Semester-VII

Quantum Computing Code: PEC- DS701A Contacts: 3L

Name of the Course:	Quantum Computing		
Course Code: PEC- DS701A	Semester: VII	Semester: VII	
Duration: 6 months	Maximum Marks:	100	
Teaching Scheme Examination		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance : 5 marks	
Practical: NIL		End Semester Exam :70 Marks	
Credit Points:	3		

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Qubit & Quantum States: The Qubit, Vector Spaces. Linear	3	
1	Combination Of Vectors, Uniqueness of a spanning set, basis &		
	dimensions, inner Products, orthonormality, gram-schmidt		
	orthogonalization, bra-ket formalism, the Cauchyschwarez and		
	triangle Inequalities.		
	Matrices & Operators: Observables, The Pauli Operators, Outer	10	
2	Products, The Closure Relation, Representation of operators using		
	matrices, outer products & matrix representation, matrix		
	representation of operators in two dimensional spaces, Pauli		
	Matrix, Hermitian unitary and normal operator, Eigen values &		
	Eigen Vectors, Spectral Decomposition, Trace of an operator,		
	important properties of Trace, Expectation Value of Operator,		
	Projection Operator, Positive Operators,		
	Commutator Algebra, Heisenberg uncertainty principle, polar	_	
3.	decomposition & singular values, Postulates of Quantum	5	
	Mechanics.		
4.	Tensor Products: Representing Composite States in Quantum	5	
	Mechanics, Computing inner products, Tensor products of		
	column vectors, operators and tensor products of Matrices. Density		
	Operator: Density Operator of Pure & Mix state, Key Properties,		
	Characterizing Mixed State, Practical Trace & Reduce Density		
	Operator, Density Operator & Bloch Vector.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Data Science

(Applicable from the academic session 2020-2021)

5.	Quantum Measurement Theory: Distinguishing Quantum states & Measures, Projective Measurements, Measurement on Composite systems, Generalized Measurements, Positive Operator- Valued Measures.	8	
6.	Recent trends in Quantum Computing Research, Quantum Computing Applications of Genetic Programming.	6	

Text book and Reference books:

Quantum Computing without Magic by Zdzislaw Meglicki

- 2. Quantum Computing Explained By DAVID Mc MAHON
- 3. Quantum Computer Science By Marco Lanzagorta, Jeffrey Uhlmann
- 4. An Introduction to Quantum Computing Phillip Kaye, Raymond Laflamme, Michele Mosca.

Cloud Computing Code: PEC- DS701B Contact: 3L

Name of the Course:	Cloud Computing			
Course Code: PEC- DS701B	Semester: VII		Semester: VII	
Duration: 6 months	Maximum Marks:	100		
Teaching Scheme	aching Scheme Examination			
Theory: 3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL	Assignment and Quiz: 10 marks			
		Attendance: 5 marks		
Practical:		End Semester Exam: 70 Marks		
Credit Points:	3			

Unit	Content	Hrs/Unit	Marks/Unit
1	Definition of Cloud Computing and its Basics (Lectures) . Defining a Cloud, Cloud Types – NIST model, Cloud Cube	9	
	model, Deployment models (Public , Private, Hybrid and Community Clouds), Service Platform as a Service, Software as a Service with examples of services/ service providers, models – Infrastructure as a Service, Cloud Reference model, Characteristics of Cloud Computing – a shift in paradigm Benefits and advantages of Cloud Computing, A brief introduction on Composability, Infrastructure, Platforms, Virtual Appliances, Communication Protocols, Applications, Connecting to the Cloud by Clients, IaaS – Basic concept, Workload, partitioning of virtual private server instances, Pods, aggregations, silos PaaS – Basic concept, tools and development environment with examples SaaS - Basic concept and characteristics, Open SaaS and SOA, examples of SaaS platform Identity as a Service (IDaaS) Compliance as a Service (CaaS)		

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Data Science

(Applicable from the academic session 2020-2021)

		10	
	Use of Platforms in Cloud Computing	12	
2	Concepts of Abstraction and Virtualization		
	Virtualization technologies : Types of		
	virtualization (access, application, CPU,		
	storage), Mobility patterns (P2V, V2V, V2P,		
	P2P, D2C, C2C, C2D, D2D) Load Balancing		
	and Virtualization: Basic Concepts, Network		
	resources for load balancing, Advanced load		
	balancing (including ApplicationDelivery		
	Controller and Application Delivery Network),		
	Mention of The Google Cloud as an example		
	of use of load balancing Hypervisors: Virtual		
	machine technology and types, VMware		
	vSphere Machine Imaging (including mention		
	of Open Virtualization Format – OVF)		
	Porting of applications in the Cloud: The simple		
	Cloud API and AppZero Virtual Application		
	appliance, Concepts of Platform as a Service,		
	Definition of services, Distinction between		
	SaaS and PaaS (knowledge of Salesforce.com		
	and Force.com), Application development		
	Use of PaaS Application frameworks,		
	Discussion of Google Applications Portfolio -		
	Indexed search, Dark Web, Aggregation and		
	disintermediation, Productivity applications		
	and service, Adwords, Google Analytics,		
	Google Translate, a brief discussion on Google		
	Toolkit (including introduction of Google APIs		
	in brief), major features of Google App Engine		
	service., Discussion of Google Applications		
	Portfolio – Indexed search, Dark Web,		
	Aggregation and disintermediation,		
	Productivity applications and service,		
	Adwords, Google Analytics, Google Translate,		
	a brief discussion on Google Toolkit (including		
	introduction of Google APIs in brief), major		
	features of Google App Engine service,		
	Windows Azure platform: Microsoft's		
	approach, architecture, and main elements,		
	overview of Windows Azure AppFabric,		
	Content Delivery Network, SQL Azure, and		
	Windows Live services,		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Data Science

(Applicable from the academic session 2020-2021)

	Cloud Infus days at 1990	7	
	Cloud Infrastructure:	7	
3	Cloud Management: An overview of the features of network		
	management systems and a brief introduction of		
	e .		
	related products from large cloud vendors,		
	Monitoring of an entire cloud computing		
	deployment stack – an overview with mention of some products, Lifecycle management of		
	cloud services (six stages of lifecycle).		
	Concepts of Cloud Security:		
	Cloud security concerns, Security boundary,		
	Security service boundary Overview of security		
	mapping Security of data: Brokered cloud		
	storage access, Storage location and tenancy,		
	encryption, and auditing and compliance		
	Identity management (awareness of Identity		
	protocol standards)		
	I)		
	Concepts of Services and Applications :	8	
4.	<u>Concepts of Services and Explorations (</u>		
	Service Oriented Architecture: Basic concepts		
	of message-based transactions, Protocol stack		
	for an SOA architecture, Event-driven SOA,		
	Enterprise Service Bus, Service catalogs,		
	Applications in the Cloud: Concepts of cloud		
	transactions, functionality mapping,		
	Application attributes, Cloud service		
	attributes, System abstraction and Cloud		
	Bursting, Applications and Cloud APIs		
	Cloud-based Storage: Cloud storage definition		
	– Manned and Unmanned		
	Webmail Services: Cloud mail services		
	including Google Gmail, Mail2Web, Windows		
	Live Hotmail, Yahoo mail, concepts of		
	Syndication services		
	J		

- 1. Cloud Computing Bible by Barrie Sosinsky, Wiley India Pvt. Ltd, 2013
- 2. Mastering Cloud Computing by Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, McGraw Hill Education (India) Private Limited, 2013
- Cloud computing: A practical approach, Anthony T. Velte, Tata Mcgraw-Hill
 Cloud Computing, Miller, Pearson
- 5. Building applications in cloud:Concept, Patterns and Projects, Moyer, Pearson
- 6. Cloud Computing Second Edition by Dr. Kumar Saurabh, Wiley India

Digital Signal Processing Code: PEC- DS701C Contacts: 3L

Name of the Course:	Digital Signal Processing		
Course Code: PEC- DS701C	Semester: VI	Semester: VII	
Duration:6 months	Maximum M	Maximum Marks: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz : 10 marks	
	Attendance: 5 marks		
Practical:		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Module 1: Discrete-time signals and systems (6 hours) Discrete time signals and systems: Sequences; representation of signals on orthogonal basis; Representation of discrete systems using difference equations, Sampling and reconstruction of signals - aliasing; Sampling theorem and Nyquist rate.	6	
2	Module 2: Z-transform (6 hours) z-Transform, Region of Convergence, Analysis of Linear Shift Invariant systems using z transform, Properties of z-transform for causal signals, Interpretation of stability in z- domain, Inverse z-transforms.	6	
3	Module 2: Discrete Fourier Transform (10 hours) Frequency Domain Analysis, Discrete Fourier Transform (DFT), Properties of DFT, Convolution of signals, Fast Fourier Transform Algorithm, Parseval's Identity, Implementation of Discrete Time Systems.	10	
4.	Module 3:Designof Digital filters (12 hours) Design of FIR Digital filters: Window method, Park-McClellan's method. Design of IIR Digital Filters: Butterworth, Chebyshev and Elliptic Approximations; Low-pass, Band-pass, Band stop and High-pass filters. Effect of finite register length in FIR filter design. Parametric and non-parametric spectral estimation. Introduction to multi-rate signal processing.	12	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Data Science

(Applicable from the academic session 2020-2021)

Module 4: Applications of Digital Signal Processing (6 hours) Correlation Functions and Power Spectra,	6	
Stationary Processes, Optimal filtering using ARMA Model, Linear Mean-Square Estimation, Wiener Filter.		

- 1. S. K. Mitra, "Digital Signal Processing: A computer based approach", McGraw Hill, 2011.
- 2. A.V. Oppenheim and R. W. Schafer, "Discrete Time Signal Processing", Prentice Hall, 1989.
- 3. J. G. Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algorithms And Applications", Prentice Hall, 1997.
- 4. L. R. Rabiner and B. Gold, "Theory and Application of Digital Signal Processing", Prentice Hall, 1992.
- 5. J. R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1992.
- 6. D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss, "Digital Signal Processing", John Wiley & Sons, 1988.

Multi-agent Intelligent Systems Code: PEC-DS701D

Contacts: 3L

Multi-agent Inte	Multi-agent Intelligent Systems	
Semester: VII		
Maximum Mark	xs: 100	
eaching Scheme Examination Scheme		
	Mid Semester exam: 15	
Assignment and Quiz : 10 marks		
Attendance: 5 marks		
	End Semester Exam: 70 Marks	
3		
	Semester: VII Maximum Mark	

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: what is an agent?: agents and objects; agents and expert systems; agents and distributed systems; typical application areas for agent systems.	3	
2	Intelligent Agents: the design of intelligent agents - reasoning agents (eg AgentO), agents as reactive systems (eg subsumption architecture); hybrid agents (eg PRS); layered agents (eg Interrap) a contemporary (Java-based) framework for programming agents (eg the Jack language, the JAM! system).	9	
3	Multi-Agent Systems: Classifying multi-agent interactions - cooperative versus non-cooperative; zero-sum and other interactions; what is cooperation? how cooperation occurs - the Prisoner's dilemma and Axelrod's experiments; Interactions between self- interested agents: auctions & voting systems: negotiation; Interactions between benevolent agents: cooperative distributed problem solving (CDPS), partial global planning; coherence and coordination; Interaction languages and protocols: speech acts, KQML/KIF, the FIPA framework.	12	
4.	Advanced topics: One issue selected from the contemporary research literature, perhaps by guest lecturer.	9	

Text book and Reference books:

- 1. An Introduction to Multi Agent Systems Second Edition. Michael Wooldridge (Wiley, 2009)
- 2. Programming Multi-agent Systems in Agent Speak Using Jason. Rafael H. Bordini, Jomi Fred Hubner and Michael Wooldridge (Wiley, 2007)

Time Series Analysis and Forecasting Code: PEC- DS701E Contacts: 3L

Name of the Course:Time Series Analysis and Forecasting		alysis and Forecasting
Course Code: PEC- DS701E	Semester: VII	
Duration: 6 months	Maximum Mark	s: 100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: Nil		End Semester Exam: 70 Marks
Credit Points:	3	

Different components, illustration, additive and multiplicative models, determination of trend, seasonal and cyclical fluctuations.

Time-series as discrete parameter stochastic process, auto covariance and

autocorrelation functions and their properties.

Exploratory time Series analysis, tests for

trend and seasonality, exponential and moving average smoothing.

Detailed study of the stationary processes: (1) moving average (MA), (2) auto regressive (AR),

(3) ARMA and (4) AR integrated MA (ARIMA) models.

Box-Jenkins models, choice of AR and MA periods.

Discussion (without proof) of estimation of mean, auto covariance and autocorrelation functions under large sample theory, estimation of ARIMA model parameters.

Spectral analysis of weakly stationary process, periodogram and correlogram analyses,

computations based on Fourier transform, non stationary process, introduction to forecasting.

Text Books:

1. Introduction to time series and forecasting Book by Rob J. Hyndman

2. Time series analysis, forecasting and control Book by George E.P.Box

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Data Science

(Applicable from the academic session 2020-2021)

	de: PEC-DS-701F				
Duration:3	86 Hrs. Semester: V	11			
Teaching S					
Theory:3	Examination				
Tutorial: 0					
Practical:0					
Credit:3	Continuous A	Assessment: 25			
Aim:					
SI. No.					
1	Ability to create visualizations from data				
2	Ability to gain a better understanding of da				
3	Skill to make sense of trends in data from	visualizations			
Objective:					
SI. No.					
1	To understand the need and benefits of da				
2	To systematically create univariate and biv				
3	To analyse and draw conclusions from visu	alizations			
Pre-Requis	site:				
SI. No.					
1	Fundamentals of Python Programming				
Contents			Hrs./wee		
Chapter	Name of the Topic			Marks	
01	Introduction		2		
	About data visualization, The need for data	a visualization, Brief history			
	of data visualization				
02	Statistical Preliminaries		4	5	
	Different types of data, Measures of Centr	ality, Measures of			
	Dispersion, Measures of Association				
03	Univariate Visualizations		6	12	
	Stem-and-Leaf Plot, Pie Chart, Bar Graph,	Histogram, Line Chart, Box			
	Plot, Analysis and drawing conclusions				
04	Bivariate Visualizations		4	5	
	Scatter Plot, Bivariate Line Chart, Hex Plot,	, Analysis and drawing			
	conclusions				
04	Python NumPy Library		8	1	
	NumPy and its advantages, NumPy n-dime	ensional array (ndarray),			
	Creating ndarrays in NumPy, Slicing ndarra	ays, ndarray operations,			
	Broadcasting				
05	Data Visualizations in Python		12	2	
05	-	s using matplotlib. Bivariate		_	
05	Plotting with matplotlib, Univariate graphs using matplotlib, Bivariate graphs using matplotlib, Plotting through pandas, Improving plot				
05	graphs using mathlotlin. Plotting through i				
05					
05	aesthetics		36	7(
05	aesthetics Sub Total:		36 4	7	
	aesthetics		36 4 40	70 30 100	

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Data Science (Applicable from the academic session 2020-2021)

Sheldon M Ross	Introduction to Probability and Statistics for Engineers and Scientists		Elsevier Academic Press
B. Lubanovic	Introducing Python		O'Reilly
Jeeva Jose	Introduction to Computing and Problem Solving with Python	First Edition	Khanna Book Publishing
Reference Books:			
Murray R. Spiegel, Larry J. Stephens	Schaum's Outlines on Statistics		McGraw-Hill
Eric Matthes	Python Crash Course		No Starch Press
Ivan Idris	Numpy Beginner's Guide		Packt Publishing
Jeeva Jose	Taming Python by Programming	First Edition	Khanna Book Publishing

Neural Networks and Deep Learning Code: PEC-DS702A Contacts: 3L

Name of the Course:	Neural Networks and Deep Learning		
Course Code: PEC- DS702A	Semester: VII		
Duration:6 months	Maximum Mar	ks: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz : 10 marks	
		Attendance: 5 marks	
Practical:		End Semester Exam: 70 Marks	
Credit Points:	3	· ·	

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Various paradigms of earning problems, Perspectives and Issues in deep learning framework, review of fundamental learning techniques.	3	
2	Feed forward neural network: Artificial Neural Network, activation function, multi-layer neural network.cardinality, operations, and properties of fuzzy relations.	6	
3	Training Neural Network: Risk minimization, loss function, backpropagation, regularization, model selection, and optimization.	6	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Data Science

(Applicable from the academic session 2020-2021)

4.	Conditional Random Fields: Linear chain, partition function, Markov network, Belief propagation, Training CRFs, Hidden Markov Model, Entropy.	9	
5	Deep Learning: Deep Feed Forward network,	6	
	regularizations, training deep models, dropouts,		
	Convolutional Neural Network, Recurrent Neural		
	Network, Deep Belief Network.		
6	Deep Learning research: Object recognition, sparse	6	
	coding, computer vision, natural language		

- 1. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.
- 2. Bishop, C., M., Pattern Recognition and Machine Learning, Springer, 2006.
- 3. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 4. Golub, G., H., and Van Loan, C., F., Matrix Computations, JHU Press, 2013.
- 5. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.
- 6. Dr. Rajiv Chopra, Deep Learning, Khanna Publishing House, New Delhi (AICTE Recommended Textbook 2018)

Soft Computing Code: PEC- DS702B Contacts: 3L

Name of the Course:	Soft Compu	Soft Computing	
Course Code: PEC- (DS)702B	Semester: V	Semester: VII	
Duration:6 months	Maximum N	1arks: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz : 10 marks	
		Attendance: 5 marks	
Practical:		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Introduction to soft computing; introduction to fuzzy sets and fuzzy logic systems; introduction to biological and artificial neural network; introduction to Genetic Algorithm	8	
2	 Fuzzy sets and Fuzzy logic systems: Classical Sets and Fuzzy Sets and Fuzzy relations : Operations on Classical sets, properties of classical sets, Fuzzy set operations, properties of fuzzy sets, cardinality, operations, and properties of fuzzy relations. Membership functions : Features of membership functions, standard forms and boundaries, different fuzzification methods. Fuzzy to Crisp conversions: Lambda Cuts for fuzzy sets, fuzzy Relations, Defuzzification methods. Classical Logic and Fuzzy Logic: Classical predicate logic, Fuzzy Logic, Approximate reasoning and Fuzzy Implication Fuzzy Rule based Systems: Linguistic Hedges, Fuzzy Rule based system – Aggregation of fuzzy Models – Sugeno Fuzzy Models. Applications of Fuzzy Logic: How Fuzzy Logic is applied in Home Appliances, General Fuzzy Logic controllers, Basic Medical Diagnostic systems and Weather forecasting 	10	

	Normal Notes and	10	
	Neural Network	10	
3	Introduction to Neural Networks: Advent of Modern		
	Neuroscience, Classical AI and Neural Networks,		
	Biological Neurons and Artificial neural network;		
	model of artificial neuron.		
	Learning Methods : Hebbian, competitive, Boltzman		
	etc., Neural Network models: Perceptron, Adaline and		
	Madaline networks; single layer network; Back-		
	propagation and multi layer networks.		
	Competitive learning networks: Kohonen self		
	organizing networks, Hebbian learning; Hopfield		
	Networks. Neuo-Fuzzy modelling: Applications of		
	Neural Networks: Pattern Recognition and		
	classification		
	Genetic Algorithms: Simple GA, crossover and	10	
4.	mutation, Multi-objective Genetic Algorithm	10	
	(MOGA). Applications of Genetic Algorithm: genetic		
	algorithms in search and optimization, GA based		
	clustering Algorithm, Image processing and pattern		
	Recognition		
5		4	
5	PSO: Other Soft Computing techniques:	4	
	Simulated Annealing, Tabu search, Ant		
	colony optimization (ACO), Particle		
	Swarm Optimization (PSO).		

- 1. Fuzzy logic with engineering applications, Timothy J. Ross, John Wiley and Sons.
- 2. S. Rajasekaran and G.A.V.Pai, "Neural Networks,
- 3.
- Fuzzy Logic and Genetic Algorithms", PHI Principles of Soft Computing, S N Sivanandam, S. Sumathi, John Wiley & Sons Genetic Algorithms in search, Optimization & Machine Learning by David E. 4. Goldberg
 Neuro-Fuzzy and Soft computing, Jang, Sun, Mizutani, PHI
 Neural Networks: A Classroom Approach, 1/e by Kumar Satish, TMH,

- Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg, Pearson/PHI
 A beginners approach to Soft Computing, Samir Roy & Udit Chakraborty, Pearson
 Fuzzy Sets and Fuzzy Logic: Theory and Applications, George J. Klir and Bo Yuan, Durative Uali
- Prentice Hall
- 10. Neural Networks: A Comprehensive Foundation (2nd Edition), Simon Haykin, Prentice Hall.

Adhoc –Sensor Network Code:PEC- (DS)702C Contact: 3L

Name of the Course:	the Course: Adhoc –Sensor Network		
Course Code: PEC- (DS)702C	Semester: VII	Semester: VII	
Duration: 6 months	Maximum Marks:	: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: 4 hrs		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction and Overview [4L] :Overview of wireless networks, types, infrastructure-based and infrastructure-less, introduction to MANETs (Mobile Ad-hoc Networks), characteristics, reactive and proactive routing protocols with examples, introduction to sensor networks, commonalities and differences with MANETs, constraints and challenges, advantages, applications, enabling technologies for WSNs.	4	
2	Architectures Single-node architecture - hardware components, design constraints, energy consumption of sensor nodes , operating systems and execution environments, examples of sensor nodes,	9	
	sensor network scenarios, types of sources and sinks – single hop vs. multi hop networks, multiple sources and sinks – mobility, optimization goals and figures of merit, gateway concepts, design princip		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Data Science

(Applicable from the academic session 2020-2021)

3	Communication Protocols [9L] : Physical layer and transceiver design considerations, MAC protocols for wireless sensor networks, low duty cycle protocols and wakeup concepts - S-MAC, the mediation device protocol, wakeup radio concepts, address and name management, assignment of MAC addresses, routing protocols- classification, gossiping, flooding, energy- efficient routing, unicast protocols, multi- path routing, data-centric routing, data aggregation, SPIN, LEACH, Directed- Diffusion, geographic routing.	9	
4.	Infrastructure Establishment: Topology control, flat network topologies, hierarchical networks by clustering, time synchronization, properties, protocols based on sender-receiver and receiver-receiver synchronization, LTS, TPSN, RBS, HRTS, localization and positioning, properties and approaches, single-hop localization, positioning in multi-hop environment, range based localization algorithms – location services, sensor tasking and control		
5	Sensor Network Platforms and Tools [9L]:Sensor node hardware, Berkeley motes, programming challenges, node- level software platforms, node-level simulators, state-centric programming, Tiny OS, nesC components, NS2 simulator, TOSSIM.		

- 1. 1.Holger Karl & Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks", John Wiley, 2005.
- 2. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.
- 3. REFERENCES
- 1. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks- Technology, Protocols, and Applications", John Wiley, 2007.
- 2. Anna Hac, "Wireless Sensor Network Designs", JohnWiley, 2003.
- 3. Thomas Haenselmann, "Sensor Networks", available online forfree, 2008.

Information Theory and Coding Code:PEC- (DS)702D Contact: 3L

Nam	ame of the Course: Information Theory and Co		ry and Co	ding	
	Course Code: PEC- Semest (DS)702D		ester: VII		
× /	tion: 6 months	Maximum Marks:	100		
Teac	ching Scheme	I	Examination Scheme		
Theo	ory: 3 hrs./week		Mid Sem	ester exam: 15	
	rial: NIL		Assignme	ent and Quiz: 10 m	narks
			U	ce: 5 marks	
Pract	tical:NIL		End Sem	ester Exam: 70 Ma	arks
Cred	it Points:	3	1		
Unit	(Content		Hrs/Unit	Marks/Unit
	Source Coding [7L]			_	
1	Uncertainty and information, average mutual information and entropy, information measur continuous random variables, source coding		tual sures for ng	7	
	theorem, Huffman co	odes			
	Channel Capacity A	And Coding [7L]		7	
2	Channel models, chann	el capacity, channel o	coding,		
	information capacity th	ity theorem, The Shannon limit			
	Linear And Block Coo	les For Error		8	
3	Correction [8L]				
	Matrix description of li	· · ·			
	codes, parity check mat	, U	ear		
	block code, perfect cod	es, Hamming codes			
4.	Cyclic Codes [7L]	on alconither for		7	
4.	Polynomials, division	e			
	polynomials, a meth	0 0			
		cyclic codes, matrix description of			
5	cyclic codes, Golay codes BCH Codes [8L]			8	
5	L 1	ents, minimal		0	
	polynomials, generat	,			
	terms of minim	1 0			
	examples of BCH co	1 2 /			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Data Science

(Applicable from the academic session 2020-2021)

6	Convolutional Codes [8L]	8	
	Tree codes, trellis codes, polynomial		
	description of convolutional codes,		
	distance notions for convolutional		
	codes, the generating function, matrix		
	representation of convolutional codes,		
	decoding of convolutional codes,		
	distance and performance bounds for		
	convolutional codes, examples of		
	convolutional codes, Turbo codes,		
	Turbo decoding		

- 1. Information theory, coding and cryptography Ranjan Bose; TMH.
- 2. Information and Coding N Abramson; McGraw Hill.
- 3. Introduction to Information Theory M Mansurpur; McGraw Hill.
- 4. Information Theory R B Ash; Prentice Hall.
- 5. Error Control Coding Shu Lin and D J Costello Jr; Prentice Hall.

Surveillance and Cyber Security Code: PEC-(DS)702E Contact: 3L

Name of the Course:	Cyber Security		
Course Code: PEC- (DS)702E	Semester: VII	Semester: VII	
Duration: 6 months	Maximum Marks:	100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction: Introduction to Cyber Security,		
1	Importance and challenges in Cyber Security,	6	
	Cyberspace, Cyber threats, Cyberwarfare, CIA		
	Triad, Cyber Terrorism, Cyber Security of Critical		
	Infrastructure, Cybersecurity - Organizational		
	Implications.		
	Hackers and Cyber Crimes: Types of Hackers,	7	
2	Hackers and Crackers, Cyber-Attacks and		
	Vulnerabilities, Malware threats, Sniffing, Gaining		
	Access, Escalating Privileges, Executing		
	Applications, Hiding Files, Covering Tracks,		
	Worms, Trojans, Viruses, Backdoors.		
	Ethical Hacking and Social Engineering: Ethical	8	
3	Hacking Concepts and Scopes, Threats and Attack		
	Vectors, Information Assurance, Threat Modelling,		
	Enterprise Information Security Architecture,		
	Vulnerability Assessment and Penetration Testing,		
	Types of Social Engineering, Insider Attack,		
	Preventing Insider Threats, Social Engineering		
	Targets and Defence Strategies.		

4.	Cyber Forensics and Auditing: Introduction to Cyber Forensics, Computer Equipment and associated storage media, Role of forensics Investigator, Forensics Investigation Process, Collecting Network based Evidence, Writing Computer Forensics Reports, Auditing, Plan an audit against a set of audit criteria, Information Security Management System Management. Introduction to ISO 27001:2013	10	
5	Cyber Ethics and Laws: Introduction to Cyber Laws, E-Commerce and E-Governance, Certifying Authority and Controller, Offences under IT Act, Computer Offences and its penalty under IT Act 2000, Intellectual Property Rights in Cyberspace. at Network Layer-IPSec.	5	

- 1. Cyber security, Nina Gobole & Sunit Belapune; Pub: Wiley India.
- 2. Information Security and Cyber Laws, Pankaj Agarwal
- 3. Donaldson, S., Siegel, S., Williams, C.K., Aslam, A., Enterprise Cybersecurity -How to Build a Successful Cyberdefense Program Against Advanced Threats, A-press
- 4. Nina Godbole, SumitBelapure, Cyber Security, Willey
- 5. Hacking the Hacker, Roger Grimes, Wiley
- 6. Cyber Law By Bare Act, Govt Of india, It Act 2000.
- 7. Information Security & Cyber Laws, Gupta & Gupta, Khanna Publishing House, (AICTE Recommended Textbook- 2018)

Pattern Recognition Code: PEC-DS-702F Contact: 3L

Name of the Course:	Pattern Recognition		
Course Code: PEC-DS702F Semester: VII			
Duration:6 months	Maximum Marks:	00	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points: 3			

Unit	Content	Hrs/Unit	Marks/Unit
1	Basics of pattern recognition	2	
2	Bayesian decision theory 8L Classifiers, Discriminant functions, Decision surfaces Normal density and discriminant functions Discrete features	8	
3	Parameter estimation methods6L Maximum-Likelihoodestimation Gaussian mixturemodels Expectation-maximizationmethod Bayesian estimation	6	
4.	Hidden Markov models for sequential patternclassification 8LDiscrete hidden Markov modelsContinuousdensity hidden Markovmodels	8	
5	Dimension reduction methods 3L5.1. Fisher discriminant analysis5.2Principal component analysis.Parzen-window methodK-Nearest Neighbour method	3	
6	Non-parametric techniques for density estimation	2	
7	Linear discriminant function based classifier 5L Perceptron Support vector machines	5	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Data Science

(Applicable from the academic session 2020-2021)

8	Non-metric methods for pattern classification 4L	4	
	Non-numeric data or nominal data		
	Decision trees		
9	Unsupervised learning and clustering 2L	2	
	Criterion functions for clustering		
	Algorithms for clustering: K-means,		
	Hierarchical and other methods		

- 1. R. O. Duda, P. E. Hart and D. G. Stork: Pattern Classification, John Wiley, 2001.
- 2. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009.
- 3. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Operation Research Code: OEC- CS(DS)701A Contact: 3L

Name of the Course:	Operation Research		
Course Code: OEC-(DS)701A	Semester: VII		
Duration: 6 months	Maximum N	Maximum Marks: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Basic LPP and Applications; Various Components of LP Problem Formulation.	17	
	Solution of Linear Programming Problems: Solution of LPP: Using Simultaneous Equationsand Graphical Method;		
	Definitions: Feasible Solution, Basic and non- basic Variables, Basic Feasible Solution, Degenerate and Non- degenerate Solution, Convex set and explanation with		
	examples Solution of LPP by Simplex Method; Charnes' Big- M Method; Duality Theory. Transportation Problems and Assignment Problems.		
2	Network Analysis :Shortest Path: Floyd Algorithm; Maximal Flow Problem (Ford-Fulkerson); PERT- CPM (Cost Analysis, Crashing, Resource Allocationexcluded).	9	
	Inventory Control:Introduction to EOQ Models of Deterministic and Probabilistic ; Safety Stock; Buffer Stock.		
3	Game Theory: Introduction; 2-Person Zero-sum Game; SaddlePoint;	5	
	Mini-Max and Maxi-Min Theorems (statement only)		
	and problems; Games without Saddle Point; Graphical		
	Method; Principle of Dominance		
4.	Queuing Theory: Introduction; Basic Definitions and Notations; Axiomatic Derivation of theArrival & Departure (Poisson Queue). Poisson Queue Models: (M/M/1): (∞ / FIFO) and (M/M/1: N /	5	
	FIFO) and problems. $(W/W/1)$. $(W/W/1)$. $W/$		

- H. A. Taha, "Operations Research", Pearson
 P. M. Karak "Linear Programming and Theory of Games", ABS Publishing House
 Ghosh and Chakraborty, "Linear Programming and Theory of Games", Central Book Agency
- Ravindran, Philips and Solberg "Operations Research", WILEY INDIA 4.

Multimedia Technology Code: OEC- (DS)701B Contacts: 3L

Name of the Course:	Multimedia Tech	Multimedia Technology	
Course Code: OEC- (DS)701B	Semester: VII	Semester: VII	
Duration: 6 months	Maximum Marks:1	00	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance : 5 marks	
Practical: Nil		End Semester Exam :70 Marks	

Unit	Content	Hrs/U	Marks/
		nit	Unit
1	Introduction: Multimedia today, Impact of Multimedia, Multimedia Systems, Components and Its Applications	2	
	Text and Audio, Image and Video(14L)	14	
2	Text: Types of Text, Ways to Present Text, Aspects of		
	Text Design, Character, Character Set, Codes, Unicode,		
	Encryption; Audio: Basic Sound Concepts, Types of		
	Sound, Digitizing Sound, Computer Representation of		
	Sound (Sampling Rate, Sampling Size, Quantization),		
	Audio Formats, Audio tools, MIDI		
	Image: Formats, Image Color Scheme, Image		
	Enhancement; Video: Analogue and Digital Video,		
	Recording Formats and Standards (JPEG, MPEG, H.261)		
	Transmission of Video Signals, Video Capture, and		
	Computer based Animation.		
3.	Synchronization, Storage models and Access Techniques: Temporal relationships, synchronization accuracy specification factors, quality of service, Magnetic media, optical media, file systems (traditional, multimedia) Multimedia devices – Output devices, CD-ROM, DVD, Scanner, CCD	8	
	Output devices, CD-ROM, DVD, Scanner, CCD		

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Data Science

(Applicable from the academic session 2020-2021)

4.	Image and Video Database, Document Architecture and Content Management (17L): Image representation, segmentation, similarity based retrieval, image retrieval by color, shape and texture; indexing- k- d trees, R-trees, quad trees; Case studies- QBIC, Virage. Video Content, querying, video segmentation, indexing, Content Design and Development, General Design Principles Hypertext: Concept, Open Document Architecture (ODA), Multimedia and Hypermedia Coding Expert Group (MHEG), Standard Generalized Markup Language (SGML), Document Type Definition (DTD), Hypertext Markup Language (HTML) in Web Publishing. Case study of Applications	17	
5.	Multimedia Applications(4L): Interactive television, Video-on-demand, Video Conferencing, Educational Applications, Industrial Applications, Multimedia archives and digital libraries, media editors	4	

Text book and Reference books:

1. Ralf Steinmetz and Klara Nahrstedt , Multimedia: Computing, Communications & Applications , Pearson Ed.

2. Nalin K. Sharda , Multimedia Information System , PHI.

3. Fred Halsall , Multimedia Communications , Pearson Ed.

4. Koegel Buford , Multimedia Systems , Pearson Ed.

5. Fred Hoffstetter , Multimedia Literacy , McGraw Hill.

6. Ralf Steinmetz and Klara Nahrstedt , Multimedia Fundamentals: Vol. 1- Media Coding and Content Processing , PHI.

7. J. Jeffcoate, Multimedia in Practice: Technology and Application, PHI.

8. V.K. Jain, Multimedia and Animation, Khanna Publishing House, New Delhi (AICTE Recommended Textbook – 2018)

Soft Skill & Interpersonal Communication Code: OEC- DS 701C Contact: 3L

Name of the Course:	Soft Skil	& Interpersonal Communication	
Course Code OEC- DS 701C	Semester	: VII	
Duration: 6 months Maximum		Marks: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points:	3		

	Unit	Content		Hrs/Unit	Marks/Unit
1	Planning Understau Managem Developir	ion: A New Approach To Learning, And Goal-Setting, Human Perceptions: nding People, Types Of Soft Skills: Self- ent Skills, Aiming For Excellence: ng Potential And Self- Actualization, Need ent And SpiritualIntelligence	5		
2	Solution, Inter-Pers Conflicts: Types Of	Resolution Skills: Seeking Win-Win Inter-Personal Conflicts: Two Examples, sonal Conflicts: Two Solutions, Types Of Becoming AConflict Resolution Expert f Stress: Self-Awareness About Stress, g Stress: Making The Best Out Of Stress	5		
3	And Bad Breaking For Produ	uiding Principles, Habits: IdentifyingGood Habits, Habits: Habit Cycle, Bad Habits, Using The ZeigarnikEffect activity And Personal Growth,	5		
	_	Habits Of Success cation: Significance Of Listening,			_
4.	Communi Communi Telephon Telephon	cation: Active Listening, cation: Barriers To Active Listening, e Communication: Basic Telephone Skills , e Communication: Advanced Telephone Felephone Communication: Essential	5		

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Data Science

Synabab for Dr feen in	i Dutu Science
(Applicable from the academic	c session 2020-2021)

5.	TechnologyAndCommunication:TechnologicalPersonality,TechnologyAndCommunication:MobilePersonality?,Topic:	5
	Technology And Communication: E-Mail	
	Principles, Technology And Communication: How Not To Send E-Mails!, Technology And	
	Communication: Netiquette, Technology And	
	Communication: E-Mail Etiquette	
	Communication Skills: Effective	_
6	Communication, Barriers To Communication: Arising Out Of Sender/Receiver's Personality,	5
0	Barriers To Communication: Interpersonal	
	Transactions, Barriers To Communication:	
	Miscommunication, Non-Verbal	
	Communication: Pre-Thinking Assessment-1, Non-Verbal Communication: Pre-Thinking	
	Assessment-2	
	Nonverbal Communication: Introduction And	
	Importance, Non-Verbal Communication:	5
7	Issues And Types, Non-Verbal	
	Communication: Basics And Universals, Non- Verbal Communication: Interpreting Non-	
	Verbal Cues, Body Language: For Interviews,	
	Body Language: For Group Discussions	
	Presentation Skills: Overcoming Fear,	5
8	Presentation Skills: Becoming A Professional,	
	Presentation Skills: The Role Of Body Language, Presentation Skills: Using Visuals, :	
	Reading Skills: Effective Reading, Human	
	Relations: Developing Trust And Integrity	

TEXT BOOKS AND REFERENCES

- 1. Dorch, Patricia. What Are Soft Skills? New York: Execu Dress Publisher, 2013.
- 2. Kamin, Maxine. Soft Skills Revolution: A Guide for Connecting with Compassion for Trainers, Teams, and Leaders. Washington, DC: Pfeiffer & Company, 2013.
- 3. Klaus, Peggy, Jane Rohman & Molly Hamaker. *The Hard Truth about Soft Skills*. London: HarperCollins E-books, 2007.
- 4. Petes S. J., Francis. Soft Skills and Professional Communication. New Delhi: Tata McGraw-HillEducation, 2011.
- 5. Stein, Steven J. & Howard E. Book. The EQ Edge: Emotional Intelligence and Your Success. Canada: Wiley & Sons, 2006.

Project Management and Entrepreneurship Code: HSMC 701 **Contact:** 2L+1T

Name of the Course:	Project Management and Entrepreneurship		
Course Code: HSMC 701	Semester: VII		
Duration: 6 months Maximum Marks:		100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: 1hr		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points:	3		

ENTREPRENEURSHIP

- 1. Introduction: Meaning and Concept of Entrepreneurship, Innovation and entrepreneurship, Contributions of entrepreneurs to the society, risk-opportunities perspective and mitigation of risks [2L]
- Entrepreneurship An Innovation: Challenges of Innovation, Steps of Innovation Management, Idea Management System, Divergent v/s Convergent Thinking, Qualities of a prospective Entrepreneur [2L]
- 3. Idea Incubation: Factors determining competitive advantage, Market segment, blue ocean strategy, Industry and Competitor Analysis (market structure, market size, growth potential), Demand-supply analysis [4L]
- 4. Entrepreneurial Motivation: Design Thinking Driven Innovation, TRIZ (Theory of Inventive Problem Solving), Achievement motivation theory of entrepreneurship Theory of McClelland, Harvesting Strategies [2L]
- Information: Government incentives for entrepreneurship, Incubation, acceleration. Funding new ventures – bootstrapping, crowd sourcing, angel investors, Government of India's efforts at promoting entrepreneurship and innovation – SISI, KVIC, DGFT, SIDBI, Defense and Railways [4L]
- 6. Closing the Window: Sustaining Competitiveness, Maintaining Competitive Advantage, the Changing Role of the Entrepreneur. [2L]
- 7. Applications and Project Reports Preparation [4L]
- 8. PROJECT MANAGEMENT : Definitions of Project and Project Management, Issues and Problems in Project Management, Project Life Cycle - Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase [4L]
- 9. Project Feasibility Studies Pre-Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L]
- Project Planning Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L]

11. Project Scheduling and Costing – Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade-off

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Data Science

(Applicable from the academic session 2020-2021)

Analysis, Project Cost Reduction Methods. [6L]

12. Project Monitoring and Control – Role of Project Manager, MIS in Project Monitoring, Project Audit [2L]

13. Case Studies with Hands-on Training on MS-Project [4L]

Text Books and References

1. Innovision, Chelat, Khanna Book Publishing.

- 2. Innovation and Entrepreneurship by Drucker, P.F.; Harper and Row
- 3. Business, Entrepreneurship and Management: Rao, V.S.P. ;Vikas

4. Entrepreneurship: Roy Rajeev; OUP.

- 5. Text Book of Project Management: Gopalkrishnan, P. and Ramamoorthy, V.E.; McMillan
- 6. Project Management for Engineering, Business and Technology: Nicholas, J.M., and Steyn, H.; PHI
- 7. Project Management: The Managerial Process: Gray, C.F., Larson, E.W. and Desai, G.V.; MGH

Project-II

Code: PROJ-CS781 Contact: 12P

Contact. 121

Project work I

The object of Project Work I is to enable the student to take up investigative study in the broad field of Electronics & Communication Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on an individual basis or two/three students in a group, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:

Project Work II & Dissertation

The object of Project Work II & Dissertation is to enable the student to extend

further the investigative study taken up under EC P1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:

- 1. In depth study of the topic assigned in the light of the Report prepared under EC P1;
- 2. Review and finalization of the Approach to the Problem relating to the assigned topic;
- 3. Preparing an Action Plan for conducting the investigation, including team work;

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Data Science

(Applicable from the academic session 2020-2021)

- 4. Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
- 5. Final development of product/process, testing, results, conclusions and future directions;
- 6. Preparing a paper for Conference presentation/Publication in Journals, if possible;
- 7. Preparing a Dissertation in the standard format for being evaluated by the Department.
- 8. Final Seminar Presentation before a Departmental Committee.