Introduction to control problem- Industrial control examples, Transfer function, open loop and closed loop (Feedback) control systems, Block diagram and Signal Flow Graph (SFG) analysis.

Feedback control systems- Stability concept- relative stability, Routh stability criteria, steady state error (SE), steady state accuracy, disturbance rejection, insensitivity and robustness, proportional (P), integral (I) and derivative (D)controller, Realization of PID controllers with op-amp and digital implementation. Feed forward and multi loop control configurations.

State Variable Analysis- Concepts of state, state variable, State Transition Matrix (STM), Solution for state variable of homogeneous and nonhomogeneous state equations, Transfer function with state space approach, Concepts of controllability and observability of systems.

CRO- measurement with it and its function with block diagram representation. Wave and Spectrum analyzers- requirements of these instruments and their functions with block diagrams. LVDT. DC and AC servomotors, tacho generators, electro hydraulic valves, hydraulic servomotors, electro pneumatic valves, pneumatic actuators.

Text Books:

1. Automatic Control System: Benjamin Kuo, PHI
2. Modern Control Engineering, Katsuhiko Ogatha, PHI, 5e
Reference

2. Control System Engineering, I.J.Nagrath, M.Gopal, New Age, 5e
3. Design of Feedback Control System, Raymond T Stepfani, Oxford University Press, 4e

Course Outcomes (CO):
At the end of this course students will demonstrate the ability to:

1. Characterize a system and find its steady state behavior.
2. Investigate stability of a system using different tests.
3. Design various controllers.
4. Solve linear, non linear and optimal control problems.
5. Study with CRO, Wave analyzer, Spectrum analyzer knowing their functional details.
Module I
Overview of Data Communication and Networking: [4L]
Introduction: Data communications: components, data representation (ASCII, ISO etc.), direction of data flow (simplex, half duplex, full duplex); network criteria, physical structure (type of connection, topology), categories of network (LAN, MAN, WAN); Internet: brief history, Protocols and standards; Reference models: OSI reference model, TCP/IP reference model, their comparative study.
Physical Level: [6L]
Overview of data (analog & digital), signal (analog & digital), transmission (analog & digital) & transmission media (guided & unguided); Circuit switching: time division & space division switch, TDM bus; Telephone Network;

Module II
Data link Layer: [5L]
Types of errors, framing (character and bit stuffing), error detection & correction methods; Flow control; Protocols: Stop & wait ARQ, Go-Back - N ARQ, Selective repeat ARQ, HDLC;
Medium Access sub layer: [5L]
Point to Point Protocol, LCP, NCP, Token Ring; Reservation, Polling, Multiple access protocols: Pure ALOHA, Slotted ALOHA, CSMA, CSMA/CD, CSMA/CA Traditional Ethernet, fast Ethernet (in brief);

Module III
Network layer: [8L]
Internetworking & devices: Repeaters, Hubs, Bridges, Switches, Router, Gateway; Addressing : IP addressing, subnetting; Routing : techniques, static vs. dynamic routing, Unicast Routing Protocols: RIP, OSPF, BGP; Other Procols: ARP, IP, ICMP, IPV6;
Transport layer: [4L]
Process to Process delivery; UDP; TCP; Congestion Control: Open Loop, Closed Loop choke packets; Quality of service: techniques to improve QoS: Leaky bucket algorithm, Token bucket algorithm,

Module IV
Application Layer [5L]
Introduction to DNS, SMTP, SNMP, FTP, HTTP & WWW; Security: Cryptography (Public, Private Key based), Digital Signature, Firewalls.
Modern topics: [5L]
ISDN services & ATM, DSL technology, Cable Modem:
Architecture & Operation in brief Wireless LAN: IEEE 802.11,
Introduction to blue-tooth.
Maulana Abul Kalam Azad University of Technology, West Bengal
(Formally West Bengal University of Technology)

Syllabus for B. Tech in Electronics & Communication Engineering
(Applicable from the academic session 2018-2019)

Text Books:
1. B. A. Forouzan - “Data Communications and Networking (3rd Ed.)” - TMH
3. W. Stallings - “Data and Computer Communications (5th Ed.)” - PHI/ Pearson Education
4. Zheng & Akhtar, Network for Computer Scientists & Engineers, OUP
5. Black, Data & Computer Communication, PHI
6. Miller, data Communication & Network, Vikas
7. Miller, Digital & Data Communication, Jaico
8. Shay, Understanding Data Communication & Network, Vikas

Reference Books:
1. Kurose and Rose - “Computer Networking -A top down approach featuring the internet” - Pearson Education
2. Leon, Garica, Widjaja - “Communication Networks” - TMH
3. Walrand - “Communication Networks” - TMH.
Maulana Abul Kalam Azad University of Technology, West Bengal
(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electronics & Communication Engineering
(Applicable from the academic session 2018-2019)

<table>
<thead>
<tr>
<th>HS-HU 601</th>
<th>Economics for Engineers</th>
<th>3L:0T:0P</th>
<th>3 credits</th>
</tr>
</thead>
</table>

Module-I

Module-II

Module-III
5. Inflation And Price Change - Definition, Effects, Causes, Price Change with Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes In Engineering Economic Analysis, Cash Flows that inflate at different Rates.

Module-IV

Readings
2. Donald Newnan, Ted Eschembach, Jerome Lavelle : Engineering Economics Analysis, OUP
5. R.Paneer Seelvan: Engineering Economics, PHI
Maulana Abul Kalam Azad University of Technology, West Bengal
(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electronics & Communication Engineering
(Applicable from the academic session 2018-2019)

<table>
<thead>
<tr>
<th>EC692</th>
<th>Computer Network Lab</th>
<th>0L:0T:2P</th>
<th>1 credits</th>
</tr>
</thead>
</table>

- IPC (Message queue)
- NIC Installation & Configuration (Windows/Linux)
- Familiarization with
 - Networking cables (CAT5, UTP)
 - Connectors (RJ45, T-connector)
 - Hubs, Switches
- TCP/UDP Socket Programming
- Multicast & Broadcast Sockets
- Implementation of a Prototype Multithreaded Server
- Implementation of
 - Data Link Layer Flow Control Mechanism (Stop & Wait, Sliding Window)
 - Data Link Layer Error Detection Mechanism (Cyclic Redundancy Check)
 - Data Link Layer Error Control Mechanism (Selective Repeat, Go Back N)
1. Familiarization with MATLAB control system toolbox and representation of pole zero and transfer function of control system.

2. Determination of transfer function of a given system from its state model and its vice-versa.

3. Determination of impulse & step response for 2nd order under damped system on CRO & calculation of control system specifications for variation of system design.

4. Determination of root Locus from transfer function and evaluation of system parameters like marginal value of gain, frequency etc. of a given control system.

5. Drawing of Nyquist plot and Bode plot from transfer function of a control system and estimation of relative system parameters like gain margin, phase margin etc.

6. Design PI, PD and PID controller for specified system requirements.

7. Study of static (accuracy, precision, repeatability, linearity) and dynamic (fidelity, speed of response) characteristics of a measuring instrument.

8. Design and study of Instrumentation Amplifier.

9. Study and analysis of electrical signal with CRO.
Guidelines:

1. The mini-project is a team activity having 3-4 students in a team. This is electronic product design work with a focus on electronic circuit design.

2. The mini project may be a complete hardware or a combination of hardware and software. The software part in mini project should be less than 50% of the total work.

3. Mini Project should cater to a small system required in laboratory or real life.

4. It should encompass components, devices, analog or digital ICs, micro controller with which functional familiarity is introduced.

5. After interactions with course coordinator and based on comprehensive literature survey/need analysis, the student shall identify the title and define the aim and objectives of mini-project.

6. Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and submit the proposal within first week of the semester.

7. The student is expected to exert on design, development and testing of the proposed work as per the schedule.

8. Art work and Layout should be made using CAD based PCB simulation software. Due considerations should be given for power requirement of the system, mechanical aspects for enclosure and control panel design.

9. Completed mini project and documentation in the form of mini project report is to be submitted at the end of semester.

10. The tutorial sessions should be used for discussion on standard practices used for electronic circuits/product design, converting the circuit design into a complete electronic product, PCB design using suitable simulation software, estimation of power budget analysis of the product, front panel design and mechanical aspects of the product, and guidelines for documentation/report writing.

Course Outcomes:
At the end of the course, students will demonstrate the ability to:

1. Conceive a problem statement either from rigorous literature survey or from the requirements raised from need analysis.

2. Design, implement and test the prototype/algorithm in order to solve the conceived problem.

3. Write comprehensive report on mini project work.
Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
2. Self-Exploration-what is it? - Its content and process; ‘Natural Acceptance’ and Experiential Validation- as the process for self-exploration
3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
6. Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

7. Understanding human being as a co-existence of the sentient ‘I’ and the material ‘Body’
8. Understanding the needs of Self (‘I’) and ‘Body’ - happiness and physical facility
9. Understanding the Body as an instrument of ‘I’ (I being the doer, seer and enjoyer)
10. Understanding the characteristics and activities of ‘I’ and harmony in ‘I’
11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one’s own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
14. Understanding the meaning of Trust; Difference between intention and competence
15. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
16. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.
Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students’ lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence
18. Understanding the harmony in the Nature
19. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature
20. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
21. Holistic perception of harmony at all levels of existence. Include practice sessions to discuss human being as cause of imbalance in nature (film “Home” can be used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics
22. Natural acceptance of human values
23. Definitiveness of Ethical Human Conduct
24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
26. Case studies of typical holistic technologies, management models and production systems
27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations
28. Sum up.
Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. to discuss the conduct as an engineer or scientist etc.

3. READINGS:
3.1 Text Book

3.2 Reference Books
3. The Story of Stuff (Book).
4. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi
5. Small is Beautiful - E. F Schumacher.
6. Slow is Beautiful - Cecile Andrews
7. Economy of Permanence - J C Kumarappa
8. Bharat Mein Angreji Raj - PanditSunderlal
9. Rediscovering India - by Dharampal
10. Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi
12. Vivekananda - Romain Rolland (English)
13. Gandhi - Romain Rolland (English)
Introduction and Historical Background,

Scaling Effects.

Micro/Nano Sensors, Actuators and Systems overview: Case studies. Review of Basic MEMS fabrication modules: Oxidation, Deposition Techniques, Lithography (LIGA), and Etching. Micromachining: Surface Micromachining, sacrificial layer processes, Stiction;

Text/Reference Book:

Course Outcomes:
At the end of the course the students will be able to
1. Appreciate the underlying working principles of MEMS and NEMS devices.
2. Design and model MEM devices.
Maulana Abul Kalam Azad University of Technology, West Bengal
(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electronics & Communication Engineering
(Applicable from the academic session 2018-2019)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE-EC603B</td>
<td>Bio-Medical Electronics</td>
<td>3L:0T:0P</td>
</tr>
</tbody>
</table>

Brief introduction to human physiology.

Biomedical transducers: displacement, velocity, force, acceleration, flow, temperature, potential, dissolved ions and gases. Bio-electrodes and bio-potential amplifiers for ECG, EMG, EEG, etc.

Prostheses and aids: pacemakers, defibrillators, heart-lung machine, artificial kidney, aids for the handicapped. Safety aspects.

Text/Reference Books:

Course Outcomes:
At the end of the course, students will demonstrate the ability to:
1. Understand the application of the electronic systems in biological and medical applications.
2. Understand the practical limitations on the electronic components while handling bio-substances.
3. Understand and analyze the biological processes like other electronic processes.
PE-EC603C | CMOS VLSI Design | 3L:0T:0P | 3 credits

VLSI Methodologies: Introduction to VLSI design, Moore’s Law, VLSI Design flow, Design hierarchy, VLSI Design style: Full custom, Gate array, standard-cell, Macro cell based design, Field programmable devices, design quality.

MOSFET: Electrical characteristics of MOSFET, Threshold voltage, Body effect, current expression (gradual channel approximation method), Channel length modulation, MOSFET scaling: constant field and constant voltage scaling, Short-channel effects.

Unit process in VLSI and IC fabrication: Unit process in VLSI: Wafer preparation, Oxidation, Diffusion, Ion implantation, Deposition, Metallization, Etching and Lithography. nMOS fabrication, n-well and p-well process.

CMOS Logic Circuits: General CMOS logic structure, VTC of inverter, noise margin, Different types of inverter (resistive load, enhancement and depletion nMOS load and CMOS), Switching characteristic (propagation delay and parasitic capacitance estimation), NAND, NOR and other complex CMOS logic circuits, Sizing of CMOS logic circuits, CMOS Power: static and dynamic power dissipation, latch-up, sizing for large capacitive load, Dynamic CMOS logic circuits, charge leakage and charge sharing problem, dynamic gate cascading problem, Domino and NORA logic, Introduction of sequential CMOS logic circuits, Stick diagram. Layout and Layout design rules.

Physical Design Automation: Objectives and goals of partitioning, floor planning and placement, Global routing.

Text Book

Reference Book
2. VLSI Design and EDA Tools – Angsuman Sarkar, Swapnadip De & Chandan Kumar Sarkar, Scitech Publication(India) PVT, LTD
Basics of information theory, entropy for discrete ensembles; Shannon's noiseless coding theorem; Encoding of discrete sources.

Markov sources; Shannon's noisy coding theorem and converse for discrete channels; Calculation of channel capacity and bounds for discrete channels; Application to continuous channels.

Techniques of coding and decoding; Huffman codes and uniquely detectable codes; Cyclic codes, convolutional arithmetic codes.

Text/Reference Books:

Course Outcomes:
At the end of the course, students will demonstrate the ability to:
1. Understand the concept of information and entropy
2. Understand Shannon’s theorem for coding
3. Calculation of channel capacity
4. Apply coding techniques
Maulana Abul Kalam Azad University of Technology, West Bengal
(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electronics & Communication Engineering
(Applicable from the academic session 2018-2019)

| OE-EC604A | Electronic Measurement & Measuring Instruments | 3L:0T:0P | 3 credits |

UNIT I:
Block Schematics of Measuring Systems:
Performance characteristics, Static characteristics, Accuracy, Precision, Resolution, Types of Errors, Dynamic Characteristics, Repeatability, Reproducibility, Fidelity, Lag;

UNIT II:

UNIT III:
Oscilloscopes: CRT, Block Schematic of CRO, Time Base Circuits, Lissajous Figures, CRO Probes, High Frequency CRO Considerations, Delay lines, Applications: Measurement of Time, Period and Frequency.
Special Purpose Oscilloscopes: Dual Trace, Dual Beam CROs, Sampling Oscilloscopes, Storage Oscilloscopes, Digital Storage CROs.

UNIT IV:
Transducers: Classification, Strain Gauges, Bounded, unbounded; Force and Displacement Transducers, Resistance Thermometers, Hotwire Anemometers, LVDT, Thermocouples, Synchros, Special Resistance Thermometers, Piezoelectric Transducers, Magnetostrictive Transducers.

UNIT V:
Bridges: Wheat Stone Bridge, Kelvin Bridge, and Maxwell Bridge.

TEXTBOOKS:
REFERENCES:

OUTCOMES
Upon a successful completion of this course, the student will be able to:

1. Describe the fundamental concepts and principles of instrumentation
2. Explain the operation of various instruments required in measurements
3. Apply the measurement techniques for different types of tests
4. To select specific instruments for specific measurement function.
5. Understand principle of operation and working of different electronic instruments
Students will understand functioning, specification and application of signal analyzing instruments
OE-EC604B Operating System 3L:0T:0P 3 credits

Introduction:
Operating system and functions, Evolution of operating system, Batch, Interactive, Time Sharing, Real Time System, Multi-Threading System.

Operating System Structure:
System Components, System structure, Operating System Services.

Concurrent Processes:

CPU Scheduling:
Scheduling Concept, Performance Criteria Scheduling Algorithm, Evolution, Multiprocessor Scheduling.

Deadlock:
System Model, Deadlock Characterization, Prevention, Avoidance and Detection, Recovery from deadlock combined, approach.

Memory Management:
Resident monitor, Multiprogramming with fixed partition, Multiprogramming with variable partition, Multiple base register, Paging, Segmentation, Virtual memory concept, Demand paging, Performance, Page replacement algorithms, Allocation of frames, Thrashing.

I/O Management & Disk Scheduling:
I/O devices and organization of I/O function, I/O Buffering, DISK I/O, Operating System Design Issues.

File System:

Operating system Protection & Security:
Introduction to distributed operating system, Case Studies - The UNIX operating system

Text Book

Reference Book
2. An introduction to operating system, Dietel, Addision Wesley
Course Outcome: At the end of the course, the students will be able to:
1. understand the difference between different types of modern operating systems, virtual machines and their structure of implementation and applications.
2. understand the difference between process & thread, issues of scheduling of user-level processes / threads and their issues & use of locks, semaphores, monitors for synchronizing multiprogramming with multithreaded systems and implement them in multithreaded programs.
3. understand the concepts of deadlock in operating systems and how they can be managed / avoided and implement them in multiprogramming system.
4. understand the design and management concepts along with issues and challenges of main memory, virtual memory and file system.
5. understand the types of I/O management, disk scheduling, protection and security problems faced by operating systems and how to minimize these problems.
paradigm:
Evolution of programming paradigm, structured versus object-oriented development,
Introduction to Object oriented programming concepts: Objects, classes, encapsulation and
abstraction, inheritance, polymorphism, dynamic binding, message passing.

Moving from C to C++:
Introduction to C++, streams based I/O, name space, scope resolution operator (::), variable
declaration at the point of use, variable aliases-reference variables, strict type checking,
parameter passing by reference, inline function, function overloading, default arguments.

Object and Classes:
Specifying and using classes, access specifies: private, public, functions and data members,
default arguments, function overloading, friend functions, static members.
Objects: memory considerations for objects, new and delete operators.
Constructors - default constructor, parameterized constructor, constructor with dynamic
allocation, copy constructor, destructors.

Operator overloading - overloading through friend and member functions
Binary operators: arithmetic, relational, assignment , insertion, extraction
Unary operators: unary minus , post and pre- increment, post and pre- decrement,
Conversion functions : class to basic, basic to class, class to class.

Inheritance:
Derived and base classes, Class hierarchies, public, private, and protected derivations,
constructors in derived classes, destructors in derived classes, constructors invocation and data
members initialization in derived classes, classes within classes, virtual base class.

Polymorphism:
Pointer to objects, pointer to derived class object, this pointer, run time and compile time
polymorphism, virtual functions, pure virtual functions, abstract class, virtual destructor.

Files and Streams:
Introduction to file handling, hierarchy of file stream classes, opening and closing of files, file
modes, file pointers and their manipulators, sequential access, random access.

Exception handling and Templates :
Introduction to exception handling, throw point outside try, Multiple catch, Catch-all, throwing
objects. Introduction to templates, class templates, function templates

Text Book
Reference Book

Course Outcome: At the end of the course, the students will be able to:

1. differentiate between structures oriented programming and object oriented programming.
2. use object oriented programming language like C++ and associated libraries to develop object oriented programs.
3. understand and apply various object oriented features like inheritance, data abstraction, encapsulation and polymorphism to solve various computing problems using C++ language.
4. apply concepts of operator-overloading, constructors and destructors.
5. apply exception handling and use built-in classes from STL.