishing House, New Delhi (2017).
- 3. V.K. Jain, Data Analysis, Khanna Publishing House, New Delhi (2019).
- 4. Business Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013.
- 5. P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence", Addison-Wesley Professional, 2012.
- 6. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- 7. Eric Sammer, "Hadoop Operations", O'Reilley, 2012.
- 8. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 9. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 10. Eben Hewitt, "Cassandra: The Definitive Guide", O'Reilley, 2010.
- 11. Alan Gates, "Programming Pig", O'Reilley, 2011.

(Formerly West Bengal University of Technology) Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning) (Applicable from the academic session 2020-2021)

Distributed Systems Code: PECAIML-601C Contact: 3L

Unit	Content	Hrs/Unit	Marks/Unit
	INTRODUCTION		
1	Distributed data processing; What is a DDBS;	8	
	Advantages and disadvantages of DDBS; Problem		
	areas; Overview of database and computer network		
	concepts DISTRIBUTED DATABASE		
	MANAGEMENT SYSTEM ARCHITECTURE		
	Transparencies in a distributed DBMS: Distributed		
	DBMS architecture: Global directory issues		
	DISTRIBUTED DATABASE	11	
2	DESIGN		
	Alternative design strategies;		
	Distributed design issues;		
	Fragmentation; Data allocation		
	SEMANTICS DATA CONTROL		
	View management; Data security;		
	Semantic Integrity Control QUERY		
	PROCESSING ISSUES		
	Objectives of query processing;		
	Layers of query processing: Ouery		
	decomposition: Localization of		
	distributed data		
	DISTRIBUTED QUERY OPTIMIZATION	11	
3	Factors governing query optimization; Centralized		
	query optimization; Ordering of fragment queries;		
	Distributed query optimization algorithms		
	TRANSACTION MANAGEMENT		
	The transaction concept; Goals of transaction		
	management; Characteristics of transactions;		
	1 axonomy of transaction models		
	Concurrency control in centralized database systems:		
	Concurrency control in DDBSs: Distributed		
	concurrency control algorithms: Deadlock		
	management		
	Reliability issues in DDBSs; Types of failures;	8	
4.	Reliability techniques; Commit protocols; Recovery		
	protocols Algorithm		
5	PARALLEL DATABASE SYSTEMS	6	
	Parallel architectures; parallel query		
	processing and		

(Formerly West Bengal University of Technology) Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning) (Applicable from the academic session 2020-2021)

6	ADVANCED TOPICS Mobile	4	
	Databases, Distributed Object		
	Management, Multi-databases		

Text book and Reference books:

- 1. Principles of Distributed Database Systems, M.T. Ozsu and PValduriez, Prentice-Hall, 1991.
- 2. Distributed Database Systems, D. Bell and J. Grimson, Addison-Wesley, 1992.

Data Mining Code: PECAIML-601B Contacts: 3L

Name of the Course:	Data Mining		
Course Code PEC- AIML601B	Semester: VI		
Duration: 6 months	Maximum Marks	s: 100	
Teaching SchemeExamination Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
	Unit 1:		
1	Overiew of data ming and predictive analytics. Where does it apply and where does it not apply. The emerging interdisplinary field of Data Science – what on Earth is it? The potential pitfalls of analytics including big bad data and the problem of local sparsity in large data sets - big never guarantees sufficient. Brief discussion of Career Opportunities including an overview of the UNH MS Analytics program.	4	
2	Unit 2: Data preprocessing and cleanup including informative missing values and imputation.	3	

(Formerly West Bengal University of Technology)
 Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning)
 (Applicable from the academic session 2020-2021)

	Unit 3.		
3	Unsupervised learning: Exploring data with visualization (primarily JMP Pro and Enterprise Guide), Principal Components, Cluster Analysis, Variables Clustering, and Market Basket analysis (association analysis). The problem of explanatory (traditional) vs predictive modeling and why it matters.	8	
4.	Unit 4: The under and overfitting dilemma of predictive modeling. Includes a discussion of measures of overfitting and underfitting such as AICc, BIC, and the very new ERIC.	6	
5	Unit 5: Validation strategies to assess model predictive behavior and predictive inference	2	
6	Unit 6: Supervised learning for classification: k-nearest neighbors, Decision Trees and Random Forests, Naïve Bayes, Neural Nets, Logistic Regression, Generalized Regression, Support Vector Machines, Discriminant Analysis. Topics include boosted neural and tree models.	5	
7	Unit 7: Supervised learning for prediction: review of multiple linear regression and related topics like influence and multi-collinearity, PCR, Neural Nets, Generalized Regression including the LASSO (adaptive), LARS, Ridge, and Elastic Net (adaptive). Traditional variable Selection strategies such as Forward Selection and All Possible Models will also be covered.	6	
8	Unit 8: Model assessment measures for predictive and classification models: model scoring, prediction error analysis, ROC and Lift curves, profit matrices for	6	

(Formerly West Bengal University of Technology) Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning) (Applicable from the academic session 2020-2021)

classification, various model comparison criteria. Ensemble Modeling: combining predictive models to create even more powerful models; includes boosting and bagging strategies	
and bagging strategies.	

Text book and Reference books:

1. Data Mining for Business Intelligence: Concepts, Techniques and Applications with JMP Pro; Shmueli, Bruce, Stephens, Patel 2017, Wiley & Sons

- 2. Preparing Data for Analysis with JMP by Robert Carver
- 3. Introduction to Statistical Learing, sixth printing, by Gareth, Tibshirani, Hastie, and Whitten

Database Management Systems Code: OECAIML-601A Contact: 3L

Name of the Course:	Database Management Systems	
Course Code: OECAIML-601A	Semester: VI	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: hrs./week		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Database system architecture:Data		
1	Abstraction, Data Independence, Data	9	
	Definition Language(DDL),Data		
	ManipulationLanguage(DML).		
	Data models: Entity-relationshipmodel,		
	network model, relational and object oriented		
	data models, integrity constraints, data		
	manipulation operations.		

(Formerly West Bengal University of Technology) Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning) (Applicable from the academic session 2020-2021)

	Relational query languages: Relational algebra,	13	
2	Tuple and domain relational calculus, SQL3,		
	DDL and DML constructs, Open source and		
	Commercial DBMS - MYSQL, ORACLE, DB2,		
	SQLserver.		
	Relational database design: Domain		
	and data dependency,		
	Armstrong's axioms, Normal forms,		
	Dependency preservation, Losslessdesign.		
	Query processing and optimization:		
	Evaluation of relational algebra		
	expressions, Query equivalence, Join		
	strategies, Query optimization		
	algorithms.		
3	Storage strategies: Indices, B-trees, hashing.	3	
	Transaction processing: Concurrencycontrol,	5	
4.	ACID property, Serializability of scheduling,		
	Locking and timestamp based schedulers, Multi-		
	version and optimistic Concurrency Control		
	schemes, Database recovery.		
5	Database Security: Authentication.	3	
	Authorization and access control, DAC, MAC and		
	RBAC models. Intrusion detection. SOL		
	injection.		
6	Advanced topics: Object oriented and object	3	
	relational databases, Logical databases, Web		
	databases, Distributed databases, Data		
	warehousing and data mining.		
	5 5		

Text book and Reference books:

1. "Database System Concepts", 6th Edition by Abraham Silberschatz, Henry

F. Korth, S. Sudarshan, McGraw-Hill.

2. "Principles of Database and Knowledge – Base Systems", Vol 1 by J. D.

Ullman, Computer Science Press.

3. Database Management Systems, R.P. Mahapatra, Khanna Publishing House,

New Delhi (AICTE Recommended Textbook – 2018)

4. "Fundamentals of Database Systems", 5th Edition by R. Elmasri and S.Navathe,

5. PearsonEducation "Foundations of Databases", Reprint by SergeAbiteboul, Richard Hull, Victor Vianu, Addison-Wesley

(Formerly West Bengal University of Technology) Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning) (Applicable from the academic session 2020-2021)

Human Computer Interaction Code:OECAIML-601B Contact: 3L

Name of the Course:	Human Computer Interaction		
Course Code: OECAIML-	Semester: VI		
601B			
Duration: 6 months	Maximum Marks	:100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance : 5 marks	
Practical: NIL		End Semester Exam :70 Marks	
Credit Points:	3		

Unit	Content	Hrs/U	Marks/
		nit	Unit
		9	
1	Human: I/O channels – Memory – Reasoning and problem solving;		
	The computer: Devices – Memory – processing and networks;		
	Interaction: Models – frameworks – Ergonomics – styles – elements –		
	interactivity- Paradigms.		
	Interactive Design basics – process – scenarios – navigation – screen	11	
2	design –		
	Iteration and prototyping. HCI in software process – software life cycle		
	_		
	usability engineering – Prototyping in practice – design rationale.		
	Design rules		
	- principles, standards, guidelines, rules. Evaluation Techniques -		
	Universal		
	Design.		

3.	Cognitive models –Socio-Organizational issues and stake holder requirements –Communication and collaboration models-Hypertext, Multimedia and WWW.	8	
4.	Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.	8	

(Formerly West Bengal University of Technology) Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning) (Applicable from the academic session 2020-2021)

5.	Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual	8	
	Tools,		
	Overlays, Inlays and Virtual Pages, Process Flow. Case		
	Studies.		
6.	Recent Trends: Speech Recognition and Translation,	3	
	Multimodal System		

Text book and Reference books:

1. Theodor Richardson, Charles N Thies, Secure Software Design, Jones & Bartlett

2. Kenneth R. van Wyk, Mark G. Graff, Dan S. Peters, Diana L. Burley, Enterprise Software Security, Addison Wesley.

Subject: Net	Iral Networks			
Course Code: OECAIML-		Semester: VI		
601C				
Duration: 36	ĵ	Maximum Marks: 100		
Teaching Sc	heme	Examination Scheme		
Theory: 3 H	rs./week	End Semester Exam: 70		
Tutorial: 0		Attendance : 5		
Practical:		Continuous Assessment:25		
Credit: 3				
Aim:				
Sl. No.				
1.	Develop algorithms simular	ting human brain.		
2.	Implement Neural Networks in Tensor Flow for solving problems.			
3.	Explore the essentials of Deep Learning and Deep Network architectures.			
4.	Define, train and use a Deep Neural Network for solving real world problems that require			
	artificial Intelligence based solutions.			
Objective:	ctive:			
Sl. No.				
1.	To acquire knowledge on the basics of neural networks.			
2.	To implement neural networks using computational tools for variety of problems.			
3.	To explore various deep lea	arning algorithms.		
Pre-Requisit	te:			
Sl. No.				
1.	Calculus, Linear Algebra			
2.	Probability & Statistics			
3.	Ability to code in R/Python			
Contents			Hrs./we	ek
Chapter	Name of the Topic		Hours	Marks
01	Introduction		3	5
	Various paradigms of e	arning problems, Perspectives and		
	Issues in deep learning f	ramework, review of fundamentallearning		
	techniques.			

(Formerly West Bengal University of Technology) Syllabus for B. Tech in CSE (Artificial Intelligence and Machine Learning) (Applicable from the academic session 2020-2021)

02	Feed forv	vard neural network			6	10
	Artificial Neural Network, activation function, multi-layer neural network cardinality operations and properties of fuzzyrelations					
03	Training	Neural Network			6	15
05	Risk min	imization, loss function, ba	ckpropagation,		U	15
	regulariza	ion, model selection, and optimization.				
04	Condition	nal Random Fields	leave notwork Daliaf manage	ation	9	15
	Training (CRFs, Hidden Markov Moc	lel, Entropy.	ation,		
05	Deep Lea	rning			6	15
	Deep Feed	d Forward network, regular	rizations, training deep mod	els,		
	dropouts, Deep Beli	Convolutional Neural Netv ef Network	vork, RecurrentNeural Netw	vork,		
06	Deep Lea	rning research			6	10
	Object re	cognition, sparse coding, co	omputer vision, naturallangu	ıage	26	
	Sub Total:				36	70
Internal Assessment Examination & Preparation of Semester Examination					4	30
	Total:				40	100
List of Book Text Books:	8					
Name of	Author	Title of the Book	Edition/ISSN/ISBN	Nan	ne of the	Publisher
Rajiv Chopr	a	Deep Learning	First Edition		Khan Dubli	na Book
		Textbook)			ruon	sining
Goodfellow,		Deep Learning			MIT	Press
I.,Bengie	o,Y.,and					
Satish	e A., Kumar	Neural Networks: A		Т	ata McC	Graw-Hill
Classroom Approach						
Reference B	ooks:					
Bishop, C. ,M.		Pattern Recognition			Spri	nger
Vacuanarationa D		Artificial Neural		рн	ILearni	ng Pyt Itd
Y egnanarayana, B.					1 I A ALILL	
	ayana, D.	Networks				
Golub, G.,	H., and	Networks Matrix Computations			JHU	Press

Name of the Course:	Cryptography & N	etwork Security
Course Code:	Semester: VI	
OEC-AIML 601D		
Duration: 6 months	Maximum Marks:	: 100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam : 70 Marks
Credit Points:	3	

Computer Security Concepts, The OSI Security Architecture, Security Attacks, Security Services, Security Mechanisms, A Model for Network Security, Classical Encryption Techniques, Symmetric Cipher Model, Substitution Techniques, Transposition Techniques, Rotor Machines, Steganography, Cryptographic Tools, Confidentiality with Symmetric Encryption, Message Authentication and Hash Functions, Public-Key Encryption, Digital Signatures and Key Management, Random and Pseudorandom Numbers, Practical Application: Encryption of Stored Data, User Authentication, Means of Authentication, Password-Based Authentication, Token-Based Authentication, Biometric Authentication, Remote User Authentication, Security Issues for User Authentication, Malicious Software, Types of Malicious Software (Malware), Propagation—Infected Content—Viruses, Propagation—Vulnerability Exploit—Worms, Propagation—Social Engineering—SPAM Email, Trojans, Payload—System Corruption, Payload—Attack Agent—Zombie, Bots, Payload—Information Theft—Key loggers, Phishing, Spyware, Payload—Stealthing— Backdoors, Rootkits, Countermeasures, Firewalls and Intrusion Prevention Systems, the Need for Firewalls, Firewall Characteristic, Types of Firewalls, Firewall Basing, Firewall Location and Configurations, Intrusion Prevention Systems.

Text Books:

1. Cryptography and Network Security: Principles and Practice by William Stalings 6th Edition published by PHI (2011)

2. Computer security principles and practice, William Stallings, Lawrie Brown, third edition, Prentice-Hall, 2011

3. Cryptography and Network Security, V.K. Jain, Khanna Publishing House