Syllabus for B.Tech Information Technology

CURRICULUM for B.TECH in INFORMATION TECHNOLOGY

Sl. No.	Type of course	Code	Course Title	Н	Hours per week		
				Lecture	Tutorial	Practical	
1	Engineering Science Course	ESC-301	Digital Electronics	3	0	4	5
2	Professional Core Courses	PCC-IT301	Data Structure & Algorithms	3	0	4	5
3	Engineering Science Course	ESC 302	Signals & System	3	0	0	3
4	Professional Core Courses	PCC-IT302	IT Workshop (Sci Lab/ R)	0	0	4	2
5	Basic Science course	BSC-301	Mathematics-III	2	0	0	2
6	Basic Science course	BSC-302	Biology	3	0	0	3
	Total credits 20						

Semester III (Second year)

Semester IV (Second year)

Sl. No	Type of course	Code	Course Title	Hours per week			Credits
				Lecture	Tutorial	Practical	
1	Professional Core Courses	PCC-IT401	Discrete Mathematics	3	1	0	4
2	Engineering Science Course	PCC-IT402	Computer Organization & Architecture	3	0	4	5
3	Professional Core Courses	PCC-IT403	Formal Language & Automata Theory	3	0	0	3
4	Professional Core Courses	PCC-IT404	Communication Engineering	3	0	4	5
5	Humanities &	HSMC-	Economics For	3	0	0	3

	Social Sciences including Management	401	Engineers				
	courses						
6	Mandatory	MC-401	Environmental	1	-	-	0
	Courses		Sciences				
					Total ci	edits	20

Semester V (Third year)

Sl. No.	Type of course	Code	Course Title	Н	ours per	week	Credits
				Lecture '	Tutorial	Practical	
1	Professional Core Courses	PCC- IT501	Design Analysis & Algorithm	3	0	4	5
2	Professional Core Courses	PCC- IT502	DBMS	3	0	4	5
3	Professional Core Courses	PCC- IT503	Operating Systems	3	0	4	5
4	Professional Core Courses	PCC- IT504	Object Oriented Programming with Python	2	0	4	4
5	Humanities &Social Sciences including Management courses	HSMC- 501	Introduction to Industrial Management (Humanities III)	3	0	0	3
6	Professional Elective courses	PEC- IT501	(Elective-I) Human Computer Interaction / Advanced Computer Architecture/ Computer Graphics	3	0	0	3
7	Mandatory Courses	MC-IT501	Constitution of India/Essence of Indian Knowledge Tradition	-	-	-	1
					Tota	l credits	26

Sl. No	Type of course	Code	Course Title	ŀ	Hours per week		
				Lectur e	Tutorial	Practical	
1	Professional Core Courses	PCC- IT601	Software Engineering	3	0	4	5
2	Professional Core Courses	PCC-IT602	Computer Networks	3	0	4	5
3	Professional Elective courses	PEC-IT601	(Elective-II) Compiler Design /Distributed Systems / Image Processing	3	0	4	5
4	Professional Elective courses	PEC-IT602	(Elective-III) Artificial Intelligence /Internet of Things /Natural Language Processing/Machin e Learning	3	0	0	3
5	Open Elective courses	OEC-IT601	(Open Elective-) Big Data Analytics/Cyber Law &Ethics/Mobile Computing/Bioinfo rmatics/Robotics	3	0	0	3
6	Project	PROJ- IT601	Project-1	0	0	6	3
	Total credits						24

Semester VI (Third year)

Semester VII (Fourth year)

Sl.	Type of course	Code	Course Title	Hours per week		Credits	
No.							
				Lectur	Tutorial	Practical	
				e			

					Tota	al credits	18
5	Project	PROJ- IT701	Project-II	0	0	12	6
4	Humanities &Social Sciences including Management courses	HSMC- 701	Management 1 (Organizational Behaviour)	3	0	0	3
3	Open Elective courses	OEC-IT701	(Open Elective-II) Operations Research/Introduction to Philosophical Thoughts/ Soft Skill & Interpersonal Communication/Numeri cal Methods	3	0	0	3
2	Professional Elective courses	PEC-IT702	(Elective-V) Multimedia Technology/Information Theory and Coding/Cyber Security/Cloud Computing	3	0	0	3
1	Professional Elective courses	PCC-IT701	Internet &Web Technology	3	0	0	3

Semester VIII (Fourth year) [Summer Industry Internship]

Sl. No.	Type of course	Code	Course Title	Н	Hours per week		Credits
				Lecture	Tutorial	Practical	
1	Professional Elective courses	PCC- IT801	Information Security	3	0	0	3
2	Open Elective courses	OEC- IT801	Digital Signal Processing/ Natural Language Processing	3	0	0	3
3	Open Elective courses	OEC- IT802	(Open Elective-IV) E-Commerce and ERP/ Economic Policies in India/Remote Sensing & GIS	3	0	0	3

4	Project	PROJ- IT801	Project-III	0	0	12	6
					Tota	al credits	15

SEMESTER – III

Digital Electronics Code: ESC-301 Contact: 3L+4P

Name	of the Course:	Digital Electronics				
Cours	e Code: ESC-301	Semester:III				
Durat	ion:6 months	s Maximum Marks:100				
Teach	ning Scheme		Examination Scheme			
Theor	y:3 hrs./week		Mid Semester exam: 15			
Tutorial: NIL			Assignment and Quiz: 10 marks			
			Attendance: 5 marks			
Practical: 4 hrs./week End Semester Exam :70 Marks			End Semester Exam :70 Marks			
Credit	t Points:	5				
Objec	ctive:					
1	To acquire the ba	asic knowledge of digita	l logic levels and application of knowledge			
	to understand di	gital electronics circuits				
2	To prepare stu	dents to perform the	analysis and design of various digital			
	electronic circuit	S				
Pre-R	lequisite:					
1	Basic Electronics	Parts I & II learned in t	he First year, semesters 1 & 2. Basic BJTs,.			
2	Basic concept of the working of P-N diodes, Schottky diodes,					
3	Basic FETs and O	PAMP as a basic circuit	component. Concept of Feedback			

Unit	Content	Hrs/Unit	Marks/Unit
	Different Classes of Amplifiers - (Class-A, B, AB		
1	and C - basic concepts, power, efficiency;	9	
	Recapitulation of basic concepts of Feedback and		
	Oscillation, Phase Shift, Wein Bridge oscillators		
	Astable&MonostableMultivibratorsSchimtt		
	Trigger circuits, 555 Timer.		
	Binary Number System & Boolean Algebra		
2	(recapitulation); BCD, ASCII, EBDIC, Gray codes	11	
	and their conversions; Signed binary number		
	representation with 1's and 2's complement		
	methods, Binary arithmetic, Venn diagram,		
	Boolean algebra (recapitulation); Representation		
	in SOP and POS forms; Minimization of logic		

	expressions by algebraic method.		
	Combinational circuits - Adder and Subtractor		
	circuits (half & full adder &subtractor); Encoder,		
	Decoder, Comparator, Multiplexer, De-		
	Multiplexer and Parity Generator		
	Sequential Circuits - Basic Flip-flop & Latch,		
3	Flip-flops -SR, JK, D, T and JK Master-slave Flip	10	
	Flops, Registers (SISO, SIPO, PIPO, PISO) Ring		
	counter, Johnson counter		
	Basic concept of Synchronousand Asynchronous		
	counters (detail design of circuits excluded),		
	Design of Mod N Counter		
	A/D and D/A conversion techniques – Basic		
4.	concepts (D/A :R-2-R only [2L]	6	
	A/D: successive approximation [2L])		
	Logic families- TTL, ECL, MOS and CMOS - basic		
	concepts. (2L)		

Text book and Reference books:

- 1. Microelectronics Engineering –Sedra& Smith-Oxford.
- 2. Principles of Electronic Devices & circuits—B L Thereja&Sedha—S Chand
- 3. Digital Electronics Kharate Oxford
- 4. Digital Electronics Logic & Systems by J.Bigmell&R.Donovan; Cambridge Learning.
- 5. Digital Logic and State Machine Design (3rd Edition) D.J.Comer, OUP
- 6. Electronic Devices & Circuit Theory Boyelstad&Nashelsky PHI
- 7. Bell-Linear IC & OP AMP—Oxford
- 8. P.Raja- Digital Electronics- Scitech Publications
- 9. Morries Mano- Digital Logic Design- PHI
- 10. R.P.Jain—Modern Digital Electronics, 2/e ,McGraw Hill
- 11. H.Taub&D.Shilling, Digital Integrated Electronics- McGraw Hill.
- 12. D.RayChaudhuri- Digital Circuits-Vol-I & II, 2/e- Platinum Publishers
- 13. Tocci, Widmer, Moss-Digital Systems,9/e-Pearson
- 14. J.Bignell&R.Donovan-Digital Electronics-5/e- Cenage Learning.
- 15. Leach & Malvino—Digital Principles & Application, 5/e, McGraw Hill
- 16. Floyed& Jain- Digital Fundamentals-Pearson.

Course Outcomes:

On completion of the course students will be able to

ESC-301.1 Realize the basic operations of different analog components.

ESC-301.2 Realize basic gate operations and laws Boolean algebra.

ESC-301.3 Understand basic structure of digital computer, stored program concept and different arithmetic and control unit operations.

Data Structure & Algorithm Code: PCC-CS301 Contacts: 3L+4P

Name	ne of the Course: Data Structure & Algorithm		Algorithm		
Cours	se Code: PCC-CS301	Semester:III	Semester:III		
Durat	tion: 6 months	Maximum Marks:	100		
Teacl	hing Scheme		Examination Scheme		
Theor	ry:3 hrs./week		Mid Semester exam: 15		
Tutor	ial: NIL		Assignment and Quiz: 10 marks		
	Attendance : 5 marks				
Practical: 4 hrs./week			End Semester Exam :70 Marks		
Credi	Credit Points: 5				
Objec	ctive:				
1	To learn the basics	of abstract data typ	es.		
2	To learn the principles of linear and nonlinear data structures.				
3	3 To build an application using sorting and searching				
Pre-F	Pre-Requisite:				
1	1 CS 201 (Basic Computation and Principles of C				
2	M101 & M201 (Mathematics), basics of set theory				

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Basic Terminologies: Elementary Data Organizations, Data StructureOperations: insertion, deletion, traversal etc.; Analysis of an Algorithm, AsymptoticNotations, Time-Space trade off. Searching: Linear Search and Binary Search Technique sand their complexity analysis.	10	
2	Stacks and Queues: ADT Stack and its operations: Algorithms and their complexityanalysis, Applications of Stacks: Expression Conversion and evaluation – correspondingalgorithms and complexity analysis. ADT queue, Types of Queue: Simple Queue, CircularQueue, Priority Queue; Operations on each types of Queues: Algorithms and their analysis.	9	
3	Linked Lists: Singly linked lists: Representation in memory, Algorithms of severaloperations: Traversing, Searching, Insertion into, Deletion from linked list; Linkedrepresentation of Stack and Queue, Header nodes, Doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and thecomplexity analysis.	10	

	Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded BinaryTree, Binary Search Tree, AVL Tree; Tree operations on each of the trees and theiralgorithms with complexity analysis. Applications of Binary Trees. B Tree, B+ Tree:definitions, algorithms and analysis		
4.	Sorting and Hashing: Objective and properties of different sorting algorithms:Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort;Performance and Comparison among all the methods, Hashing.Graph: BasicTerminologies and Representations, Graph search and traversal algorithms and complexity analysis.	9	

Text book and Reference books:

1. "Data Structures and Program Design In C", 2/E by Robert L. Kruse, Bruce P. Leung.

2. "Fundamentals of Data Structures of C" by Ellis Horowitz, SartajSahni, Susan Anderson-freed.

3. "Data Structures in C" by Aaron M. Tenenbaum.

4. "Data Structures" by S. Lipschutz.

5. "Data Structures Using C" by ReemaThareja.

6. "Data Structure Using C", 2/e by A.K. Rath, A. K. Jagadev.

7. "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein

Course Outcomes:

On completion of the course students will be able to

PCC-CS301.1 Differentiate how the choices of data structure & algorithm methods impact the performance of program.

PCC-CS301.2Solve problems based upon different data structure & also write programs.

PCC-CS301.3Identify appropriate data structure & algorithmic methods in solving problem.

PCC-CS301.4Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing

PCC-CS301.5Compare and contrast the benefits of dynamic and static data structures implementations.

Signals & Systems Code: ESC501 Contacts: 3L

Name of the Course:	Signals & Systems
Course Code: ESC-501	Semester: V

Duration: 6 months	Maximum	Maximum Marks: 100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points: 3			

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction to Signals and Systems : Signals and systems as seen in everyday life, and in various branches of engineering and science. Signal properties: periodicity, absolute integrability, determinism and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential, some special time-limited signals; continuous and discrete time signals, continuous and discrete amplitude signals. System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability, realizability.Examples.	3	
2	Behavior of continuous and discrete-time LTI systems (8 hours) Impulse response and step response, convolution, input-output behavior with periodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of systems. State-Space Analysis, Multi-input, multi- output representation. State Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response.	8	
3	Fourier, Laplace and z- Transforms Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete- Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of	10	

	system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. The z-Transform for discrete time signals and systems, system functions, poles and zeros of systems and sequences, z-domain analysis.		
4.	The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero- order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems.	9	

Text book and Reference books:

- 1. A. V. Oppenheim, A. S. Willsky and S. H. Nawab, "Signalsand systems", Prentice Hall India,1997.
- 2. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and Applications", Pearson,2006.
- 3. H. P. Hsu, "Signals and systems", Schaum'sseries, McGraw Hill Education, 2010.
- 4. S. Haykinand B. V. Veen, "Signals and Systems", John Wiley and Sons, 2007.
- 5. A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall, 2009.
- 6. M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.
- 7. B. P. Lathi, "LinearSystems and Signals", Oxford University Press, 2009.
- 8. A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall,2009.
- 9. M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.
- 10. B. P. Lathi, "LinearSystems and Signals", Oxford University Press, 2009.

Course Outcomes:

- On completion of the course students will be able to
- Understand the concepts of continuous time and discrete time systems.
- Analyse systems in complex frequency domain.
- Understand sampling theorem and its implications.
- Understand the concepts of continuous time and discrete time systems.

Computer Organization Code: PCC-CS302 Contacts: 3L+4P

Name	e of the Course:	Computer Organization		
Cours	se Code: PCC-CS302	Semester:III		
Durat	tion:6 months	Maximum Mark	is:100	
Teacl	hing Scheme		Examination Scheme	
Theor	ry:3 hrs./week		Mid Semester exam: 15	
Tutor	ial: NIL		Assignment and Quiz : 10 marks	
			Attendance: 5 marks	
Practi	ical: 4 hrs./week		End Semester Exam:70 Marks	
Credi	Credit Points: 5			
Objec	Objective:			
1	To prepare students to perform the analysis and design of various digital			
	electronic circuits.			
2	To know how Computer Systems work & its basic principles			
3	To know how I/O devices are being accessed and its principles etc			
Pre-F	Requisite:			
1	1 Concept of basic components of a digital computer, Basic concept of Fundamentals			
	&Programme structures. Boolean Algebra			
2	Basic number systems, Binary numbers, representation of signed and unsigned			
			ed in Basic Computation & Principles of	
	Computer Programn	ning		
3	Boolean Algebra			

Unit	Content	Hrs/Unit	Marks/Unit
1	Basic organization of the stored program computer and operation sequence for execution of a program. Role of operating systems and compiler/assembler. Fetch, decode and execute cycle, Concept of operator, operand, registers and storage, Instruction format. Instruction sets and addressing	8	
	modes. [7L] Commonly used number systems. Fixed and floating point representation of numbers.[1L]		
2	Overflow and underflow. Design of adders - ripple carry and carry look ahead principles. [3L] Design of ALU. [1L] Fixed point multiplication -Booth's algorithm. [1L] Fixed point division - Restoring and non-restoring algorithms. [2L] Floating point - IEEE 754 standard. [1L]	8	
3	Memory unit design with special emphasis on implementation of CPU-memory interfacing. [2L] Memory organization, static and dynamic memory,	10	

	memory hierarchy, associative memory. [3L] Cache memory, Virtual memory. Data path design for read/write access. [5L]		
4.	Design of control unit - hardwired and microprogrammed control. [3L] Introduction to instruction pipelining. [2L] Introduction to RISC architectures. RISC vs CISC architectures. [2L] I/O operations - Concept of handshaking, Polled I/O, interrupt and DMA. [3L]	10	

Text book and Reference books:

- 1. Mano, M.M., "Computer System Architecture", PHI.
- 2. BehroozParhami"ComputerArchitecture", Oxford University Press
- 3. Hayes J. P., "Computer Architecture & Organisation", McGraw Hill,
- 4. Hamacher, "Computer Organisation", McGraw Hill,

5. N. senthil Kumar, M. Saravanan, S. Jeevananthan, "Microprocessors and Microcontrollers" OUP

- 6. Chaudhuri P. Pal, "Computer Organisation & Design", PHI,
- 7. P N Basu- "Computer Organization & Architecture", Vikas Pub

Course Outcomes:

On completion of the course students will be able to

PCC-CS302.1 Understand basic structure of digital computer, stored program concept and different arithmetic and control unit operations.

PCC-CS302.2 Understand basic structure of different combinational circuits- multiplexer, decoder, encoder etc.

PCC-CS302.3 Perform different operations with sequential circuits.

PCC-CS302.4 Understand memory and I/O operations.

Mathematics-III (Differential Calculus) Code: BSC-301

Contacts:2L

Name of the Course:	Mathematics-III (Differential Calculus)	
Course Code: BSC-301	Semester:III	
Duration:6 months	Maximum Mark	rs:100
Teaching Scheme		Examination Scheme
Theory:2 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points: 2		

Objec	ctive:	
1	To know Convergence of sequence and series	
2	To know Limit, continuity and partial derivatives, Chain rule, Implicit function	
3	To know First Order Differential Equation, Exact, Linear and Bernoulli's	
	equations,Basic Concept of graph, Walk, Path Circuit, Euler and Hamiltonian	
	graph, diagraph	
Pre-F	Requisite:	
1	Concept Linear Algebra Determinant and its properties (up to third order)	
2	Minor and cofactors, Matrices, addition, multiplication and transpose of a matrix,	
	Symmetric and skew-symmetric	

Unit	Content	Hrs/Unit	Marks/Unit
1	Convergence of sequence and series, tests for convergence, power series, Taylor's series. Series for exponential, trigonometric and logarithmic functions.	8	
2	Limit, continuity and partial derivatives, Chain rule, Implicit function, Jacobian, Directional derivatives, Total derivative; Maxima, minima and saddle points; Gradient, curl and divergence and related problems.	7	
3	Double and triple integrals (Cartesian and polar), change of order of integration in double integrals, Change of variables (Cartesian to polar). Theorems of Green, Gauss and Stokes (Statement only) and related problems.	8	
4.	First Order Differential Equation, Exact, Linear and Bernoulli's equations, Equations of first order but not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's form, general & singular solution. [5L] Second order linear differential equations with constant coefficients, D-operator method, method of variation of parameters, Cauchy-Euler equation. [4L]	9	
5	Basic Concept of graph, Walk, Path Circuit, Euler and Hamiltonian graph, diagraph. Matrix Representation: Incidence & Adjacency matrix. Tree: Basic Concept of tree, Binary tree, Spanning Tree, KrusKal and Prim's algorithm for finding the minimal spanning tree.	8	

Text book and Reference books:

- 1. Higher Algebra, S. K. Mapa, Levant Books.
- 2. Advanced Higher Algebra, Chakravorty and Ghosh, U N Dhar Pvt. Ltd.
- 3. Co-ordinate Geometry, S. L. Loney
- 4. Integral Calculus, Das and Mukherjee, U N Dhar Pvt. Ltd.

- 5. Differential Calculus, Das and Mukherjee, U N Dhar Pvt. Ltd.
- 6. Advanced Engineering Mathematics, E Kreyszig,

Course Outcomes:

On completion of the course students will be able to

BSC-301.1 Express a logic sentence in terms of predicates, quantifiers, and logical connectives.

BSC-301.2 Apply the rules of inference and methods of proof including direct and indirect proof forms, proof by contradiction, and mathematical induction.

BSC-301.3 Use tree and graph algorithms to solve problems

BSC-301.4 Evaluate Boolean functions and simplify expressions using the properties of Boolean algebra.

Biology Code:BSC 401 Contacts:2L+1T

Name o	of the Course:	Biology	
Course	Code: BSC-401	Semester:IV	
Duratio	on:6 months	Maximum Marks:10)
Teachi	ing Scheme		Examination Scheme
Theory	:2hrs./week		Mid Semester exam: 15
Tutoria	al: 1 hour		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Practical: NIL End Semester Exam:70 Marks		End Semester Exam:70 Marks	
Credit Points: 3		3	
Object	ive:		
1	Bring out the fundamental differences between science and engineering		
2	Discuss how biological observations of 18th Century that lead to major		
	discoveries		
Pre-Re	equisite:		
1	Basic knowledge of Physics ,Chemistry and mathematics		

Unit	Content	Hrs/Unit	Marks/Unit
1	To convey that Biology is as important a scientific discipline as Mathematics,Physics and Chemistry Bring out the fundamental differences between2		
	science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th		

	Century that lead to major discoveries.		
	Examples from Brownian motion and the origin of		
	thermodynamics by referring to the		
	original observation of Robert Brown and Julius		
	Mayor. These examples will highlight the		
	fundamental importance of observations in any		
	scientific inquiry.		
	Theunderlying criterion, such as morphological,		
	biochemical or ecological be highlighted.		
2	5 5 5	3	
	Hierarchy of life forms at phenomenological level.		
	A common thread weaves this hierarchy		
	Classification. Discuss classification based on (a)		
	cellularity- Unicellular or multicellular (b)		
	ultrastructure- prokaryotes or eucaryotes. (c)		
	energy and Carbon utilisation -Autotrophs,		
	heterotrophs, lithotropes (d) Ammonia		
	excretion – aminotelic, uricoteliec, ureotelic (e)		
	Habitata- acquatic or terrestrial (e) Molecular		
	taxonomy- three major kingdoms of life. A		
	given organism can come under different		
	category based on classification. Model organisms		
	for the study of biology come from different		
	groups. E.coli, S.cerevisiae, D. Melanogaster,		
	C. elegance, A. Thaliana, M. musculus		
	To convey that "Genetics is to biology what		
3	Newton's laws are to PhysicalSciences"Mendel's	4	
	laws, Concept of segregation and independent		
	assortment. Concept of allele. Gene		
	mapping, Gene interaction, Epistasis. Meiosis and		
	Mitosis be taught as a part of genetics.		
	Emphasis to be give not to the mechanics of cell		
	division nor the phases but how genetic		
	material passes from parent to offspring.		
	Concepts of recessiveness and dominance.		
	Conceptof mapping of phenotype to genes.		
	Discuss about the single gene disorders in		
	humans.		
	Discuss the concept of complementation using		
	human genetics.		
	Biomolecules:To convey that all forms of life have		
4.	the same building blocks and yet the	4	
	manifestations are as diverse as one can imagine		
	Molecules of life. In this context discuss		
	monomeric units and polymeric structures.		
	Discussabout sugars, starch and cellulose. Amino		
	acids and proteins. Nucleotides and		
	DNA/RNA.Two carbon units and lipids.		
5	Enzymes: To convey that without catalysis life	4	
	would not have existed on earth		

	_		
	Enzymology: How to monitor enzyme catalysed		
	reactions. How does an enzyme catalyse		
	reactions? Enzyme classification. Mechanism of		
	enzyme action. Discuss at least two		
	examples. Enzyme kinetics and kinetic		
	parameters. Why should we know these		
	parametersto understand biology? RNA catalysis.		
6	Information Transfer: The molecular basis of	4	
Ŭ	coding and decoding genetic information is	•	
	universal		
	Molecular basis of information transfer. DNA as a		
	genetic material. Hierarchy of DNA		
	structure- from single stranded to double helix to		
	nucleosomes. Concept of genetic code.		
	1 0		
	Universality and degeneracy of genetic code.		
	Define gene in terms of complementation and		
	recombination.		
7	Macromolecular analysis: How to analyse	5	
	biological processes at the reductionist level		
	Proteins- structure and function. Hierarch in		
	protein structure. Primary secondary, tertiary and		
	quaternary structure. Proteins as enzymes,		
	transporters, receptors and structural elements.		
8	Metabolism: The fundamental principles of	4	
	energy transactions are the same in physical and		
	biological world.		
	Thermodynamics as applied to biological systems.		
	Exothermic and endothermic versus		
	endergonic and exergoinc reactions. Concept of		
	Keqand its relation to standard free energy.		
	Spontaneity. ATP as an energy currency. This		
	should include the breakdown of glucose to		
	CO ₂ + H ₂ O (Glycolysis and Krebs cycle) and		
	synthesis of glucose from CO ₂ and H ₂ O		
	(Photosynthesis). Energy yielding and energy		
	consuming reactions. Concept of Energy		
	charge		
9	MicrobiologyConcept of single celled organisms.	3	
	Concept of species and strains. Identification and		
	classification of microorganisms. Microscopy.		
	Ecological aspects of single celled		
	organisms. Sterilization and media compositions.		
	Growth kinetics.		

Text books/ reference books:

1. Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M,L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd 2. Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H.John Wiley and

Sons

3. Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H. Freemanand Company

4. Molecular Genetics (Second edition), Stent, G. S.; and Calender, R. W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher

5. Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C.Brown Publishers

Course Outcomes:

On completion of the course students will be able to

BSC-401.1 Describe how biological observations of $18\ensuremath{\scriptscriptstyle th}$ Century that lead to major discoveries.

BSC-401.2 Convey that classification *per se* is not what biology is all about but highlight the underlying

criteria, such as morphological, biochemical and ecological

BSC-401.3 Highlight the concepts of recessiveness and dominance during the passage of genetic material

from parent to offspring

BSC-401.4 Convey that all forms of life have the same building blocks and yet the manifestations are as

diverse as one can imagine

BSC-401.5 Classify enzymes and distinguish between different mechanisms of enzyme action.

BSC-401.6 Identify DNA as a genetic material in the molecular basis of information transfer.

BSC-401.7 Analyse biological processes at the reductionistic level

BSC-401.8 Apply thermodynamic principles to biological systems.

BSC-401.9 Identify and classify microorganisms.

PRACTICALSYLLABUS Semester III

Analog& Digital Electronics Lab Code: ESC-391 Contacts: 4

Name of the Course:	Analog & Digital Electronics Lab	
Course Code: ESC-391	Semester:III	
Duration:6 months	Maximum Marks:100	
Teaching Scheme:		
Theory: 3 hrs./week	Continuous Internal Assessment	
Tutorial: NIL	External Assesement:60	
Practical: 4 hrs./week	Distribution of marks:40	
Credit Points:	2	
Course Outcomes:		
1 ESC-301.1		
2 ESC-301.2	ESC-301.2	
3 ESC-301.3		
Pre-Requisite:		
Pre-requisites as in ESC-301		

Laboratory Experiments:			
Analog	Analog Electronics		
1	Design a Class A amplifier		
2	Design a Phase-Shift Oscillator		
3	Design of a Schmitt Trigger using 555 timer		
Digital	Electronics		
4	Design a Full Adder using basic gates and verify its output / Design a Full		
	Subtractor circuit using basic gates and verify its output.		
5	Construction of simple Decoder & Multiplexer circuits using logic gates.		
6	Realization of RS / JK / D flip flops using logic gates		
7	Design of Shift Register using J-K / D Flip Flop		
8	Realization of Synchronous Up/Down counter		
9	Design of MOD- N Counter		
10	Study of DAC		

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Data Structure & Algorithm Lab Code: PCC-CS391 Contacts: 4

Name of the Course:	Data Structure & Algorithm Lab		
Course Code: PCC-CS391	Semester:III		
Duration: 6 months	Maximum Marks:100		
Teaching Scheme:			
Theory:3 hrs./week	Continuous Internal Assessment		
Tutorial: NIL	External Assesement:60		
Practical: 4 hrs./week	Distribution of marks:40		
Credit Points:	2		
Course Outcomes:			
1 PCC-CS301.1	PCC-CS301.1		
2 PCC-CS301.2			
3 PCC-CS301.3			
4 PCC-CS301.4	PCC-CS301.4		
5 PCC-CS301.5			
Pre-Requisite:			
Pre-requisites as in PCC-CS301			

Lal	Laboratory Experiments:		
Lin	Linear Data Structure		
1	Implementation of array operations		
2	Stacks and Queues: adding, deleting elements Circular Queue: Adding & deleting		
	elements		
3	Merging Problem:Evaluation of expressions operations on Multiple stacks		
	&queues:		
4	Implementation of linked lists: inserting, deleting, inverting a linked list.		
	Implementation of stacks &queuesusing linked lists		
5	Polynomial addition, Polynomial multiplication		
No	Non Linear Data Structure		
6	Recursive and Non-recursive traversal of Trees		
7	Threaded binary tree traversal. AVL tree implementation		
8	Application of Trees. Application of sorting and searching algorithms		
9	Hash tables implementation: searching, inserting and deleting, searching &		
	sorting techniques.		

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

Computer Organization Lab Code: PCC-CS392 Contacts: 4

Name of the Course:

Computer Organization Lab

Course Code: PCC-CS392	Semester:III	
Duration:6 months	Maximum Marks:100	
Teaching Scheme:		
Theory:3 hrs./week	Continuous Internal Assessment	
Tutorial: NIL	External Assesement:60	
Practical: 4 hrs./week	Distribution of marks:40	
Credit Points:	2	
Course Outcomes:		
1 PCC-CS302.1		
2 PCC-CS302.2		
3 PCC-CS302.3		
4 PCC-CS302.4		
Pre-Requisite:		
Pre-requisites as in PCC-CS302		

Lal	Laboratory Experiments:		
1	Familiarity with IC-chips:a) Multiplexer, b) Decoder, c) Encoder b) Comparator		
	Truth Table verification and clarification from Data-book.		
2	Design an Adder/Subtractor composite unit.		
3	Design a BCD adder.		
4	Design of a 'Carry-Look-Ahead' Adder circuit.		
5	Use a multiplexer unit to design a composite ALU		
6	Use ALU chip for multibit arithmetic operation		
7	Implement read write operation using RAM IC		
8	8. (a) & (b) Cascade two RAM ICs for vertical and horizontal expansion.		

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

IT Workshop (Sci Lab/MATLAB/Python/R) Code: PCC-CS393 Contacts: 4P

Name of the Course:	IT Workshop	
Course Code: PCC-CS392	Semester:III	
Duration:6 months	Maximum Marks:100	
Teaching Scheme:		
Theory: NIL	Continuous Internal Assessment	
Tutorial: NIL	External Assesement:60	
Practical: 4 hrs./week	Distribution of marks:40	
Credit Points:	2	
Course Outcomes:		
1 To master an understand	To master an understanding of scripting & the contributions of scripting	
languages		

2	Design real life problems and think creatively about solutions			
3	Apply a solution in a program using R/Matlab/Python.			
4	To be exposed to advanced applications of mathematics, engineering and natural			
	sciences to program real life problems.			
Pre-F	Pre-Requisite:			
1.	Knowledge of Programming Logic			
2.	Experience with a high level language (C/C++,) is suggested.			
3.	Prior knowledge of a scripting language and Object-Oriented concepts is helpful			
	but not mandatory.			

Practical Syllabus

Programming in R

1.Introduction to mechanism for statistics, data analysis, and machine learning; Introduction of R Programming, How to install and run R, Use of R help files, R Sessions, R Objects – Vectors, Attributes, Matrices, Array, Class, List, Data Frames etc.Operators in R.

2. R Programming Structures, Control Statements, Loops, Repeat and Break, R-Function, R-Vector Function, Recursive Function in R.

3.R Packages (Install and Use), Input/Output Features in R, Reading or Writing in File. Data Manipulation in R.Rearranging data, Random Number and Simulation, Statistical methods like min, max, median, mean, length, Linear Regression, Normal Distribution, Decision tree

4.Graphics, Creating Graphs, The Workhorse of R Base Graphics, Graphical Functions – Customizing Graphs, Saving Graphs to Files, Pie chart, Bar Chart, Histogram.

Programming in Matlab

Introduction

Why MATLAB?, History, Its strengths, Competitors, Starting MATLAB, Using MATLAB as a calculator, Quitting MATLAB

Basics

Familiar with MATLAB windows, Basic Operations, MATLAB-Data types, Rules about variable names, Predefined variables

Programming-I

Vector, Matrix, Array Addressing, Built-in functions, Mathematical Operations, Dealing with strings (Array of characters), Array of array (cell) concept

Programming-II

Script file, Input commands, Output commands, Structure of function file, Inline functions, Feval command, Comparison between script file and function file

Conditional statements and Loop

Relational and Logical Operators, If-else statements, Switch-case statements, Forloop, While loop, Special commands (Break and continue), Import data from large database, Export data to own file or database

2D Plotting

In-built functions for plotting, Multiple plotting with special graphics, Curve fitting, Interpolation, Basic fitting interface

3D Plotting

Use of meshgrid function, Mesh plot, Surface plot, Plots with special graphics

Programming with Python

Introduction

History,Features,Setting up path,Working with Python,BasicSyntax,Variable and Data Types, Operator

Conditional Statements

If,If- else,Nested if-else,Looping,For,While, Nested loops

Control Statements

Break, Continue, Pass

String Manipulation

Accessing Strings, Basic Operations, String slices, Function and Methods

Lists

Introduction, Accessing list, Operations, Working with lists, Function and Methods

Tuple

Introduction, Accessingtuples, Operations, Working, Functions and Methods

Dictionaries

Introduction, Accessing values in dictionaries, Working with dictionaries, Properties

Functions

Defining a function,Calling a function,Types of functions,FunctionArguments,Anonymousfunctions,Global and local variables

Modules

Importing module, Math module, Random module, Packages, Composition, Input-Output Printing on screen, Reading data from keyboard, Opening and closing file, Reading and writing files, Functions

Exception Handling

Exception, Exception Handling, Except clause, Try? finally clause, User Defined Exceptions.

Laborat	ory Experiments:
1	Practical Assignments related with implementation of PCC-CS393

SEMESTER - IV

Discrete Mathematics Code: PCC-CS401 Contacts: 3L+1T

Name	e of the Course:	Discrete Mathematics		
Cours	e Code: PCC-CS401	Semester:IV		
Durat	tion:6 months	Maximum Marks:	100	
Teacl	hing Scheme		Examination Scheme	
Theor	ry:3 hrs./week		Mid Semester exam: 15	
Tutorial: 1 hour/week			Assignment and Quiz : 10 marks	
	Attendance : 5 marks			
Practi	Practical: NIL End Semester Exam :70 Marks			
Credit	t Points:	3		
Objec	ctive:			
1	Use mathematically	correct terminolog	gy and notation.	
2	Construct correct direct and indirect proofs.			
3	To know Syntax, Semantics, Validity and Satisfiability, Graphs and Trees			
4	Use counterexamples. Apply logical reasoning to solve a variety of problems.			
Pre-Requisite:				
1	Some concepts from basic math – algebra, geometry, pre-calculus			

Unit	Content	Hrs/Unit	Marks/Unit
1	Sets, Relation and Function: Operations and Laws of Sets, Cartesian Products, BinaryRelation, Partial Ordering Relation, Equivalence Relation, Image of a Set, Sum andProduct of Functions, Bijective functions, Inverse and Composite Function, Size of a Set,Finite and infinite Sets, Countable and uncountable Sets, Cantor's diagonal argument andThe Power Set theorem, Schroeder-Bernstein theorem. Principles of Mathematical Induction: The Well- Ordering Principle, Recursivedefinition, The Division algorithm: Prime Numbers, The Greatest Common Divisor:Euclidean Algorithm, The Fundamental Theorem of Arithmetic.	8	
2	Basic counting techniques-inclusion and exclusion,pigeon-holeprinciple,permutation	5	
3	Propositional Logic: Syntax, Semantics, Validity and Satisfiability, Basic Connectives andTruth Tables, Logical Equivalence: The Laws of Logic, Logical	8	

	Implication, Rules ofInference, The use of		
	Quantifiers. Proof Techniques: Some Terminology,		
	Proof Methodsand Strategies, Forward Proof, Proof		
	by Contradiction, Proof by Contraposition, Proof		
	ofNecessity and Sufficiency.		
4.	Algebraic Structures and Morphism: Algebraic Structures with one Binary Operation,Semi Groups, Monoids, Groups, Congruence Relation and	7	
	Quotient Structures,Free and Cyclic Monoids and Groups, Permutation Groups, Substructures,		
	NormalSubgroups, Algebraic Structures with two Binary Operation, Rings, Integral Domainand		
	Fields. Boolean Algebra and Boolean Ring, Identities of Boolean Algebra, Duality,		
	Representation of Boolean Function, Disjunctive and Conjunctive Normal Form		
5	Graphs and Trees: Graphs and their properties, Degree, Connectivity, Path, Cycle,Sub Graph, Isomorphism, Eulerian and Hamiltonian Walks,	8	
	Graph Colouring, Colouring mapsand Planar		
5	Degree, Connectivity, Path, Cycle,Sub Graph, Isomorphism, Eulerian and Hamiltonian Walks,	8	

Text book and Reference books:

1. Russell Merris, Combinatorics, Wiley-Interscience series in Discrete Mathematics and Optimisation

2. N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI

3. Gary Haggard, John Schlipf and Sue Whitesides, Discrete Mathematics for Computer Science, CENGAGE Learning

4. Gary Chartrand and Ping Zhang – Introduction to Graph Theory, TMH

5. J.K. Sharma, Discrete Mathematics, Macmillan

6. Winfried Karl Grassmann and Jean-Paul Tremblay, Logic and Discrete Mathematics, PEARSON.

7. S. K. Chakraborty and B. K. Sarkar, Discrete Mathematics, OXFORD University Press.

8. Douglas B. West, Introduction to graph Theory, PHI

9. C. L. Liu, Elements of Discrete Mathematics, 2nd Ed., Tata McGraw-Hill, 2000.

10. R. C. Penner, Discrete Mathematics: Proof Techniques and Mathematical Structures, World Scientific, 1999.

11. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd Ed., Addison-Wesley, 1994.

12. N. Deo, Graph Theory, Prentice Hall of India, 1974.

13. S. Lipschutz and M. L. Lipson, Schaum's Outline of Theory and Problems of Discrete Mathematics, 2nd Ed., Tata McGraw-Hill, 1999.

14. J. P. Tremblay and R. P. Manohar, Discrete Mathematics with Applications to

Computer Science, Tata McGraw-Hill, 1997.

15. Russell Merris, Combinatorics, Wiley-Interscience series in Discrete Mathematics and Optimisation

16. N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI

17. Gary Haggard, John Schlipf and Sue Whitesides, Discrete Mathematics for Computer Science, CENGAGE Learning

18. Gary Chartrand and Ping Zhang – Introduction to Graph Theory, TMH

Course Outcome(s)

On completion of the course students will be able to

PCC-CS401.1 Express a logic sentence in terms of predicates, quantifiers, and logicalconnectives

PCC-CS401.2 Derive the solution for a given problem using deductive logic and prove the solutionbased on logical inference

PCC-CS401.3Classify its algebraic structure for a given a mathematical problem,

PCC-CS401.4Evaluate Boolean functions and simplify expressions using the properties of Booleanalgebra

PCC-CS401.5Develop the given problem as graph networks and solve with techniques of graph theory.

Computer Architecture Code: PCC-CS402 Contacts: 3L+4P

Name	e of the Course:	Computer Architecture		
Cours	e Code:PCC-CS402	Semester:IV		
Durat	tion:6 months	Maximum Marks:	100	
Teacl	hing Scheme		Examination Scheme	
Theor	ry:3 hrs./week		Mid Semester exam: 15	
Tutor	ial: NIL		Assignment and Quiz: 10 marks	
	Attendance: 5 marks		Attendance: 5 marks	
Practi	Practical: 4 hrs./week End Semester Exam:70 Marks			
Credi	Credit Points: 3			
Objec	Objective:			
1	To learn the basics of stored program concepts.			
2	To learn the principles of pipelining			
3	To learn mechanism of data storage			
4	To distinguish between the concepts of serial, parallel, pipeline architecture.			
Pre-Requisite:				
1	Basic Structure of Computers, Functional units, software, performance issues			
	software, machine instructions			
2	RAM, ROM, Memory management			

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Review of basic computer architecture (Revisited), Quantitative techniques in computer design,	12	
	measuring and reporting performance. (3L) Pipelining: Basic concepts, instruction and arithmetic pipeline, data hazards, control hazards and structural hazards,techniques for handling hazards. Exception handling. Pipeline optimization techniques; Compiler techniques for improving performance. (9L)		
2	Hierarchical memory technology: Inclusion, Coherence and locality properties; Cache memory organizations, Techniques for reducing cache misses; Virtual memory organization, mapping and management techniques, memory replacement policies. (8L)	8	
3	Instruction-level parallelism: basic concepts, techniques for increasing ILP, superscalar, super- pipelined and VLIWprocessor architectures. Array and vector processors. (6L)	6	
4.	Multiprocessor architecture: taxonomy of parallel architectures; Centralized shared- memory architecture: synchronization, memory consistency, interconnection networks. Distributed shared- memory architecture. Clustercomputers. (8L) Non von Neumann architectures: data flow computers, reduction computer architectures, systolic architectures. (4L)	7	

Text/Reference Books:

1. V. Carl, G. Zvonko and S. G. Zaky, "Computer organization", McGraw Hill, 1978.

2. B. Brey and C. R. Sarma, "The Intel microprocessors", Pearson Education, 2000.

3. J. L. Hennessy and D. A. Patterson, "Computer Architecture A QuantitativeApproach", Morgan Kauffman, 2011.

4. W. Stallings, "Computer organization", PHI, 1987.

5. P. Barry and P. Crowley, "Modern Embedded Computing", Morgan Kaufmann, 2012.

6. N. Mathivanan, "Microprocessors, PC Hardware and Interfacing", Prentice Hall, 2004.

7. Y. C. Lieu and G. A. Gibson, "Microcomputer Systems: The 8086/8088 Family", Prentice Hall India, 1986.

8. J. Uffenbeck, "The 8086/8088 Design, Programming, Interfacing", Prentice Hall, 1987.9. B. Govindarajalu, "IBM PC and Clones", Tata McGraw Hill, 1991.

10. P. Able, "8086 Assembly Language Programming", Prentice Hall India6. Winfried Karl Grassmann and Jean-Paul Tremblay, Logic and Discrete Mathematics, PEARSON.

Course Outcomes:

On completion of the course students will be able to

PCC-CS402.1 Learn pipelining concepts with a prior knowledge of stored program methods

PCC-CS402.2 Learn about memory hierarchy and mapping techniques.

PCC-CS402.3 Study of parallel architecture and interconnection network

Formal Language & Automata Theory Code: PCC-CS403

Contacts: 3L

Name of the Course:	: Formal Language & Automata Theory			
Course Code:PCC-CS403	Semester:IV			
Duration:6 months				
Teaching Scheme		Examination Scheme		
Theory:3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance: 5 marks		
Practical: NIL		End Semester Exam:70 Marks		
Credit Points: 3				
Objective:				
1 Be able to construc	Be able to construct finite state machines and the equivalent regular expressions.			
	Be able to prove the equivalence of languages described by finite state machines			
and regular expres	and regular expressions			
3 Be able to construc	Be able to construct pushdown automata and the equivalent context free			
grammars.				
	And Be able to prove the equivalence of languages described by pushdown			
automata and cont	0			
	Be able to construct Turing machines and Post machines.			
	e equivalence of lang	guages described by Turing machines and		
Post machines				
Pre-Requisite:				
1 Grammar and its c	Grammar and its classification (Context Free Grammar)			

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Alphabet, languages and grammars, productions and derivation, Chomsky hierarchy of languages.	6	
2	Regular languages and finite automata: Regular expressions andlanguages, deterministic finite automata (DFA) and equivalence with regular expressions,nondeterministic finite automata (NFA) and equivalence with DFA, regular grammars and equivalence with finite automata, properties of regular languages, pumping lemma	7	

	forregular languages, minimization of finite automata)	
3	Context-free languages and pushdownautomata: Context-free grammars (CFG) and languages (CFL), Chomsky and Greibachnormal forms, nondeterministic pushdown automata (PDA) and equivalence with CFG,parse trees, ambiguity in CFG, pumping lemma for context-free languages, deterministicpushdown automata, closure properties of CFLs.	6
4.	Context-sensitive languages:Context-sensitive grammars (CSG) and languages, linear bounded automata and equivalence with CSG.	6
5	Turing machines: The basic model for Turing machines (TM), Turingrecognizable(recursively enumerable) and Turing-decidable (recursive) languages and theirclosure properties, variants of Turing machines, nondeterministic TMs and equivalence withdeterministic TMs, unrestricted grammars and equivalence with Turing machines, TMsas enumerators	6
6	Undecidability: Church-Turing thesis, universal Turing machine, theuniversal and diagonalization languages, reduction between languages and Rice s theorem,undecidable problems about languages	6

Text books/ reference books:

1. John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to AutomataTheory, Languages, and Computation, Pearson Education Asia.

2.Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation, Pearson Education Asia.

3.Dexter C. Kozen, Automata and Computability, Undergraduate Texts in ComputerScience, Springer.

4. Michael Sipser, Introduction to the Theory of Computation, PWS Publishing.

5. John Martin, Introduction to Languages and The Theory of Computation, TataMcGraw Hill., PEARSON.

Course Outcomes:

On completion of the course students will be able to

PCC-CS403.1 Write a formal notation for strings, languages and machines.

PCC-CS403.2 Design finite automata to accept a set of strings of a language.

PCC-CS403.3 For a given language determine whether the given language is regular or not.

PCC-CS403.4 Design context free grammars to generate strings of context free language.

PCC-CS403.5 Determine equivalence of languages accepted by Push Down Automata and languagesgenerated by context free grammars

PCC-CS403.6 Write the hierarchy of formal languages, grammars and machines.

PCC-CS403.7 Distinguish between computability and non-computability and Decidability and undecidability

Economics for Engineers (Humanities-II) Code: HSMC-301 Contacts: 3L

Name	e of the Course:	f the Course: Economics for Engineers (Humanities-II)		
Cours	Course Code: HSMC-301 Semester:III			
Durat	tion:6 months	Maximum Mark	s:100	
Teac	hing Scheme		Examination Scheme	
T 1	· 2 h · · · / · · · ·]		Mil Constant of 15	
	ry:3 hrs./week		Mid Semester exam: 15	
Tutor	rial: NIL		Assignment and Quiz: 10 marks	
			Attendance: 5 marks	
Pract	ical: NIL		End Semester Exam:70 Marks	
Credi	t Points:	3		
Obje	ctive:			
1	Understand the role	and scope of Eng	ineering Economics and the process of economic	
	decision making			
2	Understand the diff	Understand the different concepts of cost and different cost estimation techniques		
3	Familiarization with the concepts of cash flow, time value of money and different interest formulas			
4	Appreciation of the role of uncertainty in future events and using different concepts from probability to deal with uncertainty			
5	Understand the concepts of Depreciation and Replacement analysis along with their methods of calculation			
6	Familiarization with the phenomenon of inflation and the use of price indices in			
	engineering Economics			
7	Introduction to basic concepts of Accounting and Financial Management			
Pre-F	Requisite:			
1	Mathematics			

Unit	Content	Hrs/Unit	Marks/Unit
	1. Economic Decisions Making – Overview,		
1	Problems, Role, Decision making process.	9	
	2. Engineering Costs & Estimation – Fixed, Variable,		
	Marginal & Average Costs, Sunk Costs, Opportunity		
	Costs, Recurring And		
	Nonrecurring Costs, Incremental Costs, Cash Costs		
	vs Book Costs, Life-Cycle Costs; Types Of Estimate,		
	Estimating Models - Per-		
	Unit Model, Segmenting Model, Cost Indexes,		
	Power-Sizing Model, Improvement& Learning		

	Curve, Benefits.		
2	3. Cash Flow, Interest and Equivalence: Cash Flow – Diagrams, Categories & Computation, Time Value of Money, Debt repayment, Nominal& Effective	9	
	Interest.		
	4. Cash Flow & Rate of Return Analysis – Calculations, Treatment of Salvage Value, Annual		
	Cash Flow Analysis, Analysis Periods;		
	Internal Rate of Return, Calculating Rate of Return, Incremental Analysis; Best Alternative Choosing an		
	Analysis Method, Future		
	Worth Analysis, Benefit-Cost Ratio Analysis, Sensitivity and Breakeven Analysis. Economic		
	Analysis In The Public Sector -Quantifying And		
	Valuing Benefits & drawbacks.		
3	5. Inflation and Price Change – Definition, Effects, Causes, Price Change with Indexes, Types of Index,	9	
	Composite vs Commodity		
	Indexes, Use of Price Indexes In Engineering Economic Analysis, Cash Flows that inflate at		
	different Rates.		
	6. Present Worth Analysis: End-Of-Year Convention, Viewpoint Of Economic Analysis Studies, Borrowed		
	Money Viewpoint, Effect		
	Of Inflation & Deflation, Taxes, Economic Criteria, Applying Present Worth Techniques, Multiple		
	Alternatives.		
	7. Uncertainty In Future Events - Estimates and Their Use in Economic Analysis, Range Of Estimates,		
	Probability, Joint Probability		
	Distributions, Expected Value, Economic Decision Trees, Risk, Risk vs Return, Simulation, Real		
	Options.		
4.	8. Depreciation - Basic Aspects, Deterioration & Obsolescence, Depreciation And Expenses, Types Of	9	
	Property, Depreciation Calculation Fundamentals, Depreciation And Capital Allowance Methods,		
	Straight-Line Depreciation Declining Balance		
	Depreciation, Common Elements Of Tax Regulations For Depreciation And Capital Allowances.		
	9. Replacement Analysis - Replacement Analysis		
	Decision Map, Minimum Cost Life of a New Asset, Marginal Cost, Minimum Cost Life Problems.		
	10. Accounting – Function, Balance Sheet, Income		
	Statement, Financial Ratios Capital Transactions,		
	Cost Accounting, Direct and Indirect Costs, Indirect Cost Allocation.		

Text book and Reference books:

- 1. James L.Riggs, David D. Bedworth, Sabah U. Randhawa : Economics for Engineers 4e , Tata McGraw-Hill
- 2. Donald Newnan, Ted Eschembach, Jerome Lavelle: Engineering Economics Analysis, OUP
- 3. John A. White, Kenneth E.Case, David B.Pratt : Principle of Engineering Economic Analysis, John Wiley
- 4. Sullivan and Wicks: Engineering Economy, Pearson
- 5. R.PaneerSeelvan: Engineering Economics, PHI
- 6. Michael R Lindeburg : Engineering Economics Analysis, Professional Pub

Course Outcome:

On completion of the course students will be able to

HSMC-301.1 Make different economic decisions and estimate engineering costs by applying different cost estimation models.

HSMC-301.2 Create cash flow diagrams for different situations and use different interest formulae to solve associated problems.

HSMC-301.3 Take decisions regarding different engineering projects by using various criteria like rate of return analysis, present worth analysis, cost-benefit analysis etc.

HSMC-301.4 Incorporate the effect of uncertainty in economic analysis by using various concepts like expected value, estimates and simulation.

HSMC-301.5 Understand the concepts of depreciation and replacement analysis and solve associated problems.

HSMC-301.6 Understand the process of inflation and use different price indices to adjust for its effect.

HSMC-301.7 Apply the various concepts of Accounting like balance sheet and ratio analysis.

HSMC-301.8 Understand the scope of Finance and the role of financial planning and management.

Environmental Sciences Code:MC-401 Contacts:1L

Name	e of the Course:	Environmental Sciences		
Cours	se Code: MC-401	Semester:IV		
Durat	tion:6 months	Maximum Marks:100		
Teaching SchemeExamination Scheme		Examination Scheme		
Theory:1hrs./week			Mid Semester exam: 15	
Tutorial: NIL			Assignment and Quiz : 10 marks	
			Attendance : 5 marks	
Practical: NIL			End Semester Exam :70 Marks	
Credit Points: 1				
Objective:				
1	Be able to understand the natural environment and its relationships with human			
	activities.			

2	Be able to apply the fundamental knowledge of science and engineering to assess	
	environmental and health risk.	
3	Be able to understand environmental laws and regulations to develop guidelines	
	and procedures for health and safety issues.	
4	Be able to solve scientific problem-solving related to air, water, noise & land	
	pollution	
Pre-Requisite:		
1	Basic knowledge of Environmental science	

Unit	Content	Hrs/Unit	Marks/Unit
1	Basic ideas of environment, basic concepts, man, society & environment, their interrelationship (1L)	6	
	Mathematics of population growth and associated problems, Importance of population study in environmental engineering, definition of resource, types of resource, renewable, non-renewable, potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development. (2L)		
	Materials balance: Steady state conservation system, steady state system with non-conservative pollutants, step function.(1L)		
	Environmental degradation: Natural environmental Hazards like Flood, earthquake, Landslide-causes, effects and control/management; Anthropogenic degradation like Acid rain-cause, effects and control. Nature and scope of Environmental Science and Engineering. (2L)		
2	Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem- components types and function. (1L)	6	
	Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain [definition and one example of each food chain], Food web.(2L)		
	Biogeochemical Cycle- definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur].(1L)		
	Biodiversity- types, importance, Endemic species,		

	Biodiversity Hot-spot, Threats to biodiversity, Conservation of biodiversity.(2L)		
3	Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesopause. (1L)	11	
	Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model[Earth as a black body, earth as albedo], Problems.(1L)		
	Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level,agriculture and marine food.Global warming and its consequence, Control of Global warming. Earth's heat budget.(1L)		
	Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).(2L)		
	Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L)		
	Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant.Sources and effect of different air pollutants- Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN. (2L) Smog, Photochemical smog and London smog.Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification.(1L)		
	Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP.cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)		
4.	Hydrosphere, Hydrological cycle and Natural water.Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application,heavy metals, pesticides, volatile organic compounds. (2L)	9	
	River/Lake/ground water pollution: River: DO, 5-day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river		

]
	[deoxygenation, reaeration], COD, Oil, Greases, pH. (2L)		
	Lake: Eutrophication [Definition, source and effect]. (1L)		
	Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only)(1L)		
	Standard and control: Waste water standard [BOD, COD, Oil, Grease],		
	Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening] Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor,Activated sludge, sludge treatment, oxidation ponds] tertiary treatment definition. (2L)		
	Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic (1L)		
5	Lithosphere; Internal structure of earth, rock and soil (1L)	3	
	Solid Waste: Municipal, industrial, commercial, agricultural, domestic, pathological and hazardous solid wastes;		
	Recovery and disposal method- Open dumping, Land filling, incineration, composting, recycling. Solid waste management and control (hazardous and biomedical waste).(2L)		
6	Definition of noise, effect of noise pollution, noise classification [Transport noise, occupational noise, neighbourhood noise] (1L) Definition of noise frequency, noise pressure, noise intensity, noise threshold limit value, equivalent noise level,	3	
	L10 (18hr Index) , <i>n Ld</i> .Noise pollution control. (1L)		
7	Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/ agreement/ protocol. (2L)	2	

Text books/ reference books:

1. Masters, G. M., "Introduction to Environmental Engineering and Science", Prentice-Hall of India Pvt. Ltd.,1991.

2. De, A. K., "Environmental Chemistry", New Age International

Course Outcomes:

On completion of the course students will be able to

MC-401.1To understand the natural environment and its relationships with human activities.

MC-401.2To apply the fundamental knowledge of science and engineering to assess environmental and health risk.

MC-401.3To develop guidelines and procedures for health and safety issues obeying the environmental laws and regulations.

MC-401.4Acquire skills for scientific problem-solving related to air, water, noise& land pollution.

Design and Analysis of Algorithms Code: PCC-CS404 Contacts:3L+4P

Name	of the Course:	Design and Analysis of Algorithms		
Cours	e Code: PCC-CS404	Semester:IV		
Durat	ion:6 months	Maximum Marks	s:100	
Teach	ning Scheme		Examination Scheme	
Theor	y:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL Assignment and Quiz: 10 marks		Assignment and Quiz: 10 marks		
			Attendance: 5 marks	
Practi	cal: 4hrs./week		End Semester Exam:70 Marks	
Credit	t Points:	5		
Objec	Objective:			
1	1 The aim of this module is to learn how to develop efficient algorithms for simple computational tasks and reasoning about the correctness of them			
2	Through the complexity measures, different range of behaviors of algorithms and the notion of tractable and intractable problems will be understood.			
Pre-Requisite:				
1	1 To know data-structure and basic programming ability			

1	To know data-structure and basic programming ability

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis ofcomplexity bounds – best, average and worst-	8	
	case behavior; Performance measurements of Algorithm, Time and space trade-offs, Analysis of		
	recursive algorithms through recurrence relations: Substitution method, Recursion tree method and Masters' theorem		
2	Fundamental Algorithmic Strategies: Brute-Force, Greedy,Dynamic Programming, Branchand-Bound and Backtracking methodologies for the design of	8	
	algorithms; Illustrationsof these techniques for Problem-Solving, Bin Packing, Knap Sack TSP. Heuristics –characteristics and their application		
	domains.		
3	Graph and Tree Algorithms: Traversal algorithms: Depth First Search (DFS) and BreadthFirst Search (BFS); Shortest path algorithms, Transitive	6	
	closure, Minimum Spanning Tree,Topological sorting, Network Flow Algorithm.		
	Tractable and Intractable Problems: Computability		

4.	of Algorithms, Computability classes - P,NP, NP-	10	
	complete and NP-hard. Cook's theorem, Standard		
	NP-complete problems and Reduction techniques.		
5	Advanced Topics: Approximation algorithms,	4	
	Randomized algorithms, Class of problemsbeyond		
	NP – P SPACE		

Text books/ reference books:

1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.

2. Fundamentals of Algorithms – E. Horowitz et al.

4. Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson.

5. Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.

6. Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading, MA

Course Outcomes

On completion of the course students will be able to

PCC-CS404.1 For a given algorithms analyze worst-case running times of algorithms based onasymptotic analysis and justify the correctness of algorithms.

PCC-CS404.2 Describe the greedy paradigm and explain when an algorithmic design situation callsfor it. For a given problem develop the greedy algorithms.

PCC-CS404.3 Describe the divide-and-conquer paradigm and explain when an algorithmic designsituation calls for it. Synthesize divide-and-conquer algorithms. Derive and solverecurrence relation.

PCC-CS404.4 Describe the dynamic-programming paradigm and explain when an algorithmicdesign situation calls for it. For a given problems of dynamic-programming and

PCC-CS404.5 develop the dynamic programming algorithms, and analyze it to determine its computational complexity.

PCC-CS404,6 For a given model engineering problem model it using graph and write the corresponding algorithm to solve the problems.

PCC-CS404.7 Explain the ways to analyze randomized algorithms (expected running time, probability of error).

PCC-CS404.8 Explain what an approximation algorithm is. Compute the approximation factor of an approximation algorithm (PTAS and FPTAS).

PRACTICAL SYLLABUS Semester IV

Computer Architecture Lab Code: PCC-CS492 Contacts:4

Name o	of the Course:	Com	pute	r Arch	itectu	re L	ab		
Course	Code: PCC-CS492	Sem	ester	:IV					
Duratio	on:6 months	Maxi	mum	n Mark	s:100				
Teachi	ng Scheme:								
Theory	r:3 hrs./week	Cont	inuo	us Inte	rnal As	sses	sment		
Tutoria	al: NIL	Exte	rnal <i>I</i>	Assese	ment:6	0			
Practic	al: 4 hrs./week	Distr	Distribution of marks:40						
Credit	Points:	2							
Course	Outcomes:								
1	PCC-CS402.1								
2	PCC-CS402.2								
3	PCC-CS402.3								
Pre-Re	quisite:								
1	The hardware based o	design	has	been	done	in	1.the	Analog&	Digital
	Electronics laboratory								
2	ComputerOrganisation la	borato	ry						

Labora	Laboratory Experiments:		
1	HDL introduction.		
2	Basic digital logic base programming with HDL		
3	8-bit Addition, Multiplication, Division		
4	8-bit Register design		
5	Memory unit design and perform memory operations.		
6	8-bit simple ALU design		
7	8-bit simple CPU design		
8	Interfacing of CPU and Memory.		

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Design & Analysis Algorithm Lab Code: PCC-CS494

Contact: 4

Name of	The Course:	Design & Analysis Algorithm Lab		
Course (Code: PCC-CS494	Semester:IV		
Duration	n:6 months	Maximum Marks:100		
Teachin	ng Scheme:			
Theory:	3 hrs./week	Continuous Internal Assessment		
Tutorial	: NIL	External Assesement:60		
Practical: 4 hrs./week		Distribution of marks:40		
Credit Points:		2		
Course	Outcomes:			
1	PCC-CS402.1			
2	PCC-CS402.2			
3 PCC-CS402.3				
Pre-Reg	juisite:			
Pre-Req	uisite as in : PCC-CS404			

Laborat	ory Experiments:
Divide a	nd Conquer:
1	Implement Binary Search using Divide and Conquer approach
	Implement Merge Sort using Divide and Conquer approach
2	Implement Quick Sort using Divide and Conquer approach
	Find Maximum and Minimum element from a array of integer using Divide
	and Conquer approach
3	Find the minimum number of scalar multiplication needed for chain of
	matrix
4	Implement all pair of Shortest path for a graph (Floyed- Warshall Algorithm)
	Implement Traveling Salesman Problem
5	Implement Single Source shortest Path for a graph (Dijkstra , Bellman Ford Algorithm
Brunch	and Bound:
6	Implement 15 Puzzle Problem
Backtra	cking:
7	Implement 8 Queen problem
8	Graph Coloring Problem
	Hamiltonian Problem
Greedy	method
9	Knapsack Problem
	Job sequencing with deadlines
10	Minimum Cost Spanning Tree by Prim's Algorithm
	Minimum Cost Spanning Tree by Kruskal's Algorithm
Graph T	raversal Algorithm:
11	Implement Breadth First Search (BFS)
	Implement Depth First Search (DFS)

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Compiler Design Code: PCC-CS501 Contact: 3L+4P

Name	e of the Course:	Compiler Design	
Cours	e Code: PCC-CS501	Semester:V	
Durat	Duration:6 months Maximum M		100
Teach	Teaching Scheme		Examination Scheme
	ry:3 hrs./week ial: NIL		Mid Semester exam: 15 Assignment and Quiz: 10 marks
Duest			Attendance: 5 marks
	cal: 4 hrs./week t Points:	3+2=5	End Semester Exam:70 Marks
Objec		5+2-5	
1		t the different stages	in the process of compilation.
2	Identify different met	hods of lexical analy	ysis
3	Design top-down and	bottom-up parsers	
4	Identify synthesized a	nd inherited attribut	ies
5	Develop syntax direct	ed translation schen	nes
6	Develop algorithms to	generate code for a	a target machine

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction to Compiling [3L]		
1	Compilers, Analysis of the source program, The	3	
	phases of the compiler, Cousins of the compiler.		
2	Lexical Analysis [6L]	6	
	The role of the lexical analyzer, Tokens, Patterns,		
	Lexemes, Input buffering, Specifications of a token,		
	Recognition of a		
	tokens, Finite automata, From a regular expression		
	to an NFA, From a regular expression to NFA,		
	From a regular expression to DFA, Design of a		
	lexical analyzer generator (Lex).		
3	Syntax Analysis [9L]	9	
	The role of a parser, Context free grammars,		
	Writing a grammar, Top down Parsing, Non-		
	recursive Predictive parsing		

_

Text book and Reference books:

1.Aho, Sethi, Ullman - "Compiler Principles, Techniques and Tools" - Pearson Education. 2. Holub - "Compiler Design in C" - PHI.

Course Outcomes:

On completion of the course students will be able to

- 1. Understand given grammar specification develop the lexical analyser
- 2. Design a given parser specification design top-down and bottom-up parsers
- 3. Develop syntax directed translation schemes

4. Develop algorithms to generate code for a target machine

Operating Systems Code: PCC-CS502 Contacts: 3L+4P

Name of	of the Course:	Operating System	s			
Course	Code: PCC-CS502	Semester: V				
Duratio	on: 6 months	Maximum Marks:1	00			
Teaching Scheme			Examination Scheme			
Theory	r:3 hrs./week		Mid Semester exam: 15			
Tutoria	ıl: NIL		Assignment and Quiz: 10 marks			
			Attendance : 5 marks			
Practic	al: 4 hrs./week		End Semester Exam :70 Marks			
Credit	Points:	3+2=5				
Object	tive:					
	To learn the meet communication	hanisms of OS to	handle processes and threads and their			
2	To learn the mechani	sms involved in mer	nory management in contemporary OS			
			ing system concepts that includes architecture,			
	U		etection algorithms and agreement protocols			
4	To know the components and management aspects of concurrency management					
Pre-Re	equisite:					
1	Computer Organizati	ion & Architecture				

Unit	Content	Hrs/U	Marks/
		nit	Unit
1	Introduction: Concept of Operating Systems, Generations of Operating systems, Types of Operating Systems, OS Services, System Calls, Structure of an OS - Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System.	3	
2	 Processes: Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads, Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: 	10	

	Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF.		
3.	Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problemetc.	5	
4.	Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery.	5	
5.	 Memory Management: Basic concept, Logical and Physical address map, Memory allocation: Contiguous Memory allocation— Fixed and variable partition— Internal and External fragmentation and Compaction; Paging: Principle of operation—Page allocation Hardware support for paging, Protection and sharing, Disadvantages of paging. Virtual Memory: Basics of Virtual Memory — Hardware and control structures — Locality of reference, Page fault , Working Set , Dirty page/Dirty bit — Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used(LRU). 	8	
6.	 I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O Software: Goals of Interrupt handlers, Device drivers, Device independent I/O software, Secondary-Storage Structure: Disk structure, Disk scheduling algorithms File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency andperformance. Disk Management: Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks 	6	
L	1		1

Text book and Reference books:

- 1. Operating System Concepts Essentials, 9th Edition by AviSilberschatz, Peter Galvin, Greg Gagne, Wiley Asia Student Edition.
- 2. Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice Hall of India.
- 3. Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin Publishing
- Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-Wesley
- 5. Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hall of India
- 6. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates

Course Outcomes:

On completion of the course students will be able to

- 1. Create processes and threads.
- 2. Develop algorithms for process scheduling for a given specification of CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time.
- 3. For a given specification of memory organization develop the techniques for optimally allocating memory to processes by increasing memory utilization and for improving the access time. Design and implement file management system.
- 4. For a given I/O devices and OS (specify) develop the I/O management functions in OS as part of a uniform device abstraction by performing operations for synchronization between CPU and I/O controllers.

Object Oriented Programming Code: PCC-CS503 Contacts: 3L+4P

Name of the Course:	Computer Organization		
Course Code: PCC-CS503	Semester: V	Semester: V	
Duration:6 months	Maximum Marks	Maximum Marks:100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz : 10 marks	

		Attendance: 5 marks
Practical: 4 hrs./week		End Semester Exam:70 Marks
Credit Points:	3+2	

Unit	Content	Hrs/Unit	Marks/Unit
1	Abstract data types and their specification. How to implement an ADT. Concrete state space, concrete invariant, abstraction function. Implementing operations, illustrated by the Text example.	8	
2	Features of object-oriented programming. Encapsulation, object identity, polymorphism – but not inheritance.	8	
3	Inheritance in OO design. Design patterns. Introduction and classification. The iterator pattern.	6	
4	Model-view-controller pattern. Commands as methods and as objects. Implementing OO language features. Memory management.	6	
5	Generic types and collections GUIs. Graphical programming with Scale and Swing . The software development process	6	

Text book and Reference books:

1. Rambaugh, James Michael, Blaha – "Object Oriented Modelling and Design" – Prentice Hall, India

2. Ali Bahrami – "Object Oriented System Development" – Mc Graw Hill

3. Patrick Naughton, Herbert Schildt – "The complete reference-Java2" – TMH

- 4. R.K Das "Core Java For Beginners" VIKAS PUBLISHING
- 5. Deitel and Deitel "Java How to Program" 6th Ed. Pearson
- 6. Ivor Horton's Beginning Java 2 SDK Wrox
- 7. E. Balagurusamy "Programming With Java: A Primer" 3rd Ed. TMH

Course Outcomes:

On completion of the course students will be able to

1. Specify simple abstract data types and design implementations, using

abstraction functions to document them.

- 2. Recognise features of object-oriented design such as encapsulation, polymorphism, inheritance, and composition of systems based on object identity.
- 3. Name and apply some common object-oriented design patterns and give examples of their use.
- 4. Design applications with an event-driven graphical user interface.

Introduction to Industrial Management (Humanities III) Code: HSMC-501 Contacts: 3L

Name of the Course:Introduction to Industrial Management (Humanities III)		
Course Code: HSMC-501	Semester: V	
Duration:6 months	Maximum Marks	s:100
Teaching Scheme	- -	Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz : 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction	6	
1	System- concept, definition, types,		
	parameters, variables and behavior.		
	1.2 Management – definition and		
	functions.		
	1.3 Organization structure:		
	i. Definition.		
	ii. Goals.		
	iii. Factors considered in formulating		
	structure.		
	iv. Types.		
	v. Advantages and disadvantages.		
	vi. Applications.		
	1.4 Concept, meaning and importance of		
	division of labor, scalar & functional		
	processes, span of control, delegation of		
	authority, centralization and		
	decentralization in industrial		
	management.		
	1.5 Organizational culture and climate –		

	meaning, differences and factors		
	affecting them.		
	1.6 Moral-factors affecting moral.		
	1.7 Relationship between moral and		
	productivity.		
	1.8 Job satisfaction- factors influencing		
	job satisfaction.		
	1.9 Important provisions of factory act		
	and labor laws.		
2	Critical Path Method (CPM) and	8	
2	Programme Evaluation Review	0	
	Technique (PERT):		
	2.1 CPM & PERT-meaning, features,		
	difference, applications. 2.2 Understand		
	different terms used in network diagram.		
	2.3 Draw network diagram for a real life		
	project containing 10-15 activities,		
	computation of LPO and EPO.(Take		
	minimum three examples).		
	- /		
	2.4 Determination of critical path on		
	network.		
	2.5 Floats, its types and determination of		
	floats.		
	2.6 Crashing of network, updating and		
	its applications.		
3	Materials Management:	6	
-	8		
	3.1 Material management-definition,		
	functions, importance, relationship with		
	other departments.		
	3.2 Purchase - objectives, purchasing		
	systems, purchase procedure, terms and		
	forms used in purchase department.		
	3.3 Storekeeping- functions,		
	classification of stores as centralized and		
	decentralized with their advantages,		
	disadvantages and application in actual		
	practice.		
	1		
	3.4 Functions of store, types of records		
	maintained by store, various types and		
	applications of storage equipment, need		
	and general methods for codification of		
	stores.		
	3.5 Inventory control:		
	3.5 Inventory control: i. Definition.		
	3.5 Inventory control:i. Definition.ii. Objectives.		
	3.5 Inventory control:i. Definition.ii. Objectives.iii. Derivation for expression for		
	3.5 Inventory control:i. Definition.ii. Objectives.		
	3.5 Inventory control:i. Definition.ii. Objectives.iii. Derivation for expression for		
	 3.5 Inventory control: i. Definition. ii. Objectives. iii. Derivation for expression for Economic Order Quantity (EOQ) and 		

	-		
	v. Various types of inventory models		
	such as Wilson's inventory model,		
	replenishment model and two bin model.		
	(Only sketch and understanding, no		
	derivation.).		
	3.6 Material Requirement Planning		
	(MRP)- concept, applications and brief		
	details about software packages available		
	in market.		
4		8	
	Production planning and Control		
	(PPC):		
	(110).		
	4.1 Tymes and even plas of modultion		
	4.1 Types and examples of production.		
	4.2 PPC : i. Need and importance. ii.		
	Functions. iii. Forms used and their		
	importance. iv. General approach for		
	each type of production.		
	4.3 Scheduling- meaning and need for		
	productivity and utilisation.		
	4.4 Gantt chart- Format and method to		
	prepare.		
	4.5 Critical ratio scheduling-method and		
	numeric examples.		
	4.6 Scheduling using Gantt Chart (for at		
	least 5-7 components having 5-6		
	machining operations, with processes,		
	setting and operation time for each		
	component and process, resources		
	available, quantity and other necessary		
	data), At least two examples.		
	4.7 Bottlenecking- meaning, effect and		
	ways to reduce.		
5	Value Analysis (VA) and Cost Control:	4	
	5.1 VA-definition, terms used, process and		
	importance. 5.2 VA flow diagram.		
	5.3 DARSIRI method of VA.		
	5.4 Case study of VA-at least two.		
	5.5 Waste-types, sources and ways to reduce them.		
	5.6 Cost control-methods and important guide lines.		
		A	
6	Recent Trends in IM:	4	
	6.1 ERP (Enterprise resource planning) - concept,		
	features and applications.		
	6.2 Important features of MS Project.		
	6.3 Logistics- concept, need and benefits.		
	6.4 Just in Time (JIT)-concept and benefits.		
	6.5 Supply chain management-concept and benefits.		
L	0.5 Suppry chain management-concept and benefits.		

Text book and Reference books:

- L.S.Srinath- "CPM & PERT principles and Applications".
 Buffa "Modern Production Management".

- 3. N. Nair "Materials Management".
- 4. O. P. Khanna "Industrial Engineering & Management".
- 5. Mikes "Value Analysis".

Course Outcomes:

On completion of the course students will be able to

- 1. Interpret given organization structure, culture, climate and major provisions of factory acts and laws.
- 2. Explain material requirement planning and store keeping procedure.
- 3. Plot and analyze inventory control models and techniques.
- 4. Prepare and analyze CPM and PERT for given activities.
- 5. List and explain PPC functions.

Theory of Computation Code: PEC-IT501A Contacts: 3L

Name of the Course:	Theory of Computation		
Course Code: PEC-IT501A	Semester: V		
Duration: 6 months	Maximum Marks:1	00	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL	Assignment and Quiz: 10 marks		
		Attendance : 5 marks	
Practical: NIL		End Semester Exam :70 Marks	
Credit Points:	3		

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Fundamentals: Basic definition of sequential circuit, block diagram,	13	
1	mathematical representation, concept of transition table		
	and transition diagram (Relating of Automata concept to sequential		
	circuit concept) Design of sequence detector,		
	Introduction to finite state model [2L]		
	Finite state machine: Definitions, capability & state equivalent, kth-		
	equivalent concept [1L]		
	Merger graph, Merger table, Compatibility graph [1L]		
	Finite memory definiteness, testing table & testing graph. [1L]		
	Deterministic finite automaton and non deterministic finite automaton.		
	[1L] Transition diagrams and Language		
	recognizers. [1L]		
	Finite Automata: NFA with Î transitions - Significance, acceptance of		

2	languages. [1L] Conversions and Equivalence: Equivalence between NFA with and without Î transitions. NFA to DFA conversion. [2L] Minimization of FSM, Equivalence between two FSM's , Limitations of FSM [1L] Application of finite automata, Finite Automata with output- Moore & Melay machine. [2L] Regular Languages : Regular sets. [1L] Regular expressions, identity rules. Arden's theorem state and prove [1L] Constructing finite Automata for a given regular expressions, Regular string accepted by NFA/DFA [1L] Pumping lemma of regular sets. Closure properties of regular sets (proofs not required). [1L] Grammar Formalism: Regular grammars-right linear and left linear 9grammars. [1L] Equivalence between regular linear grammar and FA. [1L]	8	
	Inter conversion, Context free grammar. [1L] Derivation trees, sentential forms. Right most and leftmost derivation of strings. (Concept only) [1L]		
3.	Context Free Grammars, Ambiguity in context free grammars. [1L] Minimization of Context Free Grammars. [1L] Chomsky normal form and Greibach normal form. [1L] Pumping Lemma for Context Free Languages. [1L] Enumeration of properties of CFL (proofs omitted). Closure property of CFL, Ogden's lemma & its applications [1L] Push Down Automata: Push down automata, definition. [1L] Acceptance of CFL, Acceptance by final state and acceptance by empty state and its equivalence. [1L] Equivalence of CFL and PDA, interconversion. (Proofs not required). [1L] Introduction to DCFL and DPDA. [1L]	9	
5.	Turing Machine : Turing Machine, definition, model [1L] Design of TM, Computable functions [1L] Church's hypothesis, counter machine [1L] Types of Turing machines (proofs not required) [1 L] Universal Turing Machine, Halting problem [2L]	5	

Text book and Reference books:

- 1. "Introduction to Automata Theory Language and Computation", Hopcroft H.E. and Ullman J. D., Pearson education.
- 2. "Theory of Computer Science ", Automata Languages and computation", Mishra and Chandra shekaran, 2nd edition, PHI.
- 3. "Formal Languages and Automata Theory", C.K.Nagpal, Oxford
- 4. "Switching & Finite Automata", ZVI Kohavi, 2nd Edn., Tata McGraw Hill

- 5. "Introduction to Computer Theory", Daniel I.A. Cohen, John Wiley
- 6. "Introduction to languages and the Theory of Computation", John C Martin, TMH
- 7. "Elements of Theory of Computation", Lewis H.P. & Papadimitrou C.H. Pearson, PHI.

Course Outcomes:

On completion of the course students will be able to

1. Define a system and recognize the behavior of a system. They will be able to minimize a system

and compare different systems

- 2. Convert Finite Automata to regular expression. Students will be able to check equivalence between regularlinear grammar and FA.
- 3. Minimize context free grammar. Student will be able to check equivalence of CFL and PDA. They
- 4. Will be able to design Turing Machine.
- 5. Design Turing machine.

Artificial Intelligence Code: PEC-IT501B Contacts: 3L

Name of the Course:	Artificial Intelligence			
Course Code: PEC-IT501B	Semester: V	Semester: V		
Duration: 6 months	Maximum Marks:1	00		
Teaching Scheme		Examination Scheme		
Theory:3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL	Assignment and Quiz: 10 marks			
		Attendance : 5 marks		
Practical: NIL		End Semester Exam :70 Marks		
Credit Points:	3			

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Introduction [2]	6	
1	Overview of Artificial intelligence- Problems of AI, AI technique, Tic		
	- Tac - Toe problem.		
	Intelligent Agents [2]		
	Agents & environment, nature of environment, structure of agents, goal based agents, utility based agents, learning agents.		
	Problem Solving [2]		
	Problems, Problem Space & search: Defining the problem as state		
	space search, production system, problem characteristics,		
	issues in the design of search programs.		

		1 1	
2.	Search techniques [5]	13	
	Solving problems by searching :problem solving agents, searching for		
	solutions; uniform search strategies: breadth first		
	search, depth first search, depth limited search,		
	bidirectional search, comparing uniform search strategies.		
	Heuristic search strategies [5]		
	Greedy best-first search, A* search, memory bounded heuristic search:		
	local search algorithms & optimization problems:		
	Hill climbing search, simulated annealing search, local beam search,		
	genetic algorithms; constraint satisfaction problems,		
	local search for constraint satisfaction problems.		
	Adversarial search [3]		
	Games, optimal decisions & strategies in games, the minimax search		
	procedure, alpha-beta pruning, additional refinements,		
	iterative deepening.		
3	Knowledge & reasoning [3]	3	
	Knowledge representation issues, representation & mapping,		
	approaches to knowledge representation, issues in knowledge		
	representation.		
4	Using predicate logic [2]	6	
	Representing simple fact in logic, representing instant & ISA		
	relationship, computable functions & predicates, resolution,		
	natural deduction.		
	Probabilistic reasoning [4]		
	Representing knowledge in an uncertain domain, the semantics of		
	Bayesian networks, Dempster-Shafer theory, Fuzzy sets &		
	fuzzy logics.		
5	Natural Language processing [2]	6	
	Introduction, Syntactic processing, semantic analysis, discourse &		
	pragmatic processing.		
	Learning [2]		
	Forms of learning, inductive learning, learning decision trees,		
	Forms of learning, inductive learning, learning decision trees,		
	Forms of learning, inductive learning, learning decision trees, explanation based learning, learning using relevance		
	Forms of learning, inductive learning, learning decision trees, explanation based learning, learning using relevance information, neural net learning & genetic learning.		
	Forms of learning, inductive learning, learning decision trees, explanation based learning, learning using relevance information, neural net learning & genetic learning. Expert Systems [2]		

Text book and Reference books:

- 1.Artificial Intelligence, Ritch & Knight, TMH
- 2. Artificial Intelligence A Modern Approach, Stuart Russel Peter Norvig Pearson
- 3. Introduction to Artificial Intelligence & Expert Systems, Patterson, PHI
- 4. Poole, Computational Intelligence, OUP
- 5. Logic & Prolog Programming, Saroj Kaushik, New Age International
- 6. Expert Systems, Giarranto, VIKAS

Advanced Computer Architecture

Code: PEC-IT501C

Contacts: 3L

Name of the Course:	Advanced Computer Architecture			
Course Code: PEC-IT501C	Semester: V			
Duration: 6 months	Maximum Marks:1	00		
Teaching Scheme		Examination Scheme		
Theory:3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance : 5 marks		
Practical: NIL		End Semester Exam :70 Marks		
Credit Points:	3			

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Computer Architecture and Organization-Review, Fundamentals of	6	
1	Computer Design, Technology Trends Cost Performance		
	Analysis (3L)		
	Parallel Processing Architectures- Taxonomy- SISD, MISD,		
	SIMD, MIMD, PRAM models (3L)		
2.	Data and Resource Dependencies, Program Partitioning and	10	
	Scheduling, Control Flow vs. Data Flow (3L)		
	Network topologies-Static, Dynamic, Types of Networks (3L)		
	RISC vs. CISC, Memory Hierarchy, Virtual Memory (4L)		
3	Concepts of Pipelining, Instruction Pipelining, dynamic pipelining,	12	
	arithmetic pipelines. (4L)		
	Multiprocessors- Multistage Networks, Cache Coherence,		
	Synchronization, Message- passing (4L)		
	Vector Processing Principles- Instruction types, Compound, Vector		
	Loops, Chaining (4L)		
4	Array Processors- Structure, Algorithms (3L)	11	
	Data Flow Architecture- Graphs. Petri Nets, Static and Dynamic DFA,		
	VLSI Computations (4L)		
	Parallel Programming Models, Languages, Compilers (4L)		

Text book and Reference books:

1. Computer Architecture and Parallel Processing- Kai Hwang and A. .Brigggs International Edition, McGraw Hill

2. Advanced Computer Architecture: D. Sima, T. fountain, P. Kacsuk, Pearson

3. Parallel Computer Architecture: D. Culler, J.P.Singh, A.Gupta, Elsevier

Computer Graphics Code: PEC-IT501D Contacts: 3L

Name of the Course:	Computer Graphics			
Course Code: PEC-IT501D	Semester: V			
Duration: 6 months	Maximum Marks:1	00		
Teaching Scheme		Examination Scheme		
Theory:3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance : 5 marks		
Practical: NIL		End Semester Exam :70 Marks		
Credit Points:	3			

Unit	Content	Hrs/U	Marks/
		nit	Unit
1	Introduction to computer graphics & graphics systems [6L]: Overview of computer graphics, representing pictures, preparing, presenting & interacting with pictures for presentations; Visualization & image processing; RGB color model, direct coding, lookup table; storage tube	14	
	graphics display, Raster scan display, 3D viewing devices, Plotters, printers, digitizers, Light pens etc.; Active & Passive graphics devices; Computer graphics software. Scan conversion [8L]: Points & lines, Line drawing algorithms; DDA		
	algorithm, Bresenham's line algorithm, Circle generation algorithm; Ellipse generating algorithm; scan line polygon, fill algorithm, boundary fill algorithm, flood fill algorithm.		
2	2D transformation & viewing [15L]: Basic transformations: translation, rotation, scaling; Matrix representations & homogeneous coordinates, transformations between coordinate systems; reflection shear; Transformation of points, lines, parallel lines, intersecting lines. Viewing pipeline, Window to view port co-ordinate transformation, clipping operations, point clipping, line clipping, clipping circles, polygons & ellipse. Cohen and Sutherland line clipping, Sutherland-Hodgeman Polygon clipping, Cyrus-beck clipping method 3D transformation & viewing [5L]: 3D transformations: translation, rotation, scaling & other transformations. Rotation about an arbitrary axis in space, reflection through an arbitrary plane; general parallel projection transformation; clipping, view port clipping, 3D viewing.	20	
3.	Curves [3L]: Curve representation, surfaces, designs, Bezier curves, B-spline curves, end conditions for periodic B-spline curves, rational B-spline curves. Hidden surfaces [3L]: Depth comparison, Z-buffer algorithm, Back face detection, BSP tree method, the Painter's algorithm, scan-line algorithm; Hidden line elimination, wire frame	6	

methods , fractal - geometry.Color & shading models [2L]: Light & color model; interpolativeshading model; Texture.Introduction to Ray-tracing: [3L]Human vision and color, Lighting, Reflection and transmission models.

Text book and Reference books:

1. Hearn, Baker – "Computer Graphics (C version 2nd Ed.)" – Pearson education

2. Z. Xiang, R. Plastock – "Schaum's outlines Computer Graphics (2nd Ed.)" – TMH

3. D. F. Rogers, J. A. Adams – "Mathematical Elements for Computer Graphics (2nd Ed.)" – TMH

Constitution of India Code: PEC-IT501D Contacts: 3L

Name of the Course:	Constitution of India			
Course Code: MC-IT501	Semester: V			
Duration: 6 months	Maximum Marks:	100		
Teaching Scheme		Examination Scheme		
Theory:		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance : 5 marks		
Practical: NIL				
Credit Points:				

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Introduction:	3	
1	Constitution' meaning of the term,, Indian Constitution: Sources and		
	constitutional history, Features: Citizenship, Preamble, Fundamental		
	Rights and Duties, Directive Principles of State Policy		
	Union Government and its Administration :	6	
2	Structure of the Indian Union: Federalism, Centre- State relationship,		
	President: Role, power and position, PM and Council of ministers,		
	Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha		
	State Government and its Administration Governor:		
3.	Role and Position, CM and Council of ministers, State Secretariat:	6	
	Organisation, Structure and Functions		
4.	Local Administration District's Administration head:	8	
	Role and Importance, Municipalities: Introduction, Mayor and role of		
	Elected Representative, CEO of Municipal Corporation, Pachayati raj:		
	Introduction, PRI: Zila Pachayat, Elected officials and their roles, CEO		

	Zila Pachayat: Position and role, Block level: Organizational Hierarchy					
	(Different 4.departments), Village level: Role of Elected and					
	Appointed officials, Importance of grass root democracy					
5.	Election Commission Election Commission:					
	Role and Functioning, Chief Election Commissioner and Election					
	Commissioners, State Election Commission: Role and Functioning,					
	Institute and Bodies for the welfare of SC/ST/OBC and women					

Text book and Reference books:

- 1. 'Indian Polity' by Laxmikanth
- 2. 'Indian Administration' by Subhash Kashyap
- 3. 'Indian Constitution' by D.D. Basu
- 4. 'Indian Administration' by Avasti and Avasti

PRACTICAL SYLLABUS Semester V

Compiler Design Lab Code: PCC-CS591 Contacts: 4P

Name of the Course:	Compiler Design Lab	
Course Code: PCC- CS591	Semester:V	
Duration:6 months	Maximum Marks:100	
Teaching Scheme:		
Theory: 3 hrs./week	Continuous Internal Assessment	
Tutorial: NIL	External Assesement:60	
Practical: 4 hrs./week	Distribution of marks:40	
Credit Points:	2	
Course Outcomes:		
1 Be exposed to	compiler writing tools.	
2 Learn to impl	ement the different Phases of compiler	
3 Be familiar w	Be familiar with control flow and data flow analysis	
4 Learn simple	optimization techniques	
Pre-Requisite:		
Pre-requisites as in ESO	C-301	

Laboratory Experiments:

1. Implementation of Symbol Table

2. Develop a lexical analyzer to recognize a few patterns in C. (Ex. identifiers, constants, comments, operators etc.)

3. Implementation of Lexical Analyzer using Lex Tool

4. Generate YACC specification for a few syntactic categories.

a) Program to recognize a valid arithmetic expression that uses operator +, -, * and /.

b) Program to recognize a valid variable which starts with a letter followed by any number of letters or digits.

c)Implementation of Calculator using LEX and YACC

5. Convert the BNF rules into Yacc form and write code to generate Abstract Syntax Tree.

6. Implement type checking

7. Implement control flow analysis and Data flow Analysis

- 8. Implement any one storage allocation strategies(Heap,Stack,Static)
- 9. Construction of DAG

10. Implement the back end of the compiler which takes the three address code and produces the 8086 assembly language instructions that can be assembled and run using a 8086 assembler. The target assembly instructions can be simple move, add, sub, jump. Also simple addressing modes are used.

11. Implementation of Simple Code Optimization Techniques (Constant Folding., etc.)

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Object Oriented Programming Lab Code: PCC-CS593 Contacts: 4P

Name of the Course: Object Oriented Programming Lab	
Course Code: PCC- CS593	Semester:V
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: 3 hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

Laboratory Experiments:

- 1. Assignments on class, constructor, overloading, inheritance, overriding
- 2. Assignments on wrapper class, arrays
- 3. Assignments on developing interfaces- multiple inheritance, extending interfaces
- 4. Assignments on creating and accessing packages
- 5. Assignments on multithreaded programming
- 6. Assignments on applet programming

Note: Use Java for programming

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

Operating System Lab Code: PCC-CS592 Contacts: 4P

Name of the Course:	Operating System Lab
Course Code: PCC- CS592	Semester:V
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: 3 hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

Laboratory Experiments:

1 1. Managing Unix/Linux Operating System [8P]:

Creating a bash shell script, making a script executable, shell syntax (variables, conditions, control structures, functions,

commands). Partitions, Swap space, Device files, Raw and Block files, Formatting disks, Making file systems, Superblock, I-nodes, File system checker, Mounting file systems, Logical Volumes, Network File systems, Backup schedules and

methods Kernel loading, init and the inittab file, Run-levels, Run level scripts. Password file management, Password

security, Shadow file, Groups and the group file, Shells, restricted shells, user-management commands, homes and

permissions, default files, profiles, locking accounts, setting passwords, Switching user, Switching group, Removing users &user groups.

2. **Process [4P]**: starting new process, replacing a process image, duplicating a process image, waiting for a process,

zombie process.

3. Signal [4P]: signal handling, sending signals, signal interface, signal sets.

4. **Semaphore [6P]**: programming with semaphores (use functions semctl, semget, semop, set_semvalue, del_semvalue, semaphore_p, semaphore_v).

5. **POSIX Threads [6P]**: programming with pthread functions (viz. pthread_create, pthread_join, pthread_exit,

pthread_attr_init, pthread_cancel)

6. Inter-process communication [6P]: pipes(use functions pipe, popen, pclose), named pipes(FIFOs, accessing FIFO),

message passing & shared memory(IPC version V).

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

SEMESTER – VI

Sl. No.	Type of course	Code	Course Title	Hours per week		Credits	
				Lecture	Tutorial	Practical	
1	Professional Core Courses	PCC-CS601	Database Management Systems	3	0	4	5
2	Professional Core Courses	PCC-CS602	Computer Networks	3	0	4	5
3	Professional Elective courses	PEC-IT601A	Advanced Algorithms	3	0	0	3
4	Professional Elective courses	PEC-IT601B	Distributed Systems	3	0	0	3
5	Humanities &Social Sciences including Management courses	PEC-IT601C	Software Engineering	3	0	0	3
6	Professional Elective courses	PEC-IT601D	Image Processing	3	0	0	3
7	Professional Elective courses	PEC-IT602A	Parallel and Distributed Algorithms	3	0	0	3
8	Professional Elective courses	PEC-IT602B	Data Warehousing and Data Mining	3	0	0	3
9	Professional Elective courses	PEC-IT602C	Human Computer Interaction	3	0	0	3

10	Professional Elective courses	PEC-IT602D	Pattern Recognition	3	0	0	3
11	Open Elective courses	OEC-IT601A	Numerical Methods	3	0	0	3
12	Open Elective courses	OEC-IT601B	Human Resource Development and Organizational Behavior	3	0	0	3
13	Project	PROJIT601	Project-1	0	0	6	3
		1		1	Tot	al credits	24

Database Management Systems Code: PCCCS601 Contact: 3L+4P

Name of the Course:	Database Management Systems		
Course Code: PCC-CS601	Semester: VI		
Duration:6 months	Maximum Marks:	100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: 4 hrs./week		End Semester Exam:70 Marks	
Credit Points:	3+2=5		
Objective:			
1 To understand the dif	ferent issues involve	d in the design and implementation of a	
database system.	database system.		
	To study the physical and logical database designs, database modeling, relational,		
hierarchical, and netw	hierarchical, and network models		
3 To understand and us	To understand and use data manipulation language to query, update, and manage a		

	database
4	To develop an understanding of essential DBMS concepts such as: database security,
	integrity, concurrency, distributed database, and intelligent database, Client/Server
	(Database Server), Data Warehousing.
5	To design and build a simple database system and demonstrate competence with the
	fundamental tasks involved with modeling, designing, and implementing a DBMS.
6	To understand the different issues involved in the design and implementation of a
	database system.

Unit	Content	Hrs/Unit	Marks/Unit
1	Databasesystem architecture:DataAbstraction, DataIndependence, Data DefinitionLanguage(DDL), Data ManipulationLanguage(DML).Datamodels: Entity-relationshipmodel, network model, relationaland object oriented data models,integrity constraints, datamanipulation operations.	9	
2	Relationalquerylanguages:Relational algebra, Tuple and domain relational calculus, SQL3, DDL and DML constructs, Open source and Commercial DBMS - MYSQL, ORACLE, DB2, SQLserver.Relational databasedesign: Domain and data dependency, Armstrong's axioms, Normal forms, Dependency preservation, Losslessdesign.Query processing and optimization: Evaluation of relational algebra expressions, Query equivalence, Join strategies, Query optimization algorithms.	13	
3	Storage strategies: Indices, B-trees, hashing.	3	
4.	Transaction processing: Concurrency control, ACID property, Serializability of scheduling, Locking and timestamp based schedulers, Multi- version and optimistic Concurrency Control schemes, Database recovery.	5	

5	Database Security: Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion detection, SQL injection.	3	
6	Advanced topics: Object oriented and object relational databases, Logical databases, Web databases, Distributed databases, Data warehousing and data mining.	3	

Text book and Reference books:

1."Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth, S. Sudarshan, McGraw-Hill.

2."Principles of Database and Knowledge – Base Systems", Vol 1 by J. D. Ullman, Computer SciencePress.

3."Fundamentals of Database Systems", 5th Edition by R. Elmasri and S. Navathe, 4.PearsonEducation "Foundations of Databases", Reprint by Serge Abiteboul, Richard Hull, Victor Vianu, Addison-Wesley

Course Outcomes:

On completion of the course students will be able to

- 1. For a given query write relational algebra expressions for that query and optimize the developed expressions
- 2. For a given specification of the requirement design the databases using E R method and normalization.
- 3. For a given specification construct the SQL queries for Open source and Commercial DBMS -MYSQL, ORACLE, andDB2.
- 4. For a given query optimize its execution using Query optimizationalgorithms
- 5. For a given transaction-processing system, determine the transaction atomicity, consistency, isolation, and durability.
- 6. Implement the isolation property, including locking, time stamping based on concurrency control and Serializability of scheduling.

Computer Networks Code: PCC-CS602 Contact: 3L+4P

Name	e of the Course:	Computer Networks				
Cours	se Code: PCC-CS602	Semester: VI			Semester: VI	
Durat	ion:6 months	Maximum Mar	rks:100			
Teacl	hing Scheme		Examination Scheme			
Theor	ry:3 hrs./week		Mid Semester exam: 15			
Tutor	ial: NIL		Assignment and Quiz: 10 marks			
			Attendance: 5 marks			
Practi	cal: 4 hrs./week		End Semester Exam:70 Marks			
Credi	t Points:	3+2=5				
Obje	ctive:					
1	To develop an understanding of modern network architectures from a design and performance perspective.					
2	To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).					
3	To provide an opportunity to do network programming					
4	To provide a WLAN measurement ideas.					

Unit	Content	Hrs/Unit	Marks/Unit
1	Data communication Components: Representation of data and its flow Networks,Various Connection Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless LANs, Connecting LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing - Frequency division, Time division and Wave division, Concepts on spread spectrum.	9	
2	Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back – N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA,CSMA/CD,CDMA/CA	8	
	Network Layer: Switching, Logical	14	

3	addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols.		
4.	Transport Layer: Process to Process Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.	8	
5	Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography.	8	

Text book and Reference books:

- 1. Introduction to Algorithms" byCormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos.

Course Outcomes:

On completion of the course students will be able to

- 1. Understand research problem formulation.
- 2. Analyze research related information
- 3. Follow research ethics
- 4. Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- 5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- 6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Advanced Algorithms

Code: PEC-IT601 A Contact: 3L

Name	of the Course:	Advanced Algorithms			
Cours	e Code: PEC-IT601A	Semester: VI			
Durati	ion:6 months	Maximum Marks:	100		
Teach	ing Scheme		Examination Scheme		
Theor	y:3 hrs./week		Mid Semester exam: 15		
Tutori	al: NIL		Assignment and Quiz: 10 marks		
			Attendance: 5 marks		
Practi	cal: NIL		End Semester Exam:70 Marks		
Credit	Points:	3			
Objec	ctive:				
1	Introduce students to t	the advanced metho	ds of designing and analyzing algorithms.		
2	The student should be	able to choose appr	opriate algorithms and use it for a specific		
	problem.				
3	To familiarize student	s with basic paradig	ms and data structures used to solve		
	advanced algorithmic	problems.			
4	Students should be able to understand different classes of problems concerning their				
	computation difficulties.				
5	To introduce the students to recent developments in the area of algorithmic design.				
Pre-R	Pre-Requisite:				
1	Algorithm Design and Analysis				

Unit	Content	Hrs/Unit	Marks/Unit
	Sorting: Review of various sorting algorithms,		
1	topological sorting	6	
	Graph: Definitions and Elementary Algorithms:		
	Shortest path by BFS, shortest path in edge-weighted		
	case (Dijkasra's), depth-first search and computation		
	of strongly connected components, emphasis on		
	correctness proof of the algorithm and time/space		
	analysis, example of amortized analysis.		
	Matroids: Introduction to greedy paradigm,	8	
2	algorithm to compute a maximum		
	weight maximal independent set. Application to		
	MST.		
	Graph Matching: Algorithm to compute maximum		
	matching. Characterization of		
	maximum matching by augmenting paths, Edmond's		
	Blossom algorithm to compute augmenting path.		
	Flow-Networks: Maxflow-mincut theorem, Ford-	9	
	Fulkerson Method to compute		
	maximum flow, Edmond-Karp maximum-flow		
	algorithm.		

	Matrix Computations: Strassen's algorithm and		
	introduction to divide and		
	conquer paradigm, inverse of a triangular matrix,		
	relation between the time		
	complexities of basic matrix operations,		
	LUP-decomposition.		
	Shortest Path in Graphs: Floyd-Warshall	10	
3	algorithm and introduction to dynamic		
	programming paradigm. More examples of dynamic		
	programming.		
	Modulo Representation of integers/polynomials:		
	Chinese Remainder Theorem,		
	Conversion between base-representation and		
	modulo-representation. Extension to		
	polynomials. Application: Interpolation problem.		
	Discrete Fourier Transform (DFT): In complex		
	field, DFT in modulo ring. Fast		
	Fourier Transform algorithm. Schonhage-Strassen		
	Integer Multiplication algorithm		
	Linear Programming: Geometry of the feasibility	10	
4.	region and Simplex algorithm		
	NP-completeness: Examples, proof of NP-hardness		
	and NP-completeness.		
	One or more of the following topics based on time		
	and interest		
	Approximation algorithms, Randomized Algorithms,		
	Interior Point Method,		
	Advanced Number Theoretic Algorithm		
5	Recent Trands in problem solving paradigms using	5	
	recent searching and sorting techniques by applying		
	recently proposed data structures.		

Text book and Reference books:

- 1. "Introduction to Algorithms" byCormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos.

Course Outcomes:

On completion of the course students will be able to

- 1. Analyze the complexity/performance of different algorithms.
- 2. Determine the appropriate data structure for solving a particular set of problems.
- 3. Categorize the different problems in various classes according to their complexity.
- 4. Students should have an insight of recent activities in the field of the advanced data structure.

Distributed Systems Code: PEC-IT601B Contact: 3L

Name	of the Course:	Distributed Systems			
Course	e Code: PEC-IT601B	Semester: VI			
Durati	on:6 months	Maximum Marks:10	0		
Teach	ing Scheme		Examination Scheme		
Theor	y:3 hrs./week		Mid Semester exam: 15		
Tutori	al: NIL		Assignment and Quiz: 10 marks		
			Attendance: 5 marks		
Practic	cal: NIL		End Semester Exam:70 Marks		
Credit	Points:	3			
Objec	tive:				
1	To introduce the fund	amental concepts and	issues of managing large volume of shared		
	data in a parallel and distributed environment, and to provide insight into related				
	research problems.				
Pre-R	Pre-Requisite:				
1	1 Database Management Systems				

Unit	Content	Hrs/Unit	Marks/Unit
	INTRODUCTION		
1	Distributed data processing; What is a DDBS;	8	
	Advantages and disadvantages of DDBS; Problem		
	areas; Overview of database and computer network		
	concepts DISTRIBUTED DATABASE		
	MANAGEMENT SYSTEM ARCHITECTURE		
	Transparencies in a distributed DBMS; Distributed		
	DBMS architecture; Global directory issues		
	DISTRIBUTED DATABASE	11	
2	DESIGN		
	Alternative design strategies;		
	Distributed design issues;		
	Fragmentation; Data allocation		
	SEMANTICS DATA CONTROL		
	View management; Data security;		
	Semantic Integrity Control QUERY		
	PROCESSING ISSUES		
	Objectives of query processing;		
	Characterization of query processors;		
	Layers of query processing; Query		
	decomposition; Localization of		
	distributed data		

	DISTRIBUTED QUERY OPTIMIZATION	11	
3	Factors governing query optimization; Centralized		
	query optimization; Ordering of fragment queries;		
	Distributed query optimization algorithms		
	TRANSACTION MANAGEMENT		
	The transaction concept; Goals of transaction		
	management; Characteristics of transactions;		
	Taxonomy of transaction models		
	CONCURRENCY CONTROL		
	Concurrency control in centralized database systems;		
	Concurrency control in DDBSs; Distributed		
	concurrency control algorithms; Deadlock		
	management		
	Reliability issues in DDBSs; Types of failures;	8	
4.	Reliability techniques; Commit protocols; Recovery		
	protocols Algorithm		
5	PARALLEL DATABASE SYSTEMS	6	
	Parallel architectures; parallel query		
	processing and		
6	ADVANCED TOPICS Mobile	4	
	Databases, Distributed Object		
	Management, Multi-databases		

Text book and Reference books:

- 1. Principles of Distributed Database Systems, M.T. Ozsu and PValduriez, Prentice-Hall, 1991.
- 2. Distributed Database Systems, D. Bell and J. Grimson, Addison-Wesley, 1992.

Course Outcomes:

On completion of the course students will be able to

- 1. Design trends in distributed systems.
- 2. Apply network virtualization.
- 3. Apply remote method invocation and objects.

Software Engineering Code:PEC-IT601C Contact: 3L+4P

Name of the Course:	Software Engineering
Course Code: PEC-IT601C	Semester: VI

Duration:6 months	Maximum	Maximum Marks:100		
Teaching Scheme		Examination Scheme		
T1		Mil Como ten error 15		
Theory:3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL Assignment and Quiz: 10 marks		Assignment and Quiz: 10 marks		
		Attendance: 5 marks		
Practical: NIL		End Semester Exam:70 Marks		
Credit Points:	3			

Unit	Content	Hrs/Unit	Marks/Unit
1	Overview of System Analysis & Design , Business System Concept, System Development Life Cycle, Waterfall Model , Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model. [10L]	10	
2	System Design – Context diagram and DFD, Problem Partitioning, Top-Down And Bottom-Up design; Decision tree, decision table and structured English; Functional vs. Object- Oriented approach. [5L]	5	
3	Coding & Documentation – Structured Programming, OO Programming, Information Hiding, Reuse, System Documentation. [4L] Testing – Levels of Testing, Integration Testing, Test case Specification, Reliability Assessment, Validation & Verification Metrics, Monitoring & Control. [8L]	12	
4.	Software Project Management – Project Scheduling, Staffing, Software Configuration Management, Quality Assurance, Project Monitoring. [7L]	7	
5	Static and dynamic models, why modeling, UML diagrams: Class diagram, interaction diagram: collaboration diagram, sequence diagram, state chart diagram, activity diagram, implementation diagram. [10 L]	10	

Text book and Reference books:

- 1. Pressman, Software Engineering : A practitioner's approach-(TMH)
- 2. Pankaj Jalote, Software Engineering- (Wiley-India)

- 3. Rajib Mall, Software Engineering- (PHI)
- 4. Agarwal and Agarwal, Software Engineering (PHI)
- 5. Sommerville, Software Engineering Pearson
- 6. Martin L. Shooman, Software Engineering TMH

Image Processing Code:PEC-IT601 D Contact: 3L

Name of the Course:	Image Processing		
Course Code: PEC-IT601D	Semester: VI		
Duration:6 months	Maximum Marks:1	00	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction [3L] Background, Digital Image Representation, Fundamental steps in Image Processing, Elements of Digital Image Processing - Image Acquisition, Storage, Processing, Communication, Display.	9	
2	Digital Image Formation [4L] A Simple Image Model, Geometric Model- Basic Transformation (Translation, Scaling, Rotation), Perspective Projection, Sampling & Quantization - Uniform & Non uniform.	4	
3	Mathematical Preliminaries[9L] Neighbour of pixels, Connectivity, Relations, Equivalence & Transitive Closure; Distance Measures, Arithmetic/Logic Operations, Fourier Transformation, Properties of The Two	9	

	Dimensional Fourier Transform, Discrete Fourier	
	Transform, Discrete Cosine & SineTransform.	
4.	Image Enhancement [8L] Spatial Domain Method, Frequency Domain Method, Contrast Enhancement -Linear & Nonlinear Stretching, Histogram Processing; Smoothing - Image Averaging, Mean Filter, Low-pass Filtering; Image Sharpening. High- pass Filtering, High- boost Filtering, Derivative Filtering, Homomorphic Filtering; Enhancement in the frequency domain - Low pass filtering, High pass filtering.	8
5	Image Restoration [7L] Degradation Model, Discrete Formulation, Algebraic Approach to Restoration - Unconstrained & Constrained; Constrained Least Square Restoration, Restoration by Homomorphic Filtering, Geometric Transformation - Spatial Transformation, Gray Level Interpolation.	7
6	Image Segmentation [7L] Point Detection, Line Detection, Edge detection, Combined detection, Edge Linking & Boundary Detection - Local Processing, Global Processing via The Hough Transform; Thresholding - Foundation, Simple Global Thresholding, Optimal Thresholding; Region Oriented Segmentation - Basic Formulation, Region Growing by Pixel Aggregation, Region Splitting & Merging.	7

Text book and Reference books:

1. Hearn, Baker - "Computer Graphics (C version 2nd Ed.)" - Pearson education

2. Z. Xiang, R. Plastock - "Schaum's outlines Computer Graphics (2nd Ed.)" - TMH

3. D. F. Rogers, J. A. Adams – "Mathematical Elements for Computer Graphics (2nd Ed.)" – TMH

Parallel and Distributed Algorithms Code: PEC-IT602A

Contacts: 3L

Name of the Course:	Parallel and Distributed Algorithms		
Course Code PEC-IT602A	Semester: VI		
Duration: 6 months	Maximum Marks	s: 100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points: 3			

Unit	Content	Hrs/Unit	Marks/Unit
1	UNIT-I :Basic Techniques, Parallel Computers for increase Computation speed, Parallel & Cluster Computing	8	
2	UNIT-II :Message Passing Technique- Evaluating Parallel programs and debugging, Portioning and Divide and Conquer strategies examples	8	
3	UNIT-III :Pipelining- Techniques computing platform, pipeline programs examples	8	
4.	UNIT-IV: Synchronous Computations, load balancing, distributed termination examples, programming with shared memory, shared memory multiprocessor constructs for specifying parallelist sharing data parallel programming languages and constructs, open MP	11	
5	UNIT-V :Distributed shared memory systems and programming achieving constant memory distributed shared memory programming primitives, algorithms – sorting and numerical algorithms.	9	

Text book and Reference books:

- 1. Parallel Programming, Barry Wilkinson, Michael Allen, Pearson Education, 2nd Edition.
- 2. Introduction to Parallel algorithms by Jaja from Pearson, 1992.

Data Warehousing and Data Mining Code: PEC-IT602B Contacts: 3L

Name of the Course:	Data Warehousing and Data Mining	
Course Code PEC-IT602B	Semester: VI	
Duration: 6 months	Maximum Mark	s: 100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Unit 1: Introduction to Data Warehousing; Data Mining: Mining frequent patterns, association and correlations; Sequential Pattern Mining concepts, primitives, scalable methods;	8	
2	Unit 2: Classification and prediction; Cluster Analysis – Types of Data in Cluster Analysis, Partitioning methods, Hierarchical Methods; Transactional Patterns and other temporal based frequent patterns,	8	
3	Unit 3: Mining Time series Data, Periodicity Analysis for time related sequence data, Trend analysis, Similarity search in Time-series analysis;	8	
4.	Unit 4: Mining Data Streams, Methodologies for stream data processing and stream data systems, Frequent pattern mining in stream data, Sequential Pattern Mining in Data Streams, Classification of dynamic data streams, Class Imbalance Problem; Graph Mining; Social Network Analysis;modulation for communication, filtering, feedback control systems.	11	
	Unit 5: Web Mining, Mining the web page layout structure,	9	

mining web link structure, mining multimedia data on the web, Automatic classification of web documents and web usage mining; Distributed Data Mining.		
Unit 6: Recent trends in Distributed Warehousing and Data	5	
Mining, Class Imbalance Problem; Graph Mining; Social Network Analysis		

Text book and Reference books:

- 1. Data Warehousing Fundamentals for IT Professionals, Second Edition by Paulraj Ponniah, Wiley India.
- 1. Data Warehousing, Data Mining, & OLAP Second Edition by Alex Berson and Stephen J. Smith, Tata McGraw Hill Education
- 2. Data warehouse Toolkit by Ralph Kimball, Wiley India
- 3. Jiawei Han and M Kamber, Data Mining Concepts and Techniques, Second Edition, Elsevier Publication, 2011.
- 4. Vipin Kumar, Introduction to Data Mining Pang-Ning Tan, Michael Steinbach, Addison Wesley,2006.
- 4. G Dong and J Pei, Sequence Data Mining, Springer, 2007.

Course Outcomes:

After completion of course, students would be:

- 1. Study of different sequential pattern algorithms
- 2. Study the technique to extract patterns from time series data and it application in real world.
- 3. Can extend the Graph mining algorithms to Web mining
- 4. Help in identifying the computing framework for Big Data

Human Computer Interaction

Code: PEC-IT602C

Contacts: 3L

Name of the Course:	Human Computer Interaction			
Course Code: PEC-IT602C	Semester: VI			
Duration: 6 months	Maximum Marks	s:100		
Teaching Scheme		Examination Scheme		
Theory:3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance : 5 marks		
Practical: NIL		End Semester Exam :70 Marks		
Credit Points:	3			
Objective:				
1 Learn the foundations	Learn the foundations of Human Computer Interaction			
2 Be familiar with the d	Be familiar with the design technologies for individuals and persons with disabilities			

3	Be aware of mobile Human Computer interaction	
4	Learn the guidelines for user interface.	
Pre-R	Pre-Requisite:	
1	Computer Organization & Architecture	

Unit	Content	Hrs/U	Marks/
		nit	Unit
		9	
1	Human: I/O channels – Memory – Reasoning and problem solving;		
	The computer: Devices – Memory – processing and networks;		
	Interaction: Models – frameworks – Ergonomics – styles – elements –		
	interactivity- Paradigms.		
	Interactive Design basics – process – scenarios – navigation – screen	11	
2	design –		
	Iteration and prototyping. HCI in software process – software life		
	cycle –		
	usability engineering – Prototyping in practice – design rationale.		
	Design rules		
	- principles, standards, guidelines, rules. Evaluation Techniques -		
	Universal		
	Design.		
	Cognitive models –Socio-Organizational issues and stake holder		
3.	requirements	8	
	-Communication and collaboration models-Hypertext,		
	Multimedia and WWW.		
4		0	
4.	Mobile Ecosystem: Platforms, Application frameworks- Types of	8	
	Mobile		
	Applications: Widgets, Applications, Games- Mobile Information		
	Architecture, Mahila 2.0. Mahila Dagian, Elementa of Mahila Dagian		
	Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.		
	10018.		
5.	Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual	8	
	Tools,	Ű	
	Overlays, Inlays and Virtual Pages, Process Flow. Case		
	Studies.		
6.	Recent Trends: Speech Recognition and Translation,	3	
	Multimodal System		

Text book and Reference books:

1. Theodor Richardson, Charles N Thies, Secure Software Design, Jones & Bartlett

2. Kenneth R. van Wyk, Mark G. Graff, Dan S. Peters, Diana L. Burley, Enterprise Software Security,

Addison Wesley.

Course Outcomes:

On completion of the course students will be able to

- 1. Differentiate between various software vulnerabilities.
- 2. Software process vulnerabilities for an organization.
- 3. Monitor resources consumption in a software.
- 4. Interrelate security and software development process.

Pattern Recognition

Code:PEC-IT602D

Contact: 3L

Name of the Course:	Pattern Recognition	
Course Code: PEC-IT602D	Semester: VI	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Basics of pattern recognition	2	
2	Bayesian decision theory 8L Classifiers, Discriminant functions, Decision surfaces Normal density and discriminant functions Discrete features	8	
3	Parameter estimation methods 6L Maximum-Likelihood estimation Gaussian mixture models Expectation-maximization method Bayesian estimation	6	
4.	 Hidden Markov models for sequential pattern classification 8L 4.1. Discrete hidden Markov models 4.2. Continuous density hidden Markov models 	8	
5	Dimension reduction methods 3L	3	

	5.1. Fisher discriminant analysis5.2Principal component analysis. Parzen-window methodK-Nearest Neighbour method		
6	Non-parametric techniques for density estimation	2	
7	Linear discriminant function based classifier 5L 7.1. Perceptron 7.2. Support vector machines	5	
8	Non-metric methods for pattern classification 4L 8.1. Non-numeric data or nominal data 8.2. Decision trees	4	
9	Unsupervised learning and clustering 2L 9.1. Criterion functions for clustering 9.2. Algorithms for clustering: K-means, Hierarchical and other methods	2	

Text book and Reference books:

- 1. R. O. Duda, P. E. Hart and D. G. Stork: Pattern Classification, John Wiley, 2001.
- 2. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009.
- 3. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Numerical Methods Code: OEC-IT601A

Contact: 3L

Name of the Course:	Numerical Methods	
Course Code: OEC-IT601A	Semester: VI	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
		NC10 / 15
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Approximation in numerical computation: Truncation and rounding errors, Fixed and floating- point arithmetic, Propagation of errors.	2	
2	Interpolation:Newtonforward/backwardinterpolation,Lagrange's andNewton's divideddifferenceInterpolation.	8	
3	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for corresponding error terms.	3	
4.	Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU Factorization method, Gauss-Seidel iterative method.	8	
5	Numerical solution of Algebraic equation: Bisection method, Regula-Falsi method, Newton-Raphson method.	3	
6	Numerical solution of ordinary differential equation: Euler's method, Runge-Kutta methods, Predictor- Corrector methods and Finite Difference method.	2	

Text book and Reference books:

- 1. C.Xavier: C Language and Numerical Methods.
- 2. Dutta & Jana: Introductory Numerical Analysis.
- 3. J.B.Scarborough: Numerical Mathematical Analysis.
- 4. Jain, Iyengar, & Jain: Numerical Methods (Problems and Solution).
- 5. Balagurusamy: Numerical Methods, Scitech.
- 6. Baburam: Numerical Methods, Pearson Education.
- 7. N. Dutta: Computer Programming & Numerical Analysis, Universities Press.

Human Resource Development and Organizational Behavior Code: OEC-IT601 B

Contact: 3L

Name of the Course:	Human Resource Development and Organizational Behavior		
Course Code: OEC-IT601 B	Semester: VI		
Duration:6 months	Maximum Marks:100		
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Organizational Behaviour: Definition, Importance, Historical Background, Fundamental Concepts of OB, Challenges and Opportunities for OB. [2] Personality and Attitudes: Meaning of personality, Personality Determinants and Traits, Development	4	
	of Personality, Types of Attitudes, Job Satisfaction.		
2	 Perception: Definition, Nature and Importance, Factors influencing Perception, Perceptual Selectivity, Link between Perception and Decision Making. [2] 4. Motivation: Definition, Theories of Motivation - Maslow's Hierarchy of Needs Theory, McGregor's Theory X & Y, Herzberg's Motivation-Hygiene Theory, Alderfer's ERG Theory, McClelland's Theory of Needs, Vroom's Expectancy Theory. 	8	
3	Group Behaviour: Characteristics of Group, Types of Groups, Stages of Group Development, Group Decision Making. [2] Communication: Communication Process, Direction of Communication, Barriers to Effective Communication. [2] Leadership: Definition, Importance, Theories of Leadership Styles.	4	
	Organizational Politics: Definition, Factors	8	

4.	contributing to Political Behaviour. [2]	
	Conflict Management: Traditional vis-a-vis Modern	
	View of Conflict, Functional and Dysfunctional	
	Conflict,	
	Conflict Process, Negotiation – Bargaining	
	Strategies, Negotiation Process. [2]	
	Organizational Design: Various Organizational	
	Structures and their Effects on Human Behaviour,	
	Concepts of	
	Organizational Climate and Organizational Culture.	
	-	

Text book and Reference books:

1. Robbins, S. P. & Judge, T.A.: Organizational Behavior, Pearson Education, 15th Edn.

2. Luthans, Fred: Organizational Behavior, McGraw Hill, 12th Edn.

3. Shukla, Madhukar: Understanding Organizations – Organizational Theory & Practice in India, PHI

4. Fincham, R. & Rhodes, P.: Principles of Organizational Behaviour, OUP, 4th Edn.

5. Hersey, P., Blanchard, K.H., Johnson, D.E.- Management of Organizational Behavior Leading Human Resources,

PHI, 10th Edn.

PRACTICAL SYLLABUS Semester VI

Database Management System Lab

Code: PCC-CS691 Contacts: 4P

Name of the Course:	Database Management System Lab
Course Code: PCC- CS691	Semester:VI
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: 3 hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

Laboratory Experiments: Structured Query Language

1. Creating Database

- Creating a Database
- Creating a Table
- Specifying Relational Data Types

Specifying Constraints • **Creating Indexes** • 2. Table and Record Handling **INSERT** statement Using SELECT and INSERT together • DELETE, UPDATE, TRUNCATE statements • DROP, ALTER statements 3. Retrieving Data from a Database 1. The SELECT statement 2. Using the WHERE clause 3. Using Logical Operators in the WHERE clause 4. Using IN, BETWEEN, LIKE, ORDER BY, GROUP BY and HAVING Clause 5. Using Aggregate Functions 6. Combining Tables Using JOINS 7. Subqueries 4. Database Management • Creating Views • Creating Column Aliases • Creating Database Users • Using GRANT and REVOKE Cursors in Oracle PL / SOL Writing Oracle PL / SQL Stored Procedures

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

Computer Networks Lab Code: PCC-CS692 Contacts: 4P

Name of the Course:	Computer Networks Lab
Course Code: PCC- CS692	Semester:VI
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: 3 hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

Laboratory Experiments:
1) NIC Installation & Configuration (Windows/Linux)
2) Understanding IP address, subnet etc

Familiarization with

- Networking cables (CAT5, UTP)
- Connectors (RJ45, T-connector)
- Hubs, Switches

3) TCP/UDP Socket Programming

- Simple, TCP based, UDP based
- Multicast & Broadcast Sockets
- Implementation of a Prototype Multithreaded Server
- 4) Implementation of

Data Link Layer Flow Control Mechanism (Stop & Wait, Sliding Window) Data Link Layer Error Detection Mechanism (Cyclic Redundancy Check)

Data Link Layer Error Control Mechanism (Selective Repeat, Go Back N)

5) Server Setup/Configuration

FTP, TelNet, NFS, DNS, Firewall

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

Computer Networks Lab Code: PCC-CS692 Contacts: 4P

Name of the Course:	Computer Networks Lab
Course Code: PCC- CS692	Semester:VI
Duration:6 months	Maximum Marks:100
Teaching Scheme:	
Theory: 3 hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

Laboratory Experiments:

Simulation Laboratory using standard Simulator:

- 1 Sampled sinusoidal signal, various sequences and different arithmetic operations.
- 2. Convolution of two sequences using graphical methods and using commands-

verification of the properties of

convolution.

- 3. Z-transform of various sequences verification of the properties of Z-transform.
- 4. Twiddle factors verification of the properties.
- 5. DFTs / IDFTs using matrix multiplication and also using commands.
- 6. Circular convolution of two sequences using graphical methods and using commands,

differentiation between

linear and circular convolutions.

7. Verifications of the different algorithms associated with filtering of long data sequences and Overlap –add and

Overlap-save methods.

8. Butterworth filter design with different set of parameters.

9. FIR filter design using rectangular, Hamming and Blackman windows.

Hardware Laboratory using either 5416 or 6713 Processor and Xilinx FPGA:

1. Writing & execution of small programs related to arithmetic operations and convolution using Assembly Language

of TMS320C 5416/6713 Processor, study of MAC instruction.

2. Writing of small programs in VHDL and downloading onto Xilinx FPGA.

3. Mapping of some DSP algorithms onto FPGA.

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

Syllabus for 4th Year, B.Tech Information Technology

SEMESTER – VII

Internet Technology Code: PEC-IT701A Contacts: 3L

Name of the Course:	Internet Techno	logy
Course Code: PEC-IT701A	Semester: VII	
Duration: 6 months	Maximum Marks	s: 100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction to Internet Technology(6L) :		
1	Overview, Network of Networks, Intranet, Extranet and	6	
	Internet.,World Wide Web:Domain and Sub domain,		
	Address Resolution, DNS, Telnet, FTP, HTTP. Review of TCP/IP:Features, Segment, Three-Way Handshaking, Flow Control, Error Control, Congestion control, IP Datagram, IPv4 and IPv6. IP Subnetting and addressing :Classful and Classless Addressing, Subnetting. NAT, IP masquerading, IP tables,Internet Routing Protocol .Routing -Intra and Inter Domain Routing, Unicast and Multicast Routing, Broadcast. Electronic Mail		

	POP3, SMTP.		
2	HTML,Image Maps ,XML,CGI Scripts(9L): Introduction, Editors, Elements, Attributes, Heading, Paragraph. Formatting, Link, Head, Table, List, Block, Layout, CSS.Form, Iframe, Colors, Colorname, Colorvalue,map, area, attributes of image area.Extensible Markup Language, Introduction, Tree, Syntax, Elements, Attributes, Validation, Viewing. XHTML in brief. Introduction, Environment Variable, GET and POST Methods	9	
3	Perl, JavaScript, Java applets(10L) Introduction, Variable, Condition, Loop, Array, Implementing data structure, Hash, String, Regular Expression, File handling, I/O handling. ,Basics, Statements, comments, variable, comparison, condition, switch, loop, break. Object – string, array, Boolean, reg-ex. Function, Errors, Validation. Definition of cookies, Create and Store a cookie with example. Container Class, Components, Applet Life Cycle, Update method; Parameter passing applet, Applications.	10	
4.	Client-Server programming In Java Threats, Network Security techniques(4L) Java Socket, Java RMI, Malicious code-viruses, Trojan horses, worms; eavesdropping, spoofing, modification, denial of service attacks. Password and Authentication; VPN, IP Security, security in electronic transaction, Secure Socket Layer (SSL), Secure Shell (SSH), Introduction, Packet filtering, Stateful, Application layer, Proxy	4	
5	Internet Telephony, Multimedia Applications, Multimedia Applications(5L): Introduction, VoIP. Multimedia Applications Multimedia over IP: RSVP, RTP, RTCP and RTSP. Streaming media, Codec and Plugins, IPTV. Definition, Meta data, Web Crawler, Indexing, Page rank, overview of SEO.	5	

Text book and Reference books:

- 1. Web Technology: A Developer's Perspective, N.P. Gopalan and J. Akilandeswari, PHI Learning, Delhi, 2013. (Chapters 1-5,7,8,9).
- 2. Internetworking Technologies, An Engineering Perspective, Rahul Banerjee, PHI Learning, Delhi, 2011. (Chapters 5,6,12)

Quantum Computing Code: PEC-IT701B **Contacts: 3L**

•

Name of the Course:	Quantum Co	omputing		
Course Code: PEC- IT701B	Semester: VI	Ι		
Duration: 6 months	Maximum M	arks:100		
Teaching Scheme		Examination Scheme		
Theory:3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL		Assignment and Quiz: 10 marks		
		Attendance : 5 marks		
Practical: NIL		End Semester Exam :70 Marks		
Credit Points: 3				
Objective:	·			
1 The course wi				
scientist's pers	scientist's perspective, and how it describes reality and understand the philosophical			
implications of	implications of quantum computing			
Pre-Requisite:				
1 Linear Algebra, Theory of Computation				

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Qubit & Quantum States: The Qubit, Vector Spaces. Linear	3	
1	Combination Of Vectors, Uniqueness of a spanning set, basis &		
	dimensions, inner Products, orthonormality, gram-schmidt		
	orthogonalization, bra-ket formalism, the Cauchyschwarez and		
	triangle Inequalities.		
	Matrices & Operators: Observables, The Pauli Operators, Outer	10	
2	Products, The Closure Relation, Representation of operators using		
	matrices, outer products & matrix representation, matrix		
	representation of operators in two dimensional spaces, Pauli		
	Matrix, Hermitian unitary and normal operator, Eigen values &		
	Eigen Vectors, Spectral Decomposition, Trace of an operator,		
	important properties of Trace, Expectation Value of Operator,		
	Projection Operator, Positive Operators,		

3.	Commutator Algebra, Heisenberg uncertainty principle, polar decomposition &singular values, Postulates of Quantum Mechanics.	5	
4.	Tensor Products: Representing Composite States in Quantum Mechanics, Computing inner products, Tensor products of column vectors, operators and tensor products of Matrices. Density Operator: Density Operator of Pure & Mix state, Key Properties, Characterizing Mixed State, Practical Trace & Reduce Density Operator, Density Operator & Bloch Vector.	5	
5.	Quantum Measurement Theory: Distinguishing Quantum states & Measures, Projective Measurements, Measurement on Composite systems, Generalized Measurements, Positive Operator- Valued Measures.	8	
6.	Recent trends in Quantum Computing Research, Quantum Computing Applications of Genetic Programming.	6	

Text book and Reference books:

Quantum Computing without Magic by Zdzisław Meglicki

- 2. Quantum Computing Explained By DAVID Mc MAHON
- 3. Quantum Computer Science By Marco Lanzagorta, Jeffrey Uhlmann
- 4. An Introduction to Quantum Computing Phillip Kaye, Raymond Laflamme, Michele Mosca.

Course Outcomes:

On completion of the course students will be able to knowledge of Vector spaces, Matrices, Quantum state, Density operator and Quantum

Cloud Computing Code: PEC-IT701C Contact: 3L

Name of the Course:	Cloud Computing	
Course Code: PEC-IT701C	Semester: VII	
Duration: 6 months	Maximum Marks:	100
Teaching Scheme	Examination Scheme	
Theory: 3 hrs./week	Mid Semester exam: 15	
Tutorial: NIL	Assignment and Quiz: 10 marks	
	Attendance: 5 marks	
Practical:		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Definition of Cloud Computing and its		
1	Basics (Lectures) . Defining a Cloud, Cloud Types – NIST model, Cloud Cube model, Deployment models (Public , Private, Hybrid and Community Clouds), Service Platform as a Service, Software as a Service with examples of services/ service providers, models – Infrastructure as a Service, Cloud Reference model, Characteristics of Cloud Computing – a shift in paradigm Benefits and advantages of Cloud Computing, A brief introduction on Composability, Infrastructure, Platforms, Virtual Appliances, Communication Protocols, Applications, Connecting to the Cloud by Clients, IaaS – Basic concept, Workload, partitioning of virtual private server instances, Pods, aggregations, silos PaaS – Basic concept, tools and development environment with examples SaaS - Basic concept and characteristics, Open SaaS and SOA, examples of SaaS platform Identity as a Service (IDaaS) Compliance as a Service (CaaS)	9	
2	Use of Platforms in Cloud Computing Concepts of Abstraction and Virtualization Virtualization technologies : Types of virtualization (access, application, CPU, storage), Mobility patterns (P2V, V2V, V2P, P2P, D2C, C2C, C2D, D2D) Load Balancing and Virtualization: Basic Concepts, Network resources for load balancing, Advanced load balancing (including Application Delivery Controller and Application Delivery Network), Mention of The Google Cloud as an example of use of load balancing Hypervisors: Virtual machine technology and types, VMware vSphere Machine Imaging (including mention of Open Virtualization Format – OVF) Porting of applications in the Cloud: The simple Cloud API and AppZero Virtual Application appliance,Concepts of Platform as a Service, Definition of services, Distinction between SaaS and PaaS (knowledge of Salesforce.com and Force.com), Application	12	

		1	
	development		
	Use of PaaS Application frameworks,		
	Discussion of Google Applications Portfolio –		
	Indexed search, Dark Web, Aggregation and		
	disintermediation, Productivity applications		
	and service, Adwords, Google Analytics,		
	Google Translate, a brief discussion on Google		
	• •		
	Toolkit (including introduction of Google		
	APIs in brief), major features of Google App		
	Engine service., Discussion of Google		
	Applications Portfolio – Indexed search, Dark		
	Web, Aggregation and disintermediation,		
	Productivity applications and service,		
	Adwords, Google Analytics, Google Translate,		
	a brief discussion on Google Toolkit		
	(including introduction of Google APIs in		
	brief), major features of Google App Engine		
	service, Windows Azure platform: Microsoft's		
	approach, architecture, and main elements,		
	overview of Windows Azure AppFabric,		
	Content Delivery Network, SQL Azure, and		
	Windows Live services,	7	
_	Cloud Infrastructure:	/	
3	Cloud Management:		
	An overview of the features of network		
	management systems and a brief introduction		
	of related products from large cloud vendors,		
	Monitoring of an entire cloud computing		
	deployment stack – an overview with mention		
	of		
	some products, Lifecycle management of		
	cloud services (six stages of lifecycle).		
	Concepts of Cloud Security:		
	Cloud security concerns, Security boundary,		
	Security service boundary Overview of		
	security mapping Security of data: Brokered		
	cloud storage access, Storage location and		
	tenancy, encryption, and auditing and		
	compliance		
	Identity management (awareness of Identity		
	protocol standards)	0	
	Concepts of Services and Applications :	8	
4.			
	Service Oriented Architecture: Basic concepts		
	of message-based transactions, Protocol stack		
	for an SOA architecture, Event-driven SOA,		
	Enterprise Service Bus, Service catalogs,		
	Applications in the Cloud: Concepts of cloud		
	<u> </u>	1	1

transactions, functionality mapping, Application attributes, Cloud service attributes, System abstraction and Cloud Bursting, Applications and Cloud APIs	
Cloud-based Storage: Cloud storage definition – Manned and Unmanned	
Webmail Services: Cloud mail services including Google Gmail, Mail2Web, Windows Live Hotmail, Yahoo mail, concepts of Syndication services	

Text book and Reference books:

- 1. Cloud Computing Bible by Barrie Sosinsky, Wiley India Pvt. Ltd, 2013
- 2. Mastering Cloud Computing by Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, McGraw Hill Education (India) Private Limited, 2013
- Cloud computing: A practical approach, Anthony T. Velte, Tata Mcgraw-Hill Cloud Computing, Miller, Pearson 3.
- 4.
- Building applications in cloud:Concept, Patterns and Projects, Moyer, Pearson 5.
- 6. Cloud Computing Second Edition by Dr. Kumar Saurabh, Wiley India

Machine Learning Code: PEC-IT701D Contacts: 3L

Name of the Course:	Machine Learning		
Course Code: PEC IT-701D	Semester: VII	Semester: VII	
Duration: 6 months	Maximum Marks:	100	
Teaching Scheme	Examination Scheme		
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: Nil		End Semester Exam: 70 Marks	
Credit Points:	3		

COURSE OBJECTIVE

To learn the concept of how to learn patterns and concepts from data	a without being	
explicitly programmed To design and analyse various machine learning algorithms and techniques outlook focusing on recent advances.	with a modern	
Explore supervised and unsupervised learning paradigms of machine learning	ng	
To explore Deep learning technique and various feature extraction strategie	U U	
To explore Deep learning teeninque and various feature extraction strategy	Hrs/unit	Marks/unit
	III 5/ unit	
Unit 1:	10	
Supervised Learning (Regression/Classification)	10	
Basic methods: Distance-based methods, Nearest-Neighbours, Decision		
Trees, Naive Bayes		
Linear models: Linear Regression, Logistic Regression, Generalized		
Linear Models		
Support Vector Machines, Nonlinearity and Kernel Methods		
Beyond Binary Classification: Multi-class/Structured Outputs, Ranking		
Unit 2:	7	
Unsupervised Learning	,	
Clustering: K-means/Kernel K-means		
Dimensionality Reduction: PCA and kernel PCA		
Matrix Factorization and Matrix Completion		
Generative Models (mixture models and latent factor models)		
Unit 3	6	
Evaluating Machine Learning algorithms and Model Selection, Introduction to	0	
Statistical Learning Theory, Ensemble Methods (Boosting, Bagging, Random		
Forests)		
Unit 4	9	
Sparse Modeling and Estimation, Modeling Sequence/Time-Series Data, Deep	-	
Learning and Feature Representation Learning		
Unit 5	9	
Scalable Machine Learning (Online and Distributed Learning)		
A selection from some other advanced topics, e.g., Semi-supervised Learning,		
Active Learning, Reinforcement Learning, Inference in Graphical Models,		
Introduction to Bayesian Learning and Inference		
Unit 6:	5	
Recent trends in various learning techniques of machine learning and		
classification methods		

References:

- 1. Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012
- 2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer 2009 (freely available online)
- 3. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007

Multimedia Technology Code: PEC-IT702A Contacts: 3L

Name of the Course:	Multimedia Tech	Multimedia Technology	
Course Code: PEC- IT702A	Semester: VII	Semester: VII	
Duration: 6 months	Maximum Marks:1	Maximum Marks:100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance : 5 marks	
Practical: Nil		End Semester Exam :70 Marks	

Unit	Content	Hrs/U	Marks/
	Introductions Multimodic to day Import of Multimodic	nit	Unit
1	Introduction: Multimedia today, Impact of Multimedia, Multimedia Systems, Components and Its Applications	2	
2	Text and Audio, Image and Video(14L)Text: Types of Text, Ways to Present Text, Aspects ofText Design, Character, Character Set, Codes, Unicode,Encryption; Audio: Basic Sound Concepts, Types ofSound, Digitizing Sound, Computer Representation ofSound (Sampling Rate, Sampling Size, Quantization),Audio Formats, Audio tools, MIDIImage: Formats, Image Color Scheme, ImageEnhancement; Video: Analogue and Digital Video,Recording Formats and Standards (JPEG, MPEG, H.261)Transmission of Video Signals, Video Capture, andComputer based Animation.	14	
3.	Synchronization, Storage models and Access Techniques: Temporal relationships, synchronization accuracy specification factors, quality of service, Magnetic media, optical media, file systems (traditional, multimedia) Multimedia devices – Output devices, CD-ROM, DVD, Scanner, CCD	8	
4.	Image and Video Database, Document ArchitectureandContentManagement(17L):Imagerepresentation, segmentation, similarity based retrieval,image retrieval by color, shape and texture; indexing- k-d trees, R-trees, quad trees; Case studies- QBIC, Virage.Video Content, querying, video segmentation, indexing,Content Design and Development, General Design PrinciplesHypertext: Concept, Open Document Architecture (ODA),Multimedia and Hypermedia Coding Expert Group (MHEG),	17	

	Standard Generalized Markup Language (SGML), Document Type Definition (DTD), Hypertext Markup Language (HTML) in Web Publishing. Case study of Applications		
5.	Multimedia Applications(4L): Interactive television, Video-on-demand, Video Conferencing, Educational Applications, Industrial Applications, Multimedia archives and digital libraries, media editors	4	

Text book and Reference books:

1. Ralf Steinmetz and Klara Nahrstedt , Multimedia: Computing, Communications & Applications , Pearson Ed.

- 2. Nalin K. Sharda , Multimedia Information System , PHI.
- 3. Fred Halsall , Multimedia Communications , Pearson Ed.
- 4. Koegel Buford , Multimedia Systems , Pearson Ed.
- 5. Fred Hoffstetter, Multimedia Literacy, McGraw Hill.

6. Ralf Steinmetz and Klara Nahrstedt , Multimedia Fundamentals: Vol. 1- Media Coding and Content Processing , PHI.

7. J. Jeffcoate , Multimedia in Practice: Technology and Application , PHI.

Neural Networks and Deep Learning Code: PEC-IT702B Contacts: 3L

Name of the Course:	Neural Networks and Deep Learning	
Course Code: PEC-IT702B	Semester: VII	
Duration:6 months	Maximum Marks	s: 100
Teaching Scheme	Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL	Assignment and Quiz : 10 marks	
		Attendance: 5 marks
Practical:	End Semester Exam: 70 Marks	
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Various paradigms of earning problems, Perspectives and Issues in deep learning framework, review of fundamental learning techniques.	3	

2	Feed forward neural network: Artificial Neural Network, activation function, multi-layer neural network.cardinality, operations, and properties of fuzzy relations.	6
3	Training Neural Network: Risk minimization, loss function, backpropagation, regularization, model selection, and optimization.	6
4.	Conditional Random Fields: Linear chain, partition function, Markov network, Belief propagation, Training CRFs, Hidden Markov Model, Entropy.	9
5	Deep Learning: Deep Feed Forward network, regularizations, training deep models, dropouts, Convolutional Neural Network, Recurrent Neural Network, Deep Belief Network.	6
6	Deep Learning research: Object recognition, sparse coding, computer vision, natural language	6

Text book and Reference books:

- 1. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.
- 2. Bishop, C., M., Pattern Recognition and Machine Learning, Springer, 2006.
- 3. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 4. Golub, G., H., and Van Loan, C., F., Matrix Computations, JHU Press, 2013.
- 5. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

Soft Computing Code: PEC-IT702C Contacts: 3L

Name of the Course:	Soft Computing	g 5	
Course Code: PEC-IT702C	Semester: VII	Semester: VII	
Duration:6 months	Maximum Mark	s: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL	Assignment and Quiz : 10 marks		
		Attendance: 5 marks	
Practical:		End Semester Exam: 70 Marks	
Credit Points:	3		

	Unit	Content	Hrs/Unit	Marks/Unit
--	------	---------	----------	------------

1	Introduction: Introduction to soft computing; introduction to fuzzy sets and fuzzy logic systems; introduction to biological and artificial neural network; introduction to Genetic Algorithm	8	
2	 Fuzzy sets and Fuzzy logic systems: Classical Sets and Fuzzy Sets and Fuzzy relations : Operations on Classical sets, properties of classical sets, Fuzzy set operations, properties of fuzzy sets, cardinality, operations, and properties of fuzzy relations. Membership functions : Features of membership functions, standard forms and boundaries, different fuzzification methods. Fuzzy to Crisp conversions: Lambda Cuts for fuzzy sets, fuzzy Relations, Defuzzification methods. Classical Logic and Fuzzy Logic: Classical predicate logic, Fuzzy Logic, Approximate reasoning and Fuzzy Implication Fuzzy Rule based Systems: Linguistic Hedges, Fuzzy Rule based system – Aggregation of fuzzy Models – Sugeno Fuzzy Models. Applications of Fuzzy Logic: How Fuzzy Logic is applied in Home Appliances, General Fuzzy Logic controllers, Basic Medical Diagnostic systems and Weather forecasting 	10	
3	Neural Network Introduction to Neural Networks: Advent of Modern Neuroscience, Classical AI and Neural Networks, Biological Neurons and Artificial neural network; model of artificial neuron. Learning Methods : Hebbian, competitive, Boltzman etc., Neural Network models: Perceptron, Adaline and Madaline networks; single layer network; Back- propagation and multi layer networks. Competitive learning networks: Kohonen self organizing networks, Hebbian learning; Hopfield Networks. Neuo-Fuzzy modelling:Applications of Neural Networks: Pattern Recognition and classification	10	
4.	Genetic Algorithms: Simple GA, crossover and mutation, Multi-objective Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based clustering Algorithm, Image processing and pattern Recognition	10	

5	PSO: Other Soft Computing techniques: Simulated Annealing, Tabu search, Ant colony optimization (ACO), Particle	4	
	Swarm Optimization (PSO).		

Text book and Reference books:

- Fuzzy logic with engineering applications, Timothy J. Ross, John Wiley and Sons. 1.
- S. Rajasekaran and G.A.V.Pai, "Neural Networks, 2.
- Fuzzy Logic and Genetic Algorithms", PHI Principles of Soft Computing, S N Sivanandam, S. Sumathi, John Wiley & Sons Genetic Algorithms in search, Optimization & Machine Learning by David E. 3.
- 4. Goldberg
- 5.
- Neuro-Fuzzy and Soft computing, Jang, Sun, Mizutani, PHI Neural Networks: A Classroom Approach, 1/e by Kumar Satish, TMH, 6.
- Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg, Pearson/PHI 7.
- A beginners approach to Soft Computing, Samir Roy & Udit Chakraborty, Pearson 8.

9.Fuzzy Sets and Fuzzy Logic: Theory and Applications, George J. Klir and Bo Yuan, Prentice Hall

10. Neural Networks: A Comprehensive Foundation (2nd Edition), Simon Haykin, Prentice Hall.

Adhoc – Sensor Network Code: PEC-IT702D **Contact: 3L**

Name of the Course:	Adhoc –Sensor Network		
Course Code: PEC-IT702D	Semester: VII	Semester: VII	
Duration: 6 months	Maximum Marks:	Maximum Marks: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs		Mid Semester exam: 15	
Tutorial: NIL	Assignment and Quiz: 10 marks		
		Attendance: 5 marks	
Practical: 4 hrs		End Semester Exam: 70 Marks	
Credit Points:	3		

Obje	ctive:
1	provide an overview about sensor networks and emerging technologies
2	To study about the node and network architecture of sensor nodes and its execution
	environment.
3	To understand the concepts of communication, MAC, routing protocols and also study
	about the naming and addressing in WSN
4	To learn about topology control and clustering in networks with timing synchronization
	for localization services with sensor tasking and control.
5	To study about sensor node hardware and software platforms and understand the
	simulation and programming techniques

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction and Overview [4L] :Overview of wireless networks, types, infrastructure-based and infrastructure-less, introduction to MANETs (Mobile Ad-hoc Networks), characteristics, reactive and proactive routing protocols with examples, introduction to sensor networks, commonalities and differences with MANETs, constraints and challenges, advantages, applications, enabling technologies for WSNs.	4	
2	Architectures Single-node architecture - hardware components, design constraints, energy consumption of sensor nodes , operating systems and execution environments, examples of sensor nodes, sensor network scenarios, types of sources and sinks – single hop vs. multi hop networks, multiple sources and sinks – mobility, optimization goals and figures of merit, gateway concepts, design prin	9 ncip	
3	Communication Protocols [9L] : Physical layer and transceiver design considerations, MAC protocols for wireless sensor networks, low duty cycle protocols and wakeup concepts - S-MAC, the mediation device protocol, wakeup radio concepts, address and name management, assignment of MAC addresses, routing protocols- classification, gossiping, flooding, energy- efficient routing, unicast protocols, multi- path routing, data-centric routing, data aggregation, SPIN, LEACH, Directed-	9	

	Diffusion, geographic routing.
	Infrastructure Establishment:
4.	Topology control, flat network topologies, hierarchical networks by clustering, time synchronization, properties, protocols based on sender-receiver and receiver-receiver synchronization, LTS, TPSN, RBS, HRTS, localization and positioning, properties and approaches, single-hop localization, positioning in multi-hop environment, range based localization algorithms – location services, sensor tasking and control
5	Sensor Network Platforms and Tools[9L]:Sensor node hardware, Berkeleymotes, programming challenges, node-level software platforms, node-levelsimulators, state-centric programming,Tiny OS, nesC components, NS2simulator, TOSSIM.

Text book and Reference books:

1. Holger Karl & Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks", John Wiley, 2005.

2. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.

REFERENCES

1. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor

Networks- Technology, Protocols, and Applications", John Wiley, 2007.

2. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003.

3. Thomas Haenselmann, "Sensor Networks", available online for free, 2008.

Information Theory and Coding Code: PEC-IT702E Contact: 3L

Name of the Course:	Information Theory and Coding
Course Code: PEC-IT702E	Semester: VII

Durat	on: 6 months Maximum Marks: 100		
Teacl	hing Scheme	Examination Scheme	
Theor	Theory: 3 hrs./week Mid Semester exam: 15		Mid Semester exam: 15
Tutor	ial: NIL		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Practi	cal:NIL		End Semester Exam: 70 Marks
Credi	t Points:	3	
Obje	ctive:		
1	To develop an understanding of modern network architectures from a design and performance perspective.		
2	To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).		
3	To provide an opportunity to do network programming		
4	To provide a WLAN measurement ideas.		
Pre-R	Requisite:		
1			
2			
3			

Unit	Content	Hrs/Unit	Marks/Unit
1	Source Coding [7L] Uncertainty and information, average mutual information and entropy, information measures for continuous random variables, source coding theorem, Huffman codes	7	
2	Channel Capacity And Coding [7L] Channel models, channel capacity, channel coding, information capacity theorem, The Shannon limit	7	
3	Linear And Block Codes For Error Correction [8L] Matrix description of linear block codes, equivalent codes, parity check matrix, decoding of a linear block code, perfect codes, Hamming codes	8	
4.	Cyclic Codes [7L] Polynomials, division algorithm for polynomials, a method for generating cyclic codes, matrix description of cyclic codes, Golay codes	7	
5	BCH Codes [8L] Primitive elements, minimal polynomials, generator polynomials in terms of minimal polynomials, examples of BCH codes.	8	

6	Convolutional Codes [8L]	8	
	Tree codes, trellis codes, polynomial		
	description of convolutional codes,		
	distance notions for convolutional		
	codes, the generating function, matrix		
	representation of convolutional codes,		
	decoding of convolutional codes,		
	distance and performance bounds for		
	convolutional codes, examples of		
	convolutional codes, Turbo codes,		
	Turbo decoding		

Text book and Reference books:

- 1. Information theory, coding and cryptography Ranjan Bose; TMH.
- 2. Information and Coding N Abramson; McGraw Hill.
- 3. Introduction to Information Theory M Mansurpur; McGraw Hill.
- 4. Information Theory R B Ash; Prentice Hall.
- 5. Error Control Coding Shu Lin and D J Costello Jr; Prentice Hall.

Cyber Security Code: PEC-IT702F Contact: 3L

Name	of the Course:	Cyber Security		
Cours	e Code: PEC-IT702F	Semester: VII		
Durati	ion: 6 months	Maximum Marks:	100	
Teach	ning Scheme	- -	Examination Scheme	
Theor	ry: 3 hrs./week		Mid Semester exam: 15	
Tutori	ial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks		
Practical: NIL End Semester Exam: 70 Marks		End Semester Exam: 70 Marks		
Credit	t Points:	3		
Objec	ctive:			
1	To develop an underst	tanding of modern n	etwork architectures from a design and	
	performance perspective.		_	
2	To introduce the student to the major concepts involved in wide-area networks		epts involved in wide-area networks	
	(WANs), local area networks (LANs) and Wireless LANs (WLANs).			
3	To provide an opportunity to do network programming			
4	To provide a WLAN 1	To provide a WLAN measurement ideas.		

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction: Introduction to Cyber Security,		

1		(
1	Importance and challenges in Cyber Security,	6	
	Cyberspace, Cyber threats, Cyberwarfare, CIA		
	Triad, Cyber Terrorism, Cyber Security of Critical		
	Infrastructure, Cybersecurity - Organizational		
	Implications.		
	Hackers and Cyber Crimes: Types of Hackers,	7	
2	Hackers and Crackers, Cyber-Attacks and		
	Vulnerabilities, Malware threats, Sniffing, Gaining		
	Access, Escalating Privileges, Executing		
	Applications, Hiding Files, Covering Tracks, Worms, Trojans, Viruses, Backdoors.		
	Ethical Hacking and Social Engineering: Ethical	8	
3	Hacking Concepts and Scopes, Threats and Attack		
	Vectors, Information Assurance, Threat Modelling,		
	Enterprise Information Security Architecture,		
	Vulnerability Assessment and Penetration Testing,		
	Types of Social Engineering, Insider Attack,		
	Preventing Insider Threats, Social Engineering		
	Targets and Defence Strategies.	10	
4.	Cyber Forensics and Auditing: Introduction to Cyber	10	
	Forensics, Computer Equipment and associated		
	storage media, Role of forensics Investigator,		
	Forensics Investigation Process, Collecting Network		
	based Evidence, Writing Computer Forensics		
	Reports, Auditing, Plan an audit against a set of		
	audit criteria, Information Security Management		
	System Management. Introduction to ISO		
	27001:2013		
5	Cyber Ethics and Laws: Introduction to Cyber Laws,	5	
	E-Commerce and E-Governance, Certifying		
	Authority and Controller, Offences under IT Act,		
	Computer Offences and its penalty under IT Act		
	2000, Intellectual Property Rights in Cyberspace. at		
	Network Layer-IPSec.		

Text book and Reference books:

- 1. Cyber security, Nina Gobole & Sunit Belapune; Pub: Wiley India.
- 2. Information Security and Cyber Laws, Pankaj Agarwal
- 3. Donaldson, S., Siegel, S., Williams, C.K., Aslam, A., Enterprise Cybersecurity -How to Build a Successful Cyberdefense Program Against Advanced Threats, A-press
- 4. Nina Godbole, SumitBelapure, Cyber Security, Willey
- 5. Hacking the Hacker, Roger Grimes, Wiley
- 6. Cyber Law By Bare Act, Govt Of india, It Act 2000.

Operation Research Code: OEC-IT701A Contact: 3L

Name of the Course:	Operation Research	
Course Code: OEC-IT701A	Semester: VII	
Duration: 6 months	Maximum Marks:	100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Basic LPP and Applications; Various		
1	Components of LP Problem Formulation.	17	
	Solution of Linear Programming Problems: Solution of LPP: Using Simultaneous Equations and Graphical Method; Definitions: Feasible Solution, Basic and non- basic Variables, Basic Feasible Solution, Degenerate and Non-degenerate Solution, Convex set and explanation with examples Solution of LPP by Simplex Method; Charnes' Big-M Method; Duality Theory. Transportation		
	Problems and Assignment Problems.		
2	Network Analysis:Shortest Path: Floyd Algorithm; Maximal Flow Problem (Ford- Fulkerson); PERT-CPM (Cost Analysis, Crashing, Resource Allocation excluded). Inventory Control:Introduction to EOQ Models of Deterministic and Probabilistic ; Safety Stock; Buffer Stock.	9	
	Game Theory:	5	
3	Introduction; 2-Person Zero-sum Game; Saddle Point; Mini-Max and Maxi-Min Theorems (statement only) and problems; Games without Saddle Point; Graphical Method; Principle of		

	Dominance		
	Queuing Theory:	5	
4.	Introduction; Basic Definitions and Notations;		
	Axiomatic Derivation of the Arrival & Departure		
	(Poisson Queue). Poisson Queue Models:		
	$(M/M/1)$: (∞ / FIFO) and $(M/M/1$: N / FIFO) and		
	problems.		
	*		

Text book and Reference books:

- 1.
- H. A. Taha, "Operations Research", Pearson P. M. Karak "Linear Programming and Theory of Games", ABS Publishing House Ghosh and Chakraborty, "Linear Programming and Theory of Games", Central Book 2.
- 3. Agency
- Ravindran, Philips and Solberg "Operations Research", WILEY INDIA 4.

Introduction to Philosophical Thoughts Code: OEC-IT701B **Contact: 3L**

Name of the Course:	Introduction to Philosophical Thoughts		
Course Code: OEC-IT701B	Semester: VII	Semester: VII	
Duration: 6 months	Maximum Marks:	100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
	Nature of Indian Philosophy : Plurality as well		
1	as common concerns. 2. Basic concepts of the	17	
	Vedic and Upanisadic views : Atman, Jagrata,		
	Svapna, Susupti, Turiya, Brahman, Karma,		
	Rta,Rna,		
	Carvaka school : its epistemology, metaphysics	9	
2	and ethics. Mukti		
3	Jainism : Concepts of sat, dravya, guna,		
	paryaya, jiva, ajiva, anekantavada, syadvada, and		

	nayavada ; pramanas, ahimsa, bondage and		
	liberation.		
	5. Buddhism : theory of pramanas, theory of	5	
4	dependent origination, the four noble truths;		
	doctrine of momentaryness; theory of no soul.		
	The interpretation of these theories in schools of		
	Buddhism : Vaibhasika, Sautrantrika, Yogacara,		
	Madhyamika.		
	6. Nyaya : theory of Pramanas; the individual	5	
5	self and its liberation ; the idea of God and		
	proofs for His existence.		

Text book and Reference books:

- 1. M. Hiriyanna : Outlines of Indian Philosophy.
- 2. C.D.Sharma : A Critical Survey of Indian Philosophy.
- 3. S.N.Das Gupta : A History of Indian Philosophy Vol I to V.
- 4. S.Radhakrishnan : Indian Philosophy Vol I & II.
- 5. T.R.V.Murti : Central Philosophy of Buddhism.
- 6. J.N.Mahanty : Reason and Tradition of Indian Thought.
- 7. R.D.Ranade : A Constructive Survey of Upanisadic Philosophy.
- 8. P.T.Raju : Structural Depths of Indian Thought.
- 9. K.C.Bhattacharya : Studies in Philosophy Vol 1.
- 10. Datta and Chatterjee : Introduction of Indian Philosophy

Soft Skills & Interpersonal Communication Code: OEC-IT701C Contact: 3L

Name of the Course:	Soft Skills & Interpersonal Communication	
Course Code: OEC-IT701C	Semester: VII	
Duration: 6 months	Maximum Marks:	100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	 Soft Skills: An Introduction – Definition and Significance of Soft Skills; Process, Importance and Measurment of Soft Skill Development. Self-Discovery: Discovering the Self; Setting 	12	

			1
	Goals; Beliefs, Values, Attitude, Virtue.		
	3. Positivity and Motivation: Developing		
	Positive Thinking and Attitude; Driving out		
	Negativity; Meaning and Theories of Motivation;		
	Enhancing Motivation Levels.		
	Interpersonal Communication: Interpersonal	12	
2	relations; communication models, process and		
	barriers; team communication; developing		
	interpersonal relationships through effective		
	communication; listening skills; essential formal		
	writing skills; corporate communication styles –		
	assertion, persuasion, negotiation.		
	2. Public Speaking: Skills, Methods, Strategies		
	and Essential tips for effective public speaking.		
	3. Group Discussion: Importance, Planning,		
	Elements, Skills assessed; Effectively		
	disagreeing, Initiating, Summarizing and		
	Attaining the Objective.		
	4. Non-Verbal Communication: Importance		
	and Elements; Body Language.		
	5. Teamwork and Leadership Skills: Concept		
	of Teams; Building effective teams; Concept of		
	Leadership and honing Leadership skills.		
3	1. Interview Skills: Interviewer and	12	
	Interviewee – in-depth perspectives. Before,	12	
	During and After the Interview. Tips for Success.		
	2. Presentation Skills: Types, Content,		
	Audience Analysis, Essential Tips – Before,		
	During and After, Overcoming Nervousness. 3.		
	Etiquette and Manners – Social and Business.		
	4. Time Management – Concept, Essentials,		
	Tips.		
	5. Personality Development – Meaning, Nature,		
	Features, Stages, Models; Learning Skills;		
	Adaptability Skills.		

Text book and Reference books:

- 1. Managing Soft Skills for Personality Development edited by B.N.Ghosh, McGraw Hill India, 2012.
- 2. English and Soft Skills S.P.Dhanavel, Orient Blackswan India, 2010.

Biology Code: BSC 701 Contact: 2L+1T

Name of the Course:	Biology		
Course Code: BSC 701	Semester: VII		
Duration: 6 months	Maximum Marks:	Maximum Marks: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: 1hr		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction		
1		2	
2	Classification: A common thread weaves this hierarchy Classification. Discuss classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricoteliec, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D.		
	Melanogaster, C. elegance, A. Thaliana, M. musculus	4	
3	Genetics: Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics		

	Biomolecules	A
4.	To convey that all forms of life has the same building blocks and yet the manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids.	
5	Enzymes: How to monitor enzyme catalyzed reactions. How does an enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis.	4
6	Information Transfer : Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.	4
7	Macromolecular analysis: Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.	5
8	<i>Metabolism</i> :Thermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergoinc	4

	reactions. Concept of K_{eq} and its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO_2 + H_2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO_2 and H_2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge		
9.	Microbiology:Concept of singlecelled organisms.Concept ofspecies and strains.Identificationandclassificationofmicroorganisms.Microscopy.Ecological aspects of single celledorganisms.Sterilization and mediacompositions.Growth kinetics.	3	

Text book and Reference books:

- 1) Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd
- 2) Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., John Wiley and Sons
- 3) Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H. Freeman and Company
- Molecular Genetics (Second edition), Stent, G. S.; and Calender, R.W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher
- 5) Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C. Brown Publishers

Project Code: PROJ-IT701 Contact: 3L

Project work I

The object of Project Work I is to enable the student to take up investigative study in the broad field of Electronics & Communication Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on an individual basis or two/three students in a group, under the guidance of a Supervisor. This is expected to provide a good

initiation for the student(s) in R&D work. The assignment to normally include:

Project Work II & Dissertation

The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up under EC P1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:

- 1. In depth study of the topic assigned in the light of the Report prepared under EC P1;
- 2. Review and finalization of the Approach to the Problem relating to the assigned topic;
- 3. Preparing an Action Plan for conducting the investigation, including team work;
- 4. Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
- 5. Final development of product/process, testing, results, conclusions and future directions;
- 6. Preparing a paper for Conference presentation/Publication in Journals, if possible;
- 7. Preparing a Dissertation in the standard format for being evaluated by the Department.
- 8. Final Seminar Presentation before a Departmental Committee.

SEMESTER – VIII

Signal and Networks Code: PEC-IT801A Contact: 3L

Name of the Course:	Signal and Networks	
Course Code: PEC-IT801	Semester: VIII	
Duration: 6 months	Maximum Marks: 100	
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam : 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit

	Objective and overview, signal and system types	3
1	and classifications, step response, impulse response	
	and convolution integral;	
	Periodic signal analysis: Fourier series and	7
2	properties;	
	Aperiodic signal analysis : Fourier Transform - its	
	properties and sinusoidal steady state analysis of	
	systems;	
	Elements of electrical network : dependent and	12
3	independent sources, active and passive	
	components; classical differential equations for	
	description of transient conditions of Network;	
	Solutions of linear time invariant networks with	
	initial conditions; Unilateral and Bilateral Laplace Transforms and properties; Transient solutions of	
	networks using Laplace Transform; Network	
	functions: poles, zeros, transfer function, Bode	
	plot;	
	One and two port network parameters and	10
4.	functions : Z, Y and ABCD parameters, driving	
	point and transfer impedances and admittances;	
	Network Theorems and Formulation of Network equations: generalized formulation of KCL, KVL,	
	State Variable descriptions; Thevenin, Norton,	
	Maximum Power Transfer, Tellegen and	
	Reciprocity Theorems;	
5	Graph theory: Tree, Co-tree, fundamental cut-set,	6
	fundamental loop analysis of network; Analog filter	
	design: Butterworth, Sallen Key, frequency	
	transformation and scaling;	

Text book and Reference books:

- 1. Signals and Systems by P. Ramesh Babu & R. Ananda Natarajan, Scitech Publications (India).
- 2. Signals & Systems by A. V. Oppenheim, A. S. Willsky and S. H. Nawab, Prentice-Hall India .
- 3. Networks & Systems by D Roy Choudhury .

Cryptography and Network Security Code: PEC-IT801B Contact: 3L

Name of the Course:	Cryptography and Network Security		
Course Code: PEC-IT801B	Semester: VIII		
Duration: 6 months	Maximum Marks: 100		
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam : 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
	Attacks on Computers & Computer Security -		
1	Introduction, Need for Security, Security	5	
	approaches, Principles of Security, Types of attack		
	Cryptography: Concepts & Techniques-		
2	Introduction, Plaintext & Cipher text, Substitution	7	
	Techniques, Transposition Techniques, Encryption		
	& Decryption, Symmetric & Asymmetric key		
	Cryptography, Key Range & Key Size		
	Symmetric Key Algorithm - Introduction,		
3	Algorithm types & Modes, Overview of Symmetric	8	
	Key Cryptography, DES(Data Encryption Standard)		
	algorithm, IDEA(International Data Encryption		
	Algorithm) algorithm, RC5(Rivest Cipher 5)		
	algorithm.		
4	Asymmetric Key Algorithm, Digital Signature and	F	
4.	RSA - Introduction, Overview of Asymmetric key	5	
	Cryptography, RSA algorithm, Symmetric &		
	Asymmetric key Cryptography together, Digital		
	Signature, Basic concepts of Message Digest and Hash Function (Algorithms on Message Digest and		
	Hash function not required).		
5	Internet Security Protocols, User Authentication -	6	
5	Basic Concepts, SSL protocol, Authentication	U	
	Basics, Password, Authentication Token, Certificate		
	based Authentication, Biometric Authentication.		
6	Electronic Mail Security - Basics of mail security,	4	
-	Pretty Good Privacy, S/MIME.	-	
7	Firewall - Introduction, Types of firewall, Firewall	3	
	Configurations, DMZ Network		

Text book and Reference books:

- 17. "Cryptography and Network Security", William Stallings, 2nd Edition, Pearson Education Asia
- 18. "Network Security private communication in a public world", C. Kaufman, R. Perlman and M. Speciner, Pearson
- 19. Cryptography & Network Security: Atul Kahate, TMH.
- 20. "Network Security Essentials: Applications and Standards" by William Stallings, Pearson.
- 21. "Designing Network Security", Merike Kaeo, 2nd Edition, Pearson Books
- 22. "Building Internet Firewalls", Elizabeth D. Zwicky, Simon Cooper, D. Brent Chapman, 2nd Edition, Oreilly .
- 23. "Practical Unix & Internet Security", Simson Garfinkel, Gene Spafford, Alan Schwartz, 3rd Edition, Oreilly

Natural Language Processing Code: PEC-IT801C Contacts: 3L

Name of the Course:	Natural Language Processing	
Course Code: PEC-IT801C	Semester: VIII	
Duration: 6 months	Maximum Marks	::100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance : 5 marks
Practical:NIL		End Semester Exam :70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Regular Expressions and AutomataRecap) -		
1	Introduction to NLP, Regular Expression, Finite State	11	
	Automata [2L]		
	Tokenization - Word Tokenization, Normalization,		
	Sentence Segmentation, Named Entity Recognition,		
	Multi Word Extraction, Spell Checking – Bayesian		
	Approach, Minimum Edit Distance [5L]		
	Morphology - Morphology – Inflectional and		
	Derivational Morphology, Finite State Morphological		
	Parsing, The Lexicon and Morphotactics,		
	Morphological Parsing with Finite State Transducers,		
	Orthographic Rules and Finite State Transducers,		
	Porter Stemmer [4L]		
	Language Modeling Introduction to N-grams, Chain		
2	Rule, Smoothing – Add-One Smoothing, Witten-Bell	8	
	Discounting; Backoff, Deleted Interpolation, N-grams		
	for Spelling and Word Prediction, Evaluation of		

	1 11 5473		
	language models. [4L]		
	Hidden Markov Models and POS Tagging Markov		
	Chain, Hidden Markov Models, Forward Algorithm,		
	Viterbi Algorithm, Part of Speech Tagging - Rule		
	based and Machine Learning based approaches,		
	Evaluation. [4L]		
	Text Classification Text Classification, Naïve Bayes'		
3	Text Classification, Evaluation, Sentiment Analysis -	9	
	Opinion Mining and Emotion Analysis, Resources and		
	Techniques. [4L]		
	Context Free Grammar Context Free Grammar and		
	Constituency, Some common CFG phenomena for		
	English, Top-Down and Bottom-up parsing,		
	Probabilistic Context Free Grammar, Dependency		
	Parsing [4L]		
	Computational Lexical Semantics Introduction to		
4.	Lexical Semantics – Homonymy, Polysemy,	9	
	Synonymy, Thesaurus – WordNet, Computational		
	Lexical Semantics – Thesaurus based and		
	Distributional Word Similarity [4L]		
	Information Retrieval Boolean Retrieval, Term-		
	document incidence, The Inverted Index, Query		
	Optimization, Phrase Queries, Ranked Retrieval -		
	Term Frequency – Inverse Document Frequency based		
	ranking, Zone Indexing, Query term proximity, Cosine		
	ranking, Combining different features for ranking,		
	Search Engine Evaluation, Relevance Feedback [5L]		

Text book and Reference books:

1. Speech and Language Processing, Jurafsky and Martin, Pearson Education

2. Foundation of Statistical Natural Language Processing, Manning and Schutze, MIT Press 3. Multilingual Natural Language Processing Applications from Theory to Practice: Bikel, Pearson.

Internet of Things Code: PEC-IT801D Contacts: 3L

Course Code	PEC-IT801D
Course Name	Internet of Things
Credits	3
Pre-Requisites	Wireless Networks

Total Number of Lectures: 48

COURSE OBJECTIVE

Able to understand the application areas of IOT

Able to realize the revolution of Internet in Mobile Devices, Cloud & Sensor Networks

Able to understand building blocks of Internet of Things and characteristics

LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1 : Environmental Parameters Measurement and Monitoring: Why measurement and monitoring are important, effects of adverse parameters for the living being for IOT	7
Unit 2: Sensors: Working Principles: Different types; Selection of Sensors for Practical Applications Introduction of Different Types of Sensors such as Capacitive, Resistive, Surface Acoustic Wave for Temperature, Pressure, Humidity, Toxic Gas etc	8
Unit 3: Important Characteristics of Sensors: Determination of the Characteristics Fractional order element: Constant Phase Impedance for sensing applications such as humidity, water quality, milk quality Impedance Spectroscopy: Equivalent circuit of Sensors and Modelling of Sensors Importance and Adoption of Smart Sensors	11
Unit 4: Architecture of Smart Sensors: Important components, their features Fabrication of Sensor and Smart Sensor: Electrode fabrication: Screen printing, Photolithography, Electroplating Sensing film deposition: Physical and chemical Vapor, Anodization, Sol-gel	10
Unit 5: Interface Electronic Circuit for Smart Sensors and Challenges for Interfacing the Smart Sensor, Usefulness of Silicon Technology in Smart Sensor And Future scope of research in smart sensor	7
Unit 6: Recent trends in smart sensor for day to day life, evolving sensors and their architecture.	5

COURSE OUTCOMES On completion of the course the student should be able to Understand the vision of IoT from a global context. Determine the Market perspective of IoT. Use of Devices, Gateways and Data Management in IoT. Application of IoT in Industrial and Commercial Building Automation and Real World Design Constraints. Building state of the art architecture in IoT.

References:

- 1. Yasuura, H., Kyung, C.-M., Liu, Y., Lin, Y.-L., Smart Sensors at the IoT Frontier, Springer International Publishing
- 2. Kyung, C.-M., Yasuura, H., Liu, Y., Lin, Y.-L., Smart Sensors and Systems, Springer International Publishing

Remote Sensig and GIS Code: OEC-IT801E Contacts: 3L

Name of the Course:	Remote Sensig and GIS	
Course Code: PEC-IT801E	Semester:VIII	
Duration:6 months	Maximum Marks	s: 100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz : 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points: 3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction and Overview of Geographic Information Systems Definition of a GIS, features and functions; why GIS is important; how GIS is applied; GIS as an Information System; GIS and cartography; contributing and allied disciplines; GIS data feeds; historical development of GIS.	3	
2	GIS and Maps, Map Projections and Coordinate Systems Maps and their characteristics (selection, abstraction, scale, etc.); automated cartography versus GIS; map projections; coordinate systems; precision and error.	4	
3	Data Sources, Data Input, Data Quality and Database Concepts Major data feeds to GIS and their characteristics: maps, GPS, images, databases, commercial data; locating and evaluating data; data formats; data quality; metadata. Database concepts and components; flat files; relational database systems; data modeling; views of the database; normalization; databases and GIS.	3	
4.	Spatial Analysis Questions a GIS can answer; GIS analytical functions; vector analysis including topological overlay; raster analysis; statistics; integrated spatial analysis.	3	
5.	Making Maps Parts of a map; map functions in GIS; map design and map elements; choosing a map type; producing a map formats, plotters and media; online and CD-ROM distribution; interactive maps and the Web.	6	
6.	Implementing a GIS Planning a GIS; requirements; pilot projects; case studies; data management; personnel and skill sets; costs and benefits; selecting a GIS package; professional GIS packages; desktop	4	

1.	GIS; embedded GIS; public domain and lowcost packages. Technology & Instruments involved in GIS & Remote Sensing GIS applications; GIS application areas and user segments; creating custom GIS software		
	applications; user interfaces; case studies. Future data; future hardware; future software; Object-oriented concepts and GIS; future issues – data ownership, privacy, education; GIS career options and how to pursue them.		
2.	Remote Sensing Remote sensing of environment, E.M. Principle, Thermal infrared remote sensing, Remote sensing of Vegetation, Remote sensing of water, urban landscape	8L	

Text book and Reference books:

1. "Principles of geographical information systems", P. A. Burrough and R. A. Mcdonnel,

Oxford. 2. "Remote sensing of the environment", J. R. Jensen, Pearson References:

2. "Exploring Geographic Information Systems", Nicholas Chrismas, John Wiley & Sons.

3. "Getting Started with Geographic Information Systems", Keith Clarke, PHI.

4. "An Introduction to Geographical Information Systems", Ian Heywood, Sarah Cornelius, and Steve Carver. Addison-Wesley Longman.

Big Data Analytics Code: OEC-IT801

Contacts: 3L

Name of the Course:	Big Data Analytics	
Course Code: OEC-IT801	Semester:VIII	
Duration:6 months	Maximum Marks	s: 100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz : 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points: 3		

Total Number of Lectures: 48

COURSE OBJECTIVE

Understand big data for business intelligence. Learn business case studies for big data analytics. Understand nosql big data management. Perform map-reduce analytics using Hadoop and related tools

LECTURE WITH BREAKUP	NO. OF LECTUR
Unit 1: What is big data, why big data, convergence of key trends, unstructured data, industry examples of big data, web analytics, big data and marketing, fraud and big data, risk and big data, credit risk management, big data and algorithmic trading, big data and healthcare, big data in medicine, advertising and big data, big data technologies, introduction to Hadoop, open source technologies cloud and big data mobile business intelligence. Crowd	8
Unit 2: Introduction to NoSQL, aggregate data models, aggregates, key-value and document data models, relationships, graph databases, schemaless databases, materialized views, distribution models, sharding, master-slave replication, peer-peer replication, sharding and replication, consistency, relaxing consistency, version stamps, map-reduce, partitioning and combining, composing map-reduce calculations Unit 3:	8
Data format, analyzing data with Hadoop, scaling out, Hadoop streaming, Hadoop pipes, design of Hadoop distributed file system (HDFS), HDFS concepts, Java interface, data flow, Hadoop I/O, data integrity, compression, serialization. Avro. file-based data structures Unit 4:	9
MapReduce workflows, unit tests with MRUnit, test data and local tests, anatomy of MapReduce job run, classic Map-reduce, YARN, failures in classic Map-reduce and YARN, job scheduling, shuffle and sort, task execution, MapReduce types, input formats, output formats	10
Unit 5: Hbase, data model and implementations, Hbase clients, Hbase examples, praxis.Cassandra, Cassandra data model, Cassandra examples, Cassandra clients, Hadoop integration. Unit 6:	7
Pig, Grunt, pig data model, Pig Latin, developing and testing Pig Latin scripts. Hive, data types and file formats, HiveQL data definition, HiveQL data manipulation, HiveQL queries.	6

COURSE OUTCOMES

After completion of course, students would be:

- Describe big data and use cases from selected business domains
- Explain NoSQL big data management
- Install, configure, and run Hadoop and HDFS
- Perform map-reduce analytics using Hadoop
- Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics

References:

1. Michael Minelli, Michelle Chambers, and AmbigaDhiraj, "Big Data, Big Analytics: Emerging 2. Business Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013.

3. P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the

Emerging World of 4. Polyglot Persistence", Addison-Wesley Professional, 2012.

Tom White, "Hadoop: The Definitive Guide", Third Edition,
 O'Reilley, 2012. 6. Eric Sammer, "Hadoop Operations", O'Reilley,
 2012.
 E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive",

O'Reilley, 2012. 8. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.

9. Eben Hewitt, "Cassandra: The Definitive Guide", O'Reilley, 2010. 10. Alan Gates, "Programming Pig", O'Reilley, 2011.

Cyber Law and Ethics Code: OEC-IT801B Contacts: 3L

Name of the Course:	Cyber Law and Ethics	
Course Code: OEC-IT801B	Semester:VIII	
Duration:6 months	Maximum Marks	s: 100
Teaching Scheme	Examination Scheme	
Theory: 3 hrs./week	Mid Semester exam: 15	
Tutorial: NIL	Assignment and Quiz : 10 marks	
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction of Cybercrime: What is cybercrime?,		
1	Forgery, Hacking, Software Piracy, Computer	8	
	Network intrusion[4L].		
	Category of Cybercrime: how criminals plan attacks,		
	passive attack, Active attacks, cyberstalking. [4L]		
	Cybercrime Mobile & Wireless devices: Security		
2	challenges posted by mobile devices, cryptographic	8	
	security for mobile devices, Attacks on		
	mobile/cellphones, Theft, Virus, Hacking. Bluetooth;		
	Different viruses on laptop [8L]		
	Tools and Methods used in Cyber crime: Proxy		
3	servers, panword checking, Random checking, Trojan	8	
	Horses and Backdoors; DOS & DDOS attacks; SQL		
	injection: buffer over flow. [8L]		
	Phishing & Identity Theft: Phising methods, ID		
4.	Theft; Online identity method. [4L]	8	
	Cybercrime & Cybersecurity: Legal aspects, indian		
	laws, IT act, Public key certificate. [4L]		

Text book and Reference books:

1. Cyber security by Nina Gobole & Sunit Belapune; Pub: Wiley India.

Mobile Computing Code: OEC-IT801C Contacts: 3L

Name of the Course:	Mobile Com	Mobile Computing	
		ц	
Course Code: OEC-IT801C	Semester: VI	11	
Duration: 6 months	Maximum M	arks: 100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: 3L		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction to Personal Communications Services	5	
1	(PCS): PCS Architecture, Mobility management,		
	Networks signalling. Global System for Mobile		
	Communication (GSM) system overview: GSM		
	Architecture, Mobility management, Network		
	signalling.		
	General Packet Radio Services (GPRS): GPRS	5	
2	Architecture, GPRS Network Nodes. Mobile Data		
	Communication: WLANs (Wireless LANs) IEEE		
	802.11 standard, Mobile IP.		
	Wireless Application Protocol (WAP): The Mobile	7	
3	Internet standard, WAP Gateway and Protocols,		
	wireless mark up Languages (WML). Wireless Local		
	Loop(WLL): Introduction to WLL Architecture,		
	wireless Local Loop Technologies.		
	Third Generation (3G) Mobile Services: Introduction to	7	
4.	International Mobile Telecommunications 2000 (IMT		
	2000) vision, Wideband Code Division Multiple Access		
	(W-CDMA), and CDMA 2000, Quality of services in		
5	3G	7	
5	Global Mobile Satellite Systems; case studies of the	7	
	IRIDIUM and GLOBALSTAR systems. Wireless		
	Enterprise Networks: Introduction to Virtual Networks,		
	Blue tooth technology, Blue tooth Protocols.	0	
	Server-side programming in Java, Pervasive web	8	

6	application architecture, Device independent example	
	application	

Text book and Reference books:

1. "Pervasive Computing", Burkhardt, Pearson

2. "Mobile Communication", J. Schiller, Pearson

3. "Wireless and Mobile Networks Architectures", Yi-Bing Lin & Imrich Chlamtac, John Wiley & Sons, 2001

4. "Mobile and Personal Communication systems and services", Raj Pandya, Prentice Hall of India, 2001.

5. "Guide to Designing and Implementing wireless LANs", Mark Ciampa, Thomson learning, Vikas Publishing House, 2001.

6. "Wireless Web Development", Ray Rischpater, Springer Publishing,

7. "The Wireless Application Protocol", Sandeep Singhal, Pearson.

8. "Third Generation Mobile Telecommunication systems", by P.Stavronlakis, Springer Publishers,

Bio Informatics Code: OEC-IT801D Contacts: 3L

Name of the Course:	Bio Informati	cs
Course Code: OEC-IT801D	Semester: VIII	
Duration: 6 months	Maximum Mar	·ks: 100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	INTRODUCTION TO MOLECULAR BIOLOGY		
1	Concepts of Cell, tissue, types of cell, components of	5	
	cell, organelle. Functions of different organelles.		
	Concepts of DNA: Basic Structure of DNA; Double		
	Helix structure; Watson and crick model. Exons and		
	Introns and Gene Concept. Concepts of RNA : Basic		
	structure, Difference between RNA and DNA. Types		
	of RNA. Concept of Protein: Basic components and		
	structure. Introduction to Central Dogma: Transcription		
	and Tranlation Introduction to Metabolic Pathways.		
	Sequence Databases Introduction to Bioinformatics.		

2	Recent challenges in Bioinformatics. Protein Sequence	2
	Databases, DNA sequence databases. sequence	
	database search programs like BLAST and FASTA.	
	NCBI different modules: GenBank; OMIM, Taxonomy	
	browser, PubMed;	
	DNA SEQUENCE ANALYSIS	
3	DNA Mapping and Assembly : Size of Human	14
	DNA ,Copying DNA: Polymerase Chain Reaction	
	(PCR), Hybridization and Microarrays, Cutting DNA	
	into Fragments, Sequencing Short DNA Molecules,	
	Mapping Long DNA Molecules. DeBruijn Graph.	
	Sequence Alignment: Introduction, local and global	
	alignment, pair wise and multiple alignment, Dynamic	
	Programming Concept. Alignment algorithms:	
	Needleman and Wunsch algorithm, Smith-Waterman.	
	Introduction Probabilistic models used in	
4.	Computational Biology	8
	Probabilistic Models; Hidden Markov Model :	
	Concepts, Architecture, Transition matrix, estimation	
	matrix. Application of HMM in Bioinformatics :	
	Genefinding, profile searches, multiple sequence	
	alignment and regulatory site identification. Bayesian	
	networks Model :Architecture, Principle ,Application	
	in Bioinformatics.	
5.	Biological Data Classification and Clustering	6
	Assigning protein function and predicting splice sites:	
	Decision Tree	
L	, J	

Robotics Code: OEC-IT801E Contacts: 3L

Name of the Course:	Robotics	
Course Code: OEC-IT801E	Semester: VIII	
Duration: 6 months	Maximum Mar	·ks: 100
Teaching Scheme		Examination Scheme
_		
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction :Introduction brief history, types,		
1	classification and usage, Science and Technology of	1	

	robots, Some useful websites, textbooks and research		
	journals.		
2	Elements of robots – links, joints, actuators, and sensors	5	
	Position and orientation of a rigid body, Homogeneous	5	
	transformations, Representation of joints, link		
	representation using D-H parameters, Examples of D-H		
	parameters and link transforms, different kinds of		
	actuators – stepper, DC servo and brushless motors,		
	model of a DC servo motor, Types of transmissions,		
	Purpose of sensors, internal and external sensors,		
	common sensors – encoders, tachometers, strain gauge		
	based force-torque sensors, proximity and distance		
	measuring sensors, and vision.		
	Kinematics of serial robots Introduction, Direct and		
3	inverse kinematics problems, Examples of kinematics	4	
5	of common serial manipulators, workspace of a serial	-	
	robot, Inverse kinematics of constrained and redundant		
	robots, Tractrix based approach for fixed and free		
	robots and multi-body systems, simulations and		
	experiments, Solution procedures using theory of		
	elimination, Inverse kinematics solution for the general		
	6R serial manipulator.		
	Kinematics of parallel robots Degrees-of-freedom of		
4.	parallel mechanisms and manipulators, Active and	5	
	passive joints, Constraint and loop-closure equations,	5	
	Direct kinematics problem, Mobility of parallel		
	manipulators, Closed-from and numerical solution,		
	Inverse kinematics of parallel manipulators and		
	mechanisms, Direct kinematics of Gough-Stewart		
	platform.		
5.	Velocity and static analysis of robot manipulators	5	
-	Linear and angular velocity of links, Velocity		
	propagation, Manipulator Jacobians for serial and		
	parallel manipulators, Velocity ellipse and ellipsoids,		
	Singularity analysis for serial and parallel		
	manipulators, Loss and gain of degree of freedom,		
	Statics of serial and parallel manipulators, Statics and		
	force transformation matrix of a Gough-Stewart		
	platform, Singularity analysis and statics.		
6	Dynamics of serial and parallel manipulators	4	
	Mass and inertia of links, Lagrangian formulation for		
	equations of motion for serial and		
	parallel manipulators, Generation of symbolic		
	equations of motion using a computer,		
	Simulation (direct and inverse) of dynamic equations		
	of motion, Examples of a planar 2R and		
	four-bar mechanism, Recursive dynamics,		
	Commercially available multi-body simulation		
	software (ADAMS) and Computer algebra software		
	121		

	Maple.		
7	Motion planning and control Joint and Cartesian space trajectory planning and generation, Classical control concepts using the example of control of a single link, Independent joint PID control, Control of a multi-link manipulator, Non-linear model based control schemes, Simulation and experimental case studies on serial and parallel manipulators, Control of constrained manipulators, Cartesian control, Force control and hybrid position/force control, Advanced topics in non- linear control of manipulators. 8 Module 8: Modeling and	6	
8	Modeling and control of flexible robots Models of flexible links and joints, Kinematic modeling of multi- link flexible robots, Dynamics and control of flexible link manipulators, Numerical simulations results, Experiments with a planar two-link flexible manipulator.	4	
9	Modeling and analysis of wheeled mobile robots 3Introduction and some well known wheeled mobile robots (WMR), two and three-wheeled WMR on flat surfaces, Slip and its modeling, WMR on uneven terrain, Design of slip-free motion on uneven terrain, Kinematics, dynamics and static stability of a three- wheeled WMR's on uneven terrain, Simulations using Matlab and ADAMS.	3	
10	Selected advanced topics in robotics Introduction to chaos, Non-linear dynamics and chaos in robot equations, Simulations of planar 2 DOF manipulators, Analytical criterion for unforced motion. Gough- Stewart platform and its singularities, use of near singularity for fine motion for sensing, design of Gough-Stewart platform based sensors. Over- constrained mechanisms and deployable structures, Algorithm to obtain redundant links and joints, Kinematics and statics of deployable structures with pantographs or scissor-like elements (SLE's).	3	

E-Commerce & ERP: Code: OEC-IT802 Contacts: 3L

1. Overview, Definitions, Advantages & Disadvantages of E – Commerce, Threats of E – Commerce, Managerial Prospective, Rules & Regulations For Controlling E – Commerce, Cyber Laws. [3 L]

 Technologies : Relationship Between E – Commerce & Networking, Different Types of Networking Commerce, Internet, Intranet & Extranet, EDI Systems Wireless Application Protocol : Definition, Hand Held Devices, Mobility & Commerce, Mobile Computing, Wireless Web, Web Security, Infrastructure Requirement For E – Commerce . [5 L]
 Business Models of e – commerce : Model Based On Transaction Type, Model Based On Transaction Party - B2B, B2C, C2B, C2C, E – Governance. [2 L]

4. E – strategy : Overview, Strategic Methods for developing E – commerce. [2 L]
5. Four C's : (Convergence, Collaborative Computing, Content Management & Call Center).

Convergence : Technological Advances in Convergence – Types, Convergence and its implications, Convergence & Electronic Commerce. Collaborative Computing : Collaborative product development, contract as per CAD, Simultaneous Collaboration, Security. Content Management : Definition of content, Authoring Tools & Content Management, Content – partnership, repositories, convergence, providers, Web Traffic & Traffic Management ; Content Marketing. Call Center : Definition, Need, Tasks Handled, Mode of Operation, Equipment , Strength & Weaknesses of Call Center, Customer Premises Equipment (CPE). [6 L] 7. Supply Chain Management : E – logistics, Supply Chain Portal, Supply Chain Planning Tools (SCP Tools), Supply Chain Execution (SCE), SCE - Framework, Internet's effect on Supply Chain Power. [3 L]

8. E – Payment Mechanism : Payment through card system, E – Cheque, E – Cash, E – Payment Threats & Protections. [1 L]

9. E - Marketing :. Home -shopping, E-Marketing, Tele-marketing [1 L]

10. Electronic Data Interchange (EDI) : Meaning, Benefits, Concepts, Application, EDI Model, Protocols (UN EDI FACT / GTDI, ANSI X – 12), Data Encryption (DES / RSA). [2 L] 11. Risk of E – Commerce : Overview, Security for E – Commerce, Security Standards, Firewall, Cryptography, Key Management, Password Systems, Digital certificates, Digital signatures. [4 L]

12. Enterprise Resource Planning (ERP) : Features, capabilities and Overview of Commercial Software, re-engineering work processes for IT applications, Business Process Redesign, Knowledge engineering and data warehouse . Business Modules: Finance, Manufacturing (Production), Human Resources, Plant Maintenance, Materials Management,

QualityManagement, Sales&Distribution ERPPackage, ERP Market: ERP Market Place, SAP AG, PeopleSoft, BAAN, JD Edwards, Oracle Corporation ERP-Present and Future: Enterprise Application Integration (EAI), ERP and E-Commerce, ERP and Internet, Future Directions in ERP [10]

Reference :

1. E-Commerce, M.M. Oka, EPH

2. Kalakotia, Whinston : Frontiers of Electronic Commerce , Pearson Education.

3. Bhaskar Bharat : Electronic Commerce - Technologies & Applications.TMH

- 4. Loshin Pete, Murphy P.A. : Electronic Commerce , Jaico Publishing Housing.
- 5. Murthy : E Commerce , Himalaya Publishing.

- 6. E Commerce : Strategy Technologies & Applications, Tata McGraw Hill.
- 7. Global E-Commerce, J. Christopher & T.H.K. Clerk, University Press
- 8. Beginning E-Commerce, Reynolds, SPD
- 9. Krishnamurthy, E-Commerce Mgmt, Vikas

Micro-electronics and VLSI Design

Code: OEC-IT802 Contact: 3L Credits: 3 Allotted Hrs: 39L

Introduction to CMOS circuits: MOS Transistors, MOS transistor switches, CMOS Logic, The inverter, Combinational Logic, NAND gate, NOT Gate, Compound Gates, Multiplexers, Memory-Latches and Registers. [6L]

Processing Technology: Silicon Semiconductor Technology- An Overview, wafer processing, oxidation, epitaxy deposition, Ion-implantation and diffusion, The Silicon Gate Process- Basic CMOS Technology, basic n-well CMOS process, p-well CMOS process, Twin tub process, Silicon on insulator, CMOS process enhancement-Interconnect, circuit elements, 3-D CMOS. Layout Design Rule: Layer Representations, CMOS n-well Rules, Design Rule of background scribe line, Layer Assignment, SOI Rule [10L].

Power Dissipation: Static dissipation, Dynamic dissipation, short-circuit dissipation, total power dissipation. Programmable Logic, Programmable Logic structure, Programmable interconnect, and Reprogramable Gate Array: Xilinx Programmable Gate Array, Design Methods: Behavioural Synthesis, RTL synthesis [8L]

Placement: placement: Mincut based placement – Iterative improvement placement simulated annealing. Routing: Segmented channel routing – maze routing – routability and routing resources – net delays. [5L]

Verification and Testing: Verification Versus Testing, Verification: logic simulation design validation – timing verification – Testing concepts: failures – mechanisms and faults – fault coverage – ATPG methods – types of tests – FPGAs – programmability failures – design for testability. [5L]

Overview of VHDL [5L]

Text Book:

1."Digital Integrated Circuit", J.M.Rabaey, Chandrasan, Nicolic, Pearson

2. "CMOS Digital Integrated Circuit", S.M.Kang & Y.Leblebici, TMH

3."Modern VLSI Design" Wayne Wolf, Pearson

4."Algorithm for VLSI Design & Automation", N.Sherwani, Kluwer

5."VHDL", Bhaskar, PHI

References:

1. "Digital Integrated Circuits" Demassa & Ciccone, Willey Pub.

- 2. "Modern VLSI Design: system on silicon" Wayne Wolf; Addison Wesley Longman Publisher
- 3. "Basic VLSI Design" Douglas A. Pucknell & Kamran Eshranghian; PHI

4. "CMOS Circuit Design, Layout & Simulation", R.J.Baker, H.W.Lee, D.E. Boyee, PHI

Economic Policies in India Code: OEC-IT802 Contacts: 3L

Economic Development and its Determinants

Approaches to economic development and its measurement – sustainable development; Role of State, market and other

institutions; Indicators of development – PQLI, Human Development Index (HDI), gender development indices.

Planning in India

Objectives and strategy of planning; Failures and achievements of Plans; Developing grass-root organizations for

development - Panchayats, NGOs and pressure groups.

Demographic Features, Poverty and Inequality

Broad demographic features of Indian population; rural-urban migration; Urbanization and civic amenities; Poverty and

Inequality.

Resource Base and Infrastructure

Energy; social infrastructure – education and health; Environment; Regional imbalance; Issues and policies in financing

infrastructure development.

The Agricultural Sector

Institutional Structure – land reforms in India; Technological change in agriculture – pricing of agricultural inputs and output;

industry; Agricultural finance policy; Agricultural Marketing and Warehousing; Issues Terms of trade between agriculture

and in food security - policies for sustainable agriculture.

Section – II

Industrial policy; Public Sector enterprises and their performance; Problem of sick units in India; Privatization and

disinvestment debate; Growth and pattern of industrialization; Small-scale sector; Productivity in industrial sector; Exit

policy – issues in labour market reforms; approaches for employment generation.

Public Finances

Fiscal federalism – Centre-State financial relations; Finances of central government; Finances of state governments; Parallel

economy; Problems relating to fiscal policy; Fiscal sector reforms in India.

Money, Banking and Prices

Analysis of price behaviour in India; Financial sector reforms; Interest rate policy; Review of monetary policy of RBI; Money

and capital markets; Working of SEBI in India.

External Sector

Structure and direction of foreign trade; Balance of payments; Issues in export-import policy and FEMA; Exchange rate

policy; Foreign capital and MNCs in India; The progress of trade reforms in India.

Economic Reforms

Rationale of internal and external reforms; Globalization of Indian economy; WTO and its impact on the different sectors of

the economy; Need for and issues in good governance; Issues in competition and safety nets in Indian economy.

BASIC READING LIST

1. Ahluwalia, I. J. and I. M. D Little (Eds.) (1999), India's Economic Reforms and Development (Essays in honour of Manmohan

Singh), Oxford University Press, New Delhi.

2. Bardhan, P. K. (9th Edition) (1999), The Political Economy of Development in India, Oxford University Press, New Delhi.

3. Bawa, R. s. and P. S. Raikhy (Ed.) (1997), Structural Changes in Indian Economy, Guru Nanak Dev University Press,

Amritsar.

4. Brahmananda, P. R. and V. R. Panchmukhi (Eds.) (2001), Development Experience in the Indian Economy: Inter-State

Perspectives, Book well, Delhi.

5. Chakravarty, S. (1987), Development Planning : The Indian Experience, Oxford University Press, New Delhi.

6. Dantwala, M. L. (1996), Dilemmas of Growth : The Indian Experience, Sage Publications, New Delhi.

7. Datt, R. (Ed.) (2001), Second Generation Economic Reforms in India, Deep & amp; Deep Publications, New Delhi.

8. Government of India, Economic Survey (Annual), Ministry of Finance, New Delhi.

9. Jain, a. K. (1986), Economic Planning in India, Ashish Publishing House, New Delhi.

10. Jalan, B. (1992), The Indian Economy – Problems and Prospects, Viking, New Delhi.