Proposed Syllabus

Of

B.Tech

Computer Science and Engineering (Internet of Things, Cyber Security including Block Chain Technology)

	Semester – I (FirstYear) MandatoryInductionProgram-3 weeksduration								
Sl	Category	SubjectCode	SubjectName		TotalNumber of contact hours		Credits		
No.			L	Т	P				
The	ory								
1	BasicScience course	BS- PH101/BS-	Physics-I(Gr-A)/Chemistry-	3	1	0	4		
2	BasicScience course	BS- M101/BS-	Mathematics— IA*/Mathematics—	3	1	0	4		
3	EngineeringScie nceCourses	ES-EE101	BasicElectrical Engineering	3	1	0	4		
		Total Theo	ry	9	3	0	12		
Prac	etical								
1	BasicScience course	BS- PH191/BS-	Physics- ILaboratory(Gr- A)/Chemistry-	0	0	3	1.5		
2	EngineeringScie nceCourses	ES-EE191	BasicElectricalEngineer ingLaboratory	0	0	2	1		
3	EngineeringScie nceCourses	ES- ME191/ES- ME192	EngineeringGraphics &Design(Gr- B)/Workshop/Manufactur ingPractices(Gr-A)	1	0	4	3		
		Total Practi	cal	1	0	9	5.5		
		Total of First Se	mester	10	3	9	17.5		

	Semester – II (FirstYear)							
Sl	Category	Subject	SubjectName	TotalNumbero fcontacthours			Credits	
No.		Code		L	T	P		
The	ory							
1	BasicSciencecourses	BS- PH201/BS-	Physics-I(Gr-B)/Chemistry-I(Gr-	3	1	0	4	
2	BasicSciencecourses	BS- M201/BS-	Mathematics— IIA [#] /Mathematics	3	1	0	4	
3	EngineeringScience Courses	ES-CS201	Programmingfor ProblemSolving	3	0	0	3	
4	HumanitiesandSocialS ciencesincludingMana gementcourses	HM-HU201	English	2	0	0	2	
		Total Theory		11	2	0	13	
Prac	tical							
1	BasicSciencecourses	BS- PH291/BS-	Physics- ILaboratory(Gr- B)/Chemistry-	0	0	3	1.5	
2	EngineeringScience Courses	ES-CS291	Programmingfor ProblemSolving	0	0	4	2	
3	EngineeringScience Courses	ES- ME291/ES- ME292	EngineeringGraphics &Design(Gr- A)/Workshop/Manufactur ingPractices(Gr-B)	1	0	4	3	
4	HumanitiesandSocialS ciencesincludingMana gementcourses	HM-HU291	LanguageLaboratory	0	0	2	1	
		Total Practica	ıl	1	0	13	7.5	
	То	tal of Second Sei	mester	12	2	13	20.5	

First year syllabus is common to all for B Tech Courses

		Seme	ster III (SecondYear)				
Sl	Category	SubjectCode	SubjectName		lNumb ontact		Credits
No.				L	T	P	
The	ory						
1	Engineering Science Course	*	Mathematics - III	2	0	0	2
2	Humanities & Social Sciences including Management courses	*	Economics for Engineers (Humanities-II)	3	0	0	3
3	Professional Core Courses	*	Data Structures and Algorithm	3	0	0	3
4	Professional Core Courses	*	Analog and Digital Electronics	3	1	0	4
5	Professional Core Courses	*	Computer Organization	3	0	0	3
6	Professional Core Courses	*	Object Oriented Programming	3	0	0	3
		Total Theor	ry	17	1	0	18
Prac	ctical						
1	Professional Core Courses	*	Analog and Digital Electronics Laboratory	0	0	3	1
2	Professional Core Courses	*	Data Structures Laboratory	0	0	3	1
3	Professional Core Courses	*	Object Oriented Programming Lab	0	0	4	2
		Total Praction	cal	0	0	10	4
		Totalof ThirdSe	mester	17	1	10	22

^{*} Subject Code to be decided by University

		Seme	ester IV (SecondYear)				
SI	Category	SubjectCode	SubjectName		TotalNumber of contact hours		Credits
No.				L	T	P	
The	ory						
1	Engineering Science Course	*	Mathematics -IV	3	1	0	4
2	Professional Core Courses	*	Design and Analysis of Algorithms	3	1	0	4
3	Professional Core Courses	*	Operating Systems	3	1	0	4
4	Professional Core Courses	*	Software Engineering & Testing Methodologies	3	0	0	4
5	Professional Core Courses	*	Data Communications and Networks	3	0	0	3
6	Professional Core Courses	*	Environmental Science	1	0	0	1
	Total Theory			16	3	0	20
			Practical				
1	Professional Core Courses	*	Design and Analysis of Algorithm Lab.	0	0	3	1
2	Professional Core Courses	*	Operating Systems Lab.	0	0	3	1
		Total Practi	cal	0	0	6	2
		Total of Forth S	emester	16	3	6	22

^{*} Subject Code to be decided by University

		Semo	ester V (Third Year)				
SI	Category	SubjectCode	SubjectName		Numb ontactl		Credits
No.				L	T	P	
The	ory						
1	Engineering Science Course	*	Operations Research	3	0	0	3
2	Professional Core Courses	*	Formal Language & Automata Theory	3	0	0	3
3	Professional Core Courses	*	Introduction to IOT and its security	3	0	0	3
4	Professional Core Courses	*	Biology	2	1	0	3
5	Professional Core Courses	*	Computer Graphics	3	0	0	3
6	Professional Core Courses	*	Database Systems	3	0	0	3
		Total Theo	ry	17	1	0	18
Prac	etical					1	
1	Professional Core Courses	*	ComputerGraphics Lab.	0	0	3	1
2	Professional Core Courses	*	Database Lab	0	0	3	1
3	Professional Core Courses	*	Application Oriented Programming using Python Lab	0	1	3	2
		Total Practio	cal	0	1	9	4
		Total of Fifth Se	mester	17	2	9	22

^{*} Subject Code to be decided by University

		Seme	ester VI (Third Year)				
Sl	Category	SubjectCode	SubjectName		Numb ontactl		Credits
No.				L	T	P	
The	ory						
1	Engineering Science Course	*	Introduction to Block Chain Technology	3	0	0	3
2	Professional Core Courses	*	Privacy and Security of IOT	3	0	0	3
3	Professional Core Courses	*	Digital Forensic	3	1	0	4
4	Professional Core Courses	*	Ethical Hacking and Penetration Testing	3	1	0	4
5	Professional Core Courses	*	Compiler Design	3	0	0	3
6	Professional Core Courses	*	Cryptography and Network Security	3	0	0	3
		Total Theo	ry	18	2	0	20
Prac	ctical						
1	Professional Core Courses	*	Digital Forensic Lab	0	0	3	1
2	Professional Core Courses	*	Compiler Design Lab	0	0	3	1
3	Professional Core Courses	*	Cryptography and Network Security Lab	0	0	3	1
		Total Practi	cal	0	0	9	3
		Total of Sixth Se	emester	18	2	9	23

^{*} Subject Code to be decided by University

		Semes	ster VII (Fourth Year)				
Sl	Category	SubjectCode	SubjectName	TotalNumber of contact hours			Credits
No.				L	T	P	
The	ory	·					
1	Professional Core Courses	*	Programming for IoT	3	0	0	3
2	Professional Core Courses	*	Cyber Security in Block Chain Technology	3	0	0	3
3	Professional Core Courses	*	Block Chain using Multi Chain	3	0	0	3
4	Professional Core Courses	*	Program Elective – I (Fundamental of Business Analytics)	3	0	0	3
5	Professional Core Courses	*	Program Elective – II (Implementing Block Chain in Cloud/ Information Security and Audit Monitoring)	3	0	0	3
6	Professional Core Courses	*	Open Elective – I (Multimedia Technology/Introduction to Philosophical Thoughts)	3	0	0	3
		Total Theo	ry	18	0	0	18
Prac	ctical						
1			IOT Lab	0	0	3	1
2			Ethical Hacking Lab	0	0	3	1
3			Internship				
		Total Practio	cal				
		Total of Seventh	Semester	18	0	0	18

^{*} Subject Code to be decided by University

	Semester VIII (Fourth Year)								
Sl			TotalNumber of contact hours			Credits			
No.				L	T	P			
The	ory								
1	Engineering Science Course	*	IndustrialTraining				2		
2	Professional Core Courses	*	Projectwork/Practice School				12		
		Total Theor	ry				14		
Prac	etical								
	Total Practical								
	Totalof Eighth Semester						14		

^{*} Subject Code to be decided by University

SECOND YEAR THIRD SEMESTER

❖ MATHEMATICS -III [2 0 0 2]

Statistics: Measures of central tendency – mean, median, mode, measures of dispersion – mean deviation, standard deviation, quartile deviation, skewness and kurtosis. Correlation coefficient, regression, least squares principles of curve fitting. Probability: Introduction, finite sample spaces, conditional probability and independence, Bayes' theorem, one dimensional random variable, mean, variance. Two and higher dimensional random variables: mean, variance, correlation coefficient. Distributions: Binomial, Poisson, uniform, normal, gamma, Chi-square and exponential distributions, simple problems. Moment generating function, Functions of one dimensional and two dimensional random variables, Sampling theory, Central limit theorem and applications. Partial Differential Equations: Numerical solutions of partial differential equations by finite difference methods, five-point formula, Laplace Poisson Equations, Heat equation, Crank Nicolson's method, Wave equation. Application of Finite Difference technique.

References:

- 1. Meyer P.L. "Introduction to probability and statistical applications", 2nd edn., American Publishing Co.
- 2. Hogg and craig, *Introduction to mathematical statistics*, 6th Edn, 2012, Pearson education, New Delhi.
- 3. Ross Sheldon M, "Introduction to Probability and Statistics for Engineers and Scientists", Elseveir, 2010.
- 4. William J. Stewart, Probability, Markov Chains, Queues and Simulation.
- 5. S. Narayanan, T. K. Manicavachagom Pillay, G. Ramanaiah, *Advanced mathematics for engineering students*, S. Viswanathan Pvt.. Ltd., 1985.

Economics for Engineers (Humanities-II) [3 0 0 3]

Unit	Content	Hrs/Unit	Marks/Unit
1	1. EconomicDecisionsMaking— Overview,Problems,Role,Decisionmakingprocess. 2. EngineeringCosts&Estimation— Fixed,Variable,Marginal&AverageCosts,SunkCosts,OpportunityCosts,RecurringAnd NonrecurringCosts,IncrementalCosts,CashCostsvsBookCosts,Life-CycleCosts;TypesOfEstimate,EstimatingModels - Per-UnitModel,SegmentingModel,CostIndexes,Power-SizingModel,Improvement&LearningCurve,Benefits.	9	
2	3.CashFlow,InterestandEquivalence:CashFlow—Diagrams,Categories&Computation,TimeValueof Money,Debtrepayment,Nominal&EffectiveInterest. 4.CashFlow&RateofReturnAnalysis—Calculations,TreatmentofSalvageValue,AnnualCashFlowAnalysis,AnalysisPeriods;InternalRateofReturn,CalculatingRateofReturn,IncrementalAnalysis;BestAlternativeChoosinganAnalysis Method,Future WorthAnalysis,Benefit—CostRatioAnalysis,SensitivityandBreakevenAnalysis.EconomicAnalysisInThePublicSector—QuantifyingAndValuingBenefits& drawbacks.	9	

3	5. InflationandPriceChange— Definition,Effects,Causes,PriceChangewithIndexes,TypesofI ndex,CompositevsCommodity Indexes,UseofPriceIndexesInEngineeringEconomicAnalysis, CashFlowsthatinflateatdifferent Rates. 6. PresentWorthAnalysis:End-Of- YearConvention,ViewpointOfEconomicAnalysisStudies,Bor rowedMoneyViewpoint,Effect OfInflation&Deflation,Taxes,EconomicCriteria,ApplyingPre sentWorthTechniques,MultipleAlternatives. 7. UncertaintyInFutureEvents-EstimatesandTheir UseinEconomicAnalysis, Range OfEstimates,Probability,JointProbability Distributions,ExpectedValue,EconomicDecisionTrees,Risk, RiskvsReturn,Simulation,RealOptions.	9	
4.	8. Depreciation- BasicAspects, Deterioration & Obsolescence, Depreciation And Expenses, Types Of Property, Depreciation Calculation Fundam entals, Depreciation And Capital Allowance Methods, Straight-Line Depreciation Declining Balance Depreciation, Common Elements Of Tax Regulations For Depreciation And Capital Allowances. 9. Replacement Analysis-Replacement Analysis Decision Map, Minimum Cost Life of a New Asset, Marginal Cost, Minimum Cost Life Problems. 10. Accounting—Function, Balance Sheet, Income Statement, Financial Ratios Capital Transactions, Cost Accounting, Direct and Indirect Costs, Indirect Cost Allocation.	9	

Textbook and Reference books:

- 1. James L. Riggs, David D. Bedworth, Sabah U. Randhawa: Economics for Engineers 4e, Tata McGraw-Hill
- $2. \ Donald Newnan, Ted Eschembach, Jerome Lavelle: Engineering Economics Analysis, OUP \\$
- 3. John A. White, Kenneth E. Case, David B. Pratt: Principle of Engineering Economic Analysis, John Wiley
- 4. Sullivan and Wicks: EngineeringEconomy,Pearson
- 5. R.PaneerSeelvan: EngineeringEconomics,PHI
- 6. MichaelR Lindeburg: EngineeringEconomicsAnalysis,ProfessionalPub
- 7. PremvirKapoor, Sociology&Economicsfor Engineers,KhannaPublishingHouse(AICTERecommendedTextbook –2018)

❖ DataStructure &Algorithm [3 0 0 3]

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction:BasicTerminologies:ElementaryDataOrganizat ions,DataStructureOperations:insertion,deletion,traversaletc.;AnalysisofanAlgorithm,AsymptoticNotations,Time-Spacetradeoff.Searching:LinearSearchandBinarySearchTechnique sandtheircomplexityanalysis.	10	
2	StacksandQueues: ADTStackanditsoperations: Algorithmsan dtheircomplexityanalysis, ApplicationsofStacks: ExpressionC onversionandevaluation—correspondingalgorithmsandcomplexityanalysis. ADTqueue, TypesofQueue: SimpleQueue, CircularQueue, PriorityQueue; OperationsoneachtypesofQueues: Algorithmsand their analysis.	9	
3	LinkedLists:Singlylinkedlists:Representationinmemory,Alg orithmsofseveraloperations:Traversing,Searching,Insertioni nto,Deletionfromlinkedlist;LinkedrepresentationofStackand Queue,Headernodes,Doublylinkedlist:operationsonitandalgo rithmicanalysis;CircularLinkedLists:all operationstheiralgorithmsand thecomplexityanalysis. Trees:BasicTreeTerminologies,Differenttypes ofTrees:BinaryTree,Threaded BinaryTree,BinarySearchTree,AVLTree; Treeoperations oneachofthetrees andtheiralgorithms withcomplexityanalysis.Applications ofBinaryTrees.BTree,B+Tree:definitions,algorithmsandanalysis	10	
4.	SortingandHashing:Objective and propertiesofdifferentsortingalgorithms: SelectionSort, BubbleSort,InsertionSort,QuickSort,MergeSort,HeapSort; Performance andComparisonamong all themethods,Hashing.Graph:BasicTerminologiesandRepres entations,Graphsearch and traversalalgorithms and complexityanalysis.	9	

Textbook and Reference books:

- 1. "Data Structures and Program Design In C", 2/Eby Robert L. Kruse, Bruce P. Leung.
- 2. "Data Structure&AlgorithmsUsing C",5thEd.,Khanna PublishingHouse(AICTERecommended–2018)
- $3. \ ``Fundamentals of Data Structures of C" by Ellis Horowitz, Sartaj Sahni, Susan Anderson-freed.$
- 4. "Data Structures inC"byAaron M.Tenenbaum.
- 5. "Data Structures" by S. Lipschutz.
- 6. "Data Structures UsingC"byReemaThareja.
- 7. "Data StructureUsingC",2/eby A.K.Rath, A. K. Jagadev.
- 8. "Introduction toAlgorithms" byThomasH.Cormen,CharlesE. Leiserson,RonaldL.Rivest,CliffordStein

- 9. "Data Structures throughC" by Yashwant Kanetkar, BPB Publications.
- 10. "Expert DataStructureswith C++" by R.B Patel, KhannaPublishingHouse

❖ Analog and Digital Electronics [3 1 0 4]

Unit	Content	Hrs/Unit	Marks/Unit
1	DifferentClassesofAmplifiers-(Class-A,B,ABandC-basic concepts,power,efficiency;Recapitulationofbasicconcepts ofFeedbackandOscillation,PhaseShift,WeinBridgeoscillat orsAstable&MonostableMultivibrators Schimtt	9	
	Triggercircuits, 555Timer.		
2	BinaryNumberSystem&BooleanAlgebra(recapitulation);B CD,ASCII,EBDIC,Graycodesandtheirconversions;Signed	11	
	binarynumberrepresentationwith1'sand2'scomplementmet hods,Binaryarithmetic,Venndiagram,Booleanalgebra(reca		
	pitulation);RepresentationinSOP and POSforms;Minimizationoflogic		
	expressionsbyalgebraicmethod.		
3	Sequential Circuits - BasicFlip-flop& Latch, Flip-flops-SR,JK,D,TandJKMaster- slaveFlipFlops,Registers(SISO,SIPO,PIPO,PISO)Ringco	10	
	unter,Johnsoncounter BasicconceptofSynchronousandAsynchronouscounters (detaildesignofcircuits excluded),DesignofMod N Counter		
4.	A/D and D/Aconversiontechniques—Basicconcepts(D/A:R-2-Ronly [2L] A/D:successive approximation [2L])	6	
	Logicfamilies-TTL,ECL,MOS andCMOS - basicconcepts.(2L)		

Textbook and Reference books:

- 1. Microelectronics Engineering–Sedra&Smith-Oxford.
- 2. AnalogElectronics, A.K.Maini, Khanna Publishing House (AICTERecommended-2018)
- 3. AnalogElectronics, L.K. Maheswari, LaxmiPublications (AICTERecommended -2018)
- 4. Principles of Electronic Devices & circuits—B LThereja & Sedha—SChand
- 5. DigitalElectronics Kharate- Oxford
- 6. DigitalElectronics Logic Systems by J.Bigmell R.Donovan; Cambridge Learning.
- 7. Digital Logic and State Machine Design (3rd Edition) D.J. Comer, OUP
- 8. ElectronicDevices & CircuitTheory Boyelstad&Nashelsky-PHI
- 9. Bell-LinearIC&OP AMP—Oxford
- 10. P.Raja- Digital Electronics-Scitech Publications
- 11. MorriesMano-DigitalLogicDesign-PHI
- 12. R.P.Jain—Modern DigitalElectronics,2/e,McGrawHill

- $13.\ H. Taub \&D. Shilling, Digital Integrated Electronics-McGraw Hill.$
- 14. D.RayChaudhuri- DigitalCircuits-Vol-I&II, 2/e- PlatinumPublishers
- 15. Tocci, Widmer, Moss-Digital Systems, 9/e-Pearson
- 16. J.Bignell&R.Donovan-Digital Electronics-5/e-CenageLearning.
- 17. Leach&Malvino—DigitalPrinciples & Application,5/e,McGrawHill
- 18. Floyed&Jain-DigitalFundamentals-Pearson.

Computer Organization [3 0 0 3]

Unit	Content	Hrs/Unit	Marks/Unit
1	Basicorganizationofthestoredprogramcomputerandoperation sequenceforexecutionofa program.Roleofoperatingsystemsandcompiler/assembler.Fet ch,decodeandexecutecycle,Conceptofoperator,operand,regis tersandstorage,Instructionformat.Instructionsetsandaddressi ngmodes.[7L] Commonlyusednumbersystems.Fixedandfloating pointrepresentationof numbers.[1L]	8	
2	Overflow and underflow.Designofadders - ripplecarryandcarrylook aheadprinciples.[3L] Design of ALU.[1L] Fixedpoint multiplication-Booth's algorithm.[1L]Fixedpoint division - Restoring and non-restoring algorithms.[2L] Floating point-IEEE 754 standard.[1L]	8	
3	Memoryunitdesignwithspecialemphasis on implementation of CPU-memoryinterfacing. [2L] Memoryorganization, static and dynamic memory, memory hierarchy, associative memory. [3L] Cachememory, Virtual memory. Data path design for read/write access. [5L]	10	
4	Designofcontrolunit- hardwiredandmicroprogrammedcontrol.[3L]Intro duction to instructionpipelining. [2L] Introduction to RISC architectures.RISC vs CISCarchitectures.[2L] I/Ooperations - Conceptofhandshaking,PolledI/O,interruptandDMA. [3L]	10	

Textbook and Reference books:

- 1. Mano, M.M., "Computer System Architecture", PHI.
- 2. BehroozParhami "Computer Architecture", Oxford UniversityPress
- 3. Hayes J.P., "Computer Architecture & Organisation", McGrawHill,
- 4. Hamacher, "ComputerOrganisation", McGrawHill,
- 5. N.senthilKumar, M.Saravanan, S.

Jeevananthan, "MicroprocessorsandMicrocontrollers" OUP

- 6. ChaudhuriP.Pal, "Computer Organisation & Design", PHI,
- 7. P NBasu-"Computer Organization & Architecture", Vikas Pub
- 8. Rajaraman "ComputerOrganization& Architecture", PHI
- 9. B.Ram-"Computer Organization&Architecture", NewagePublications

❖ OBJECT-ORIENTED PROGRAMMING [3 1 0 4]

Introduction: Object-oriented Paradigm and Pillars such as Abstraction, Encapsulation, Inheritance and Polymorphism; Java Basics: Compilation and Execution of a Java Program, Access Modifiers; Class and Objects: Class Definition, Creating Objects, Role of Constructors, Method Overloading, Argument Passing, Objects as Parameters, Access Control; I/O Basics: Reading Console Input, Writing Console Output; Array and Strings: Arrays in Java, 1-D, 2-D and Dynamic Arrays, String Basics, String Comparison and Manipulation; Inheritance: Inheritance and its Types, Abstract Class, Inner and Outer Class, Super, Final, Static Keywords; Package and Interface: In-Built Packages and User Define Packages, Role of Interface, Polymorphism via Inheritance; Collection Framework & Generics: List, Set, Map, Generic Classes; Exception Handling: Errors and Exceptions, Types of Exceptions, Handling Exceptions, Multithreading: Thread Class, Runnable, Thread Life Cycle, Synchronization, Thread Priority; Event Handling and GUI Programming: Events, Action Listener, Important Swing Package Classes.

References:

- 1. Schildt H, Java: The Complete Reference, (10e), Tata McGraw-Hill Education Group, 2017.
- 2. Balagurusamy E, *Programming with Java*, (5e), Tata McGraw Hill, 2017.
- 3. Daniel Liang Y, Introduction to Java Programming, (10e), Pearson Education, 2018.
- 4. Horstmann CS, Big Java: Early Objects, (5e), Wiley's Interactive Edition, 2015.

❖ Analog and Digital Electronics Laboratory [0 0 3 1]

Laboratory Experiments:		
Analog	AnalogElectronics	
1	Design a Class A amplifier	
2	Design a Phase-ShiftOscillator	
3	Design of aSchmittTrigger using 555timer	
Digitall	DigitalElectronics	
4	DesignaFullAdderusingbasicgatesandverifyitsoutput/DesignaFullSubtractorcircuitusingbasic gatesand verifyits output.	
5	ConstructionofsimpleDecoder&Multiplexer circuitsusinglogicgates.	
6	Realization RS / JK /D flipflops using logic gates	
7	DesignofShiftRegisterusingJ-K / D FlipFlop	
8	RealizationofSynchronousUp/Downcounter	
9	DesignofMOD- N Counter	
10	Studyof DAC	

Anyexperimentspeciallydesigned bythe college

(Detailed instructions for LaboratoryManual to be followed forfurtherguidance)

❖ Data Structures Laboratory [0 0 3 1]

Lal	Laboratory Experiments:		
Lin	LinearDataStructure		
1	Implementationofarrayoperations		
2	StacksandQueues:adding,deletingelementsCircularQueue:Adding&deletingelements		
3	MergingProblem:Evaluationofexpressionsoperations onMultiplestacks&queues:		
4	Implementationoflinkedlists: inserting,deleting,invertinga linkedlist.Implementationofstacks & queues usinglinkedlists		
5	Polynomialaddition,Polynomialmultiplication		
Noi	Non LinearDataStructure		
6	Recursive and Non-recursivetraversalofTrees		
7	Threaded binarytreetraversal.AVL tree implementation		
8	ApplicationofTrees.Applicationofsorting and searchingalgorithms		
9	Hashtablesimplementation:searching,insertingand deleting,searching&sortingtechniques.		

Anyexperimentspecially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

❖ Object Oriented Programming Lab [0 0 4 2]

LaboratoryExperiments:

- 1. Assignments on class, constructor, overloading, inheritance, overriding
- 2. Assignments on wrapperclass, arrays
- 3. Assignments on developing interfaces multiple inheritance, extending interfaces
- **4.** Assignments on creating and accessing packages
- 5. Assignments on multithreaded programming
- 6. Assignments on appletprogramming

Note: UseJava forprogramming

Anyexperiment speciallydesignedbythe college (Detailedinstructions forLaboratoryManualto befollowed for furtherguidance)

SECOND YEAR

FORTH SEMESTER

❖ Mathematics –IV (Discrete Mathematics) [31 0 4]

Unit Content	Hrs/Unit	Marks/Unit
--------------	----------	------------

1	Sets, Relationand Function: Operations and Laws of Sets, Cartesi an Products, Binary Relation, Partial Ordering Relation, Equival ence Relation, Image of a Set, Sumand Product of Functions, Bije ctive functions, Inverse and Composite Function, Size of a Set, Finite and infinite Sets, Countable and uncountable Sets, Cantor's diagonal argument and The Power Set theorem, Schroeder Bernstein theorem. Principles of Mathematical Induction: The Well-Ordering Principle, Recursive definition, The Divisional gorithm: Prime Numbers, The Greatest Common Divisor: Euclidean Algorithm, The Fundamental Theorem of Arithmetic.	8	
2	Basiccountingtechniques-inclusionandexclusion,pigeon-holeprinciple,permutationandcombination	5	
3	PropositionalLogic: Syntax,Semantics,Validity andSatisfiability, BasicConnectivesandTruthTables, LogicalEquivalence: TheLaws ofLogic,LogicalImplication,Rules ofInference,TheuseofQuantifiers.ProofTechniques: SomeTerminology,ProofMethodsandStrategies,Forward Proof,ProofbyContradiction,ProofbyContraposition,Proofof NecessityandSufficiency.	8	
4.	AlgebraicStructuresandMorphism:AlgebraicStructureswitho neBinaryOperation,SemiGroups,Monoids,Groups,Congruen ceRelationandQuotientStructures,FreeandCyclicMonoidsan dGroups,PermutationGroups,Substructures,NormalSubgrou ps,AlgebraicStructureswithtwoBinaryOperation,Rings,Integ ralDomainandFields.BooleanAlgebraandBooleanRing,Ident itiesofBooleanAlgebra,Duality,RepresentationofBooleanFu nction,Disjunctiveand ConjunctiveNormal Form	7	
5	GraphsandTrees:Graphsandtheirproperties,Degree,Connectivity,Path,Cycle,SubGraph,Isomorphism,EulerianandHamiltonianWalks,GraphColouring,ColouringmapsandPlanarGraphs,ColouringVertices,ColouringEdges,ListColouring,PerfectGraph,definitionpropertiesandExample,rootedtrees,treesandsorting,weightedtreesandprefixcodes,BiconnectedcomponentandArticulationPoints,Shortestdistances.	8	

Textbook and Reference books:

- 1. RussellMerris,Combinatorics,Wiley-InterscienceseriesinDiscreteMathematicsandOptimisation
- 2. N.ChandrasekaranandM.Umaparvathi,DiscreteMathematics,PHI
- $3. \ Gary Haggard, John Schlip fand Sue White sides, Discrete Mathematics for Computer Science, CENGAGE Learning$
- 4. GaryChartrandandPingZhang- Introduction to GraphTheory,TMH
- 5. J.K.Sharma, Discrete Mathematics, Macmillan
- 6. WinfriedKarlGrassmannand Jean-Paul Tremblay, Logicand DiscreteMathematics, PEARSON.
- 7. S.K.ChakrabortyandB. K.Sarkar, Discrete Mathematics, OXFORD University Press.
- 8. Douglas B.West,Introduction to graphTheory,PHI
- 9. C. L.Liu, Elements of Discrete Mathematics, 2nd Ed., TataMcGraw-Hill, 2000.
- 10. R.C.Penner, Discrete Mathematics: Proof Techniques and

MathematicalStructures, WorldScientific, 1999.

- 11. R.L.Graham, D. E.Knuth, and O. Patashnik, Concrete Mathematics, 2nd Ed., Addison-Wesley, 1994.
- 12. N.Deo, Graph Theory, Prentice Hall of India, 1974.
- $13.\ S. Lipschutz and M.L. Lipson, Schaum's\ Outline of Theory and Problems\ of Discrete$

Mathematics, 2nd Ed., TataMcGraw-Hill, 1999.

- 14. J.P.TremblayandR. P.Manohar, Discrete Mathematics with Applications to Computer Science, TataMcGraw-Hill, 1997.
- 15. RussellMerris, Combinatorics, Wiley-Interscienceseries in DiscreteMathematics and Optimisation
- 16. N.ChandrasekaranandM.Umaparvathi, DiscreteMathematics, PHI
- 17. GaryHaggard,JohnSchlipfandSueWhitesides,DiscreteMathematicsforComputerScience,CENGAGELe arning
- 18. GaryChartrand andPingZhang IntroductiontoGraphTheory,TMH
- 19. S.B. Singh, Discrete Structures Khanna Publishing House (AICTER ecommended Textbook 2018)
- 20. S.B. Singh, Combinatorics and

GraphTheory,KhannaPublishingHouse(AICTERecommendedTextbook-2018)

❖ DESIGN & ANALYSIS OF ALGORITHMS [3 1 0 4]

Fundamentals of Algorithms, Important Problem Types, Analysis of algorithm efficiency. Analysis Framework: Asymptotic Notations and Basic Efficiency Classes, Mathematical Analysis of Nonrecursive and Recursive Algorithms. Brute force Techniques, Divide and Conquer, Decrease and Conquer: Insertion Sort, Depth First Search, Breadth First Search, Topological Sorting. Transform and Conquer: Presorting, BST, Heapsort. Space and Time tradeoffs: Input Enhancement in String Matching. Dynamic Programming: Warshall's and Floyd's Algorithms, The Knapsack Problem. Greedy Techniques: Prim's, Kruskal's and Dijkstra's Algorithm, Huffman Trees. Coping with limitations of algorithmic power, P, NP and NP-complete Problems, Backtracking: n—Queens problem, Hamiltonian Circuit Problem, Subset—Sum Problem. Branch and Bound: Assignment Problem, Knapsack Problem, TSP.

References:

1. Anany Levitin, Introduction to the Design and Analysis of Algorithms, (3e), Pearson Education, 2011

- 2. Ellis Horowitz and SartajSahni, Computer Algorithms/C++, (2e), University Press, 2007.
- 3. Thomas H. Cormen, Charles E. Leiserson, Ronal L, Rivest, Clifford Stein, *Introduction to Algorithms*, (2e), PHI, 2006

❖ OPERATING SYSTEMS [3 1 0 4]

Operating System Structure and Operations, Process Management, Memory Management, Storage Management, Operating System Services, User Operating System Interfaces, Types of System Calls, System Programs, Operating System Structure, System Boot ,Overview, Process Scheduling, Operations on Processes, Inter-process Communication, Multithreaded Models, Thread Libraries, Scheduling Algorithms, Thread Scheduling, Linux scheduling, Critical Section Problem, Peterson's Solution, Synchronization Hardware, Semaphores, Logical Versus Physical Address Space, Segmentation, Contiguous Memory Allocation, Paging, Structure of Page Table, Segmentation, Demand Paging, Copy-On-Write, Page Replacement, Allocation of Frames, Thrashing, Disk Scheduling, Swap-Space Management, System Model, Deadlock: Deadlock prevention, Avoidance, Detection, Recovery, File Concept, Protection.

References:

- 1. Silberschatz, P. B. Galvin and G. Gagne, *Operating System Concepts*, (9e), Wiley and Sons (Asia) Pvt Ltd, 2013.
- 2. Milan Milenkovic, Operating systems: Concepts and Design, McGraw Hill, New York, 1987
- 3. H. M. Dietel, An Introduction to Operating Systems, Addison Wesley, 1990.
- 4. Andrew S. Tannebaum, Operating System: Design and Implementation, (3e), Prentice Hall of India, 2008
- 5. Maurice J Bach, Design of UNIX Operating System, Prentice Hall of India, 1988.

❖ Software Engineering & Testing Methodologies [3 0 0 3]

Unit-1: Introduction to Software Engineering

9 hours

Software Components, Software Characteristics, Software Crisis, Software Engineering Processes, Similarity and Differences from Conventional Engineering Processes, Software Quality Attributes. Software Development Life Cycle (SDLC) Models: Water Fall Model, Prototype Model, Spiral Model, Evolutionary Development Models, Iterative Enhancement Models.

Unit II: Software Requirement Specifications (SRS) and Design

9 hours

Requirement Engineering Process: Elicitation, Analysis, Documentation, Review and Management of User Needs, Feasibility Study, Information Modelling,

Basic Concept of Software Design, Architectural Design, Low Level Design: Modularization, Design Structure Charts, Pseudo Codes, Flow Charts, Coupling and Cohesion Measures, Design Strategies: Function Oriented Design, Object Oriented Design, Top-Down and Bottom-Up Design Data Flow Diagrams, Entity Relationship Diagrams.

Unit III: Software Testing Methods and Selection

9 Hours

Testing Objectives, Faults, Errors, and Failures, Basics of software testing, Testing objectives, Principles of testing, Requirements, behavior and correctness, Testing and debugging, Test metrics and measurements, Verification, Validation and Testing, Types of testing, Software Quality and Reliability, Software defect tracking.

Unit IV: Software Testing Methods and Selection

9 Hours

Structural Testing (White Box Testing), Functional Testing (Black Box Testing), Integration Testing, , Regression Testing, Testing for Functionality and Testing for Performance, Top-Down and Bottom-Up,

Acceptance Testing ,Alpha and Beta Testing of Products. Static Testing Strategies: Formal Technical Reviews (Peer Reviews), Walk Through, Regression testing, Regression test process, Initial Smoke or Sanity test, Tools for regression testing, Ad hoc Testing: Pair testing, Exploratory testing, Iterative testing, Defect seeding.

Unit V : Software Project and Test Management

9 Hours

Software as an Evolutionary Entity, Need for Maintenance, Categories of maintenance: Preventive, Corrective and Perfective Maintenance, Cost of Maintenance, Software Re-Engineering, Reverse Engineering. Software Configuration Management Activities, Constructive Cost Models (COCOMO). Test Planning, Management, Execution and Reporting, Software Test Automation: Testing in Object Oriented Systems.

References:

- 1. Software Engineering: A practitioner's Approach, Roger S Pressman, Sixth Edition. McGraw-Hill International Edition, 2005.
- 2. Software Engineering: Ian Summerville, Seventh Edition, Pearson Education, 2004.
- 3. Fundamentals of Software Engineering: Rajib Mall, PHI, 2005.
- 4. Software Engineering, A Precise Approach, Pankaj Jalote, Wiley India, 2010.
- 5. Software Engineering: A Primer, Waman S Jawadekar, Tata McGraw-Hill, 2008.

❖ DATA COMMUNICATION AND NETWORKS [3 0 0 3]

Basic concepts of computer networks, Layered architecture and comparison between ISO/OSI, TCP/IP layered models. Significance of Datalink layer and protocols. Network layer functionalities, classful, classless IP addressing, address allocation and role of forwarding module in forwarding the packet using routing table. Roles played by IP, ARP, RARP, ICMP& IGMP protocols in network layer. Inter-domain and intra-domain routing algorithms for routing tables. Importance of transport layer in achieving process-to-process communication. Insight of connection oriented protocol TCP and connectionless protocol UDP. Features of TCP in achieving flow control, error control and congestion control. Requirement of different timers in TCP. Drawbacks of IPv4 addressing and new IP addressing scheme IPv6. Migrating from IPv4 to IPv6. Introduction to application layer, a client/server application program and a case study. Client-server application program-Dynamic Host Configuration Protocol (DHCP).

References:

- 1. Behrouz A. Forouzan, TCP/IP Protocol Suite, 4th Edition, Tata McGraw Hill, 2010.
- 2. Tannenbaum, A.S, Computer Networks, 5th Edition, Prentice Hall of India EE Edition, 2011.
- 3. Behrouz A. Forouzan, Data Communications and Networking, 5th Edition, Tata McGraw Hill, 2013.
- 4. Leon Garcia and Widjala, Communication Networks, 5th Edition, Tata McGraw Hill, 2017.

Servironmental Science [1 0 0 1]

Content	Hrs/Unit
---------	----------

1	Basicideas ofenvironment,basicconcepts,man,society & environment,their interrelationship(1L)	6
	Mathematicsofpopulationgrowthandassociatedproblems,Importanceofpopulationstudyinen vironmental engineering,definitionofresource,typesofresource,renewable,non-renewable,potentiallyrenewable,effectofexcessiveusevis-àvispopulationgrowth,Sustainable Development.(2L)	
	Materialsbalance:Steadystateconservationsystem,steadystatesystemwithnon-conservativepollutants,stepfunction. (1L)	
	Environmentaldegradation:NaturalenvironmentalHazardslikeFlood,earthquake,Landslide-causes,effectsand control/management;Anthropogenic degradationlikeAcidrain-cause,effectsandcontrol.NatureandscopeofEnvironmentalScienceandEngineering.(2L)	
2	Elementsofecology:System,opensystem,closedsystem,definitionofecology,species,population,community,definitionofecosystem-componentstypesandfunction. (1L)	6
	Structureandfunctionofthefollowingecosystem:Forestecosystem,Grasslandecosystem,Dese rtecosystem,Aquaticecosystems,Mangroveecosystem(specialreferencetoSundarban);Food chain[definitionandoneexampleofeachfoodchain],Foodweb.(2L)	
	BiogeochemicalCycle-definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur]. (1L)	
	Biodiversity-types,importance,Endemicspecies,BiodiversityHotspot,Threatstobiodiversity,Conservationofbiodiversity.(2L)	

Energybalance:ConductiveandConvectiveheattransfer,radiationheattransfer,simpleglobalte mperaturemodel[Earthasablackbody,earthasalbedo],Problems.(1L)

Greenhouseeffects: Definition, impactof greenhouse gases on the global climate and consequently on seawater level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth's heat budget. (1L)

Lapserate:AmbientlapserateAdiabaticlapserate,atmosphericstability,temperatureinversion(radiationinversion).(2L)

Atmosphericdispersion: Maximummixingdepth, ventilation coefficient, effective stackheight, smokestack plumes and Gaussian plume model. (2L)

Definitionofpollutantsandcontaminants,Primaryandsecondarypollutants: emissionstandard,criteria pollutant.Sourcesandeffectofdifferentairpollutants-Suspendedparticulatematter,oxidesofcarbon,oxidesof nitrogen,oxides ofsulphur,particulate,PAN.(2L)Smog, Photochemical smog and London smog.DepletionOzonelayer:CFC,destructionofozonelayerby CFC,impact ofothergreen-housegases,effectofozonemodification. (1L)

Standardsandcontrolmeasures: Industrial, commercial and residential air quality standard, controlmeasure (ESP. cyclonese parator, baghouse, catalytic converter, scrubber (ventury), Statemen twith brief reference). (1L)

4.	Hydrosphere, Hydrological cycle and Natural water. Pollutants of water, their originand effects: Oxygendemanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pestic ides, volatile organic compounds. (2L)	9
	River/Lake/groundwaterpollution:River:DO,5-dayBODtest,SeededBODtest,BODreactionrateconstants,Effectofoxygendemandingwastes onriver[deoxygenation,reaeration],COD,Oil,Greases,pH.(2L)	
	Lake:Eutrophication[Definition,sourceandeffect].(1L)	
	Groundwater: Aquifers, hydraulic gradient, groundwater flow (Definition only) (1L)	
	Standardandcontrol:Wastewaterstandard[BOD,COD,Oil,Grease],	
	WaterTreatmentsystem[coagulationandflocculation,sedimentation and filtration,disinfection,hardness andalkalinity,softening]Wastewatertreatmentsystem,primaryandsecondarytreatments[Tric klingfilters,rotatingbiologicalcontractor,Activatedsludge,sludgetreatment,oxidationponds]t ertiarytreatmentdefinition.(2L)	
	Waterpollutionduetothetoxicelementsandtheirbiochemicaleffects:Lead,Mercury,Cadmium, andArsenic (1L)	
5	Lithosphere; Internal structure of earth, rock and soil (1L) Solid Waste: Municipal, industrial, commercial, agricultural, domestic, pathological and hazard ous solid wastes; Recovery and disposal method- Opendumping, Land filling, incineration, composting, recycling. Solid wasteman agement and control (hazardous and biomedical waste). (2L)	3
6	Definitionofnoise,effectofnoisepollution,noiseclassification[Transportnoise,occupationaln oise,neighbourhoodnoise] (1L) Definitionofnoisefrequency,noisepressure,noiseintensity,noisethresholdlimitvalue,equival entnoiselevel, L10(18hrIndex),nLd.Noise pollution control.(1L)	3
7	Environmentalimpactassessment, Environmental Audit, Environmental laws and protection ac tof India, Different international environmental treaty/agreement/protocol.(2L)	2

Textbooks/referencebooks:

- $1.\ M.P. Poonia \& S. C. Sharma, Environmental Studies, Khanna Publishing House (AICTER ecommended Text book 2018)$
- 2. Masters, G.M., "Introduction to Environmental Engineering and Science", Prentice-Hallof India Pvt. Ltd., 1991.
- 3. De, A.K., "Environmental Chemistry", New Age International

❖ DESIGN & ANALYSIS OF ALGORITHMS LAB [0 0 2 1]

Exercises to implement doubly linked list & Binary Search Tree, GCD Techniques. Sorting algorithms. String Matching, DFS, BFS, Topological sorting, AVL tree, 2-3 tree, Horspool algorithm, Open hash table, Floyd's algorithm, Warshall's algorithm, Greedy Techniques, Dijkstra's algorithm, Backtracking.

References:

- 1. Anany Levitin, Introduction to the Design and Analysis of Algorithms, (3e), Pearson Education, India, 2011.
- 2. Ellis Horowitz and SartajSahni, Computer Algorithms/C++, (2e), University Press, 2007
- 3. Thomas H. Cormen, Charles E. Leiserson, Ronal L, Rivest, Clifford Stein, *Introduction to Algorithms*, (2e), PHI, 2006.

❖ SOFTWARE ENGINEERING & TESTING METHODOLOGIES LAB. [0 0 3 1]

Sr. No.	Title of Lab Experiments
1.	Demonstration on Manual testing
	a. Write Programs in "C" Language to demonstrate the working of the following constructs:
	i)dowhile ii) whiledo iii)ifelse iv)switch v)for
	b. Write a program in "C" language to demonstrate the working of palindrome using dowhile.
2.	Demonstration on Unit testing
	a. Create a test plan document for any application (e.g. Library Management System).
	b. Study of any testing tool (e.g. Win runner).
	c. Create a test plan document for cellular phone.
3.	Demonstration on Integration testing
	Take a mini project (e.g. University admission, Placement Portal) and execute it. During the life cycle of the mini project create the various testing documents and final test report document.
4.	Demonstration on System testing
	a. Take any system (e.g. ATM system) and study its system specifications and report the various
	bugs.
	b. Write down the test cases for any known applications (e.g. Banking Application).
5.	Demonstration on Blackbox testing

a. Design a usecase diagram for an ATM system. b. Design a class diagram for an ATM system. c. Design a use case diagram for Library system. Demonstration on White Box testing a. Create various testing document for robot control system. b."A Program written in "C" Language for Matrix Multiplication fails" Introspect the causes for its failure and write down the possible reasons for its failure. c. Write a Program in "C" Language to demonstrate the working of Addition of diagonal elements in a matrix. Demonstration on Regression testing Study of any web-testing tool (eg. Selenium). a. Study of any bug-tracking tool (eg. Bugzilla, bug bit). b. c. Study of any test management tool (eg. Test Director). d. Compare different testing tools. Demonstration on Mutation testing Write down the test cases for any known applications (e.g. Banking Application). Demonstration on Alpha testing. Make a Case Based study on the experiment Demonstration on Beta testing. Make a Case Based study on the experiment 10. 11. Demonstration on User Acceptance testing. Make a Case Based study on the experiment

Reference Book (s)

- 1. S. Desikan and G. Ramesh, "Software Testing: Principles and Practices", Pearson Education.
- 2. Aditya P. Mathur, "Fundamentals of Software Testing", Pearson Education.
- 3. Naik and Tripathy, "Software Testing and Quality Assurance", Wiley
- 4. K. K. Aggarwal and Yogesh Singh, "Software Engineering", New Age International Publication.

❖ OPERATING SYSTEMS LAB [0 0 2 1]

Linux basic commands shell concepts and file filters, shell scripting-1, shell scripting-2, linux system calls ,thread programming, inter-process communication, process synchronization, cpu scheduling algorithms, deadlock algorithms, memory management schemes, page replacement algorithms, disk scheduling algorithms.

References:

- 1. Maurice Bach, Design of Unix Operating System, Prentice Hall India Learning Private Limited, 2015.
- 2. Graham Glass, *Unix for Programmers and Users* A complete guide, (3e), Prentice Hall India Learning Private Limited , 2003

- 3. Sumitabha Das, Unix concepts and applications, (4e), McGraw Hill Education, 2017.
- 4. Neil Matthew, Richard Stones, *Beginning Linux Programming*, (4e), Wiley Publication, 2007.
- 5. A. Silberschatz, P. B. Galvin and G. Gagne, *Operating System Concepts*, (9e), Wiley and Sons (Asia) Pte Ltd, 2013.
- 6. Rachel Morgan, Unix System, McGraw Hill Education, 2007.

THIRD YEAR FIFTH SEMESTER

❖ OPERATIONS RESEARCH [3 0 0 3]

Introduction: Definition, Phases, Applications, Advantages and Limitations of Operations Research. Linear Programming problems: Assumptions, Formulation of LPP for business and non-business applications. Graphical solutions, Special cases - Degeneracy, Infeasible Solution, Unbalanced and Multiple optimal solutions. Minimization and Maximization cases, Simplex algorithm, Concept of dual, Sensitivity analysis with respect to objective function coefficients and R.H.S. values. Transportation problem: Formulation, North-West Corner (NWC) Method, Least Cost (LC) Method, Vogel's Approximation Method (VAM). Testing the solution by Stepping stone, Modified Distribution (MODI) Method. Maximization, Multiple optimal solutions, Degeneracy and Unbalanced problems. Post optimality analysis. Assignment problem: Solution algorithm for Assignment Problems. Unbalanced, multiple optimal solutions, Maximization and Application problems. Travelling salesman / Job sequencing problem: Solution algorithm for Travelling Salesman Problem, Application to job sequencing problem Game theory: Introduction to game theory, Two person- zero sum games, Pure and Mixed Strategies, Solution methods for 2 x 2 games, Graphical method (2 x n games; m x 2 games), Simulation of queuing system - Steps in simulation, Application and Limitations, Monte- Carlo technique-Problems involving Waiting line situations and Selection of crew members. Critical Path Method (CPM): General frame work, Introduction to elements of network, conventions adapted in drawing network, analysing the network. Calculation of event and Activity times, Total Float, Free Float, Independent float, Critical path, Determination of project duration, Project Crashing. Applications and Limitations of CPM. Project Evaluation and Review Technique (PERT): Calculation Probabilistic/Expected event and Activity times, Variance of activity duration, Determination of critical path, probability/expectation of project completion.

References:

- 1. Taha H. A., *Operations Research*, Pearson Education (7e), 2002.
- 2. W.L. Winston, *Operations Research*, Thomson Asia, 2003.
- 3. Vohra N. D., Quantitative Techniques in Management, 2007.
- 4. Sharma S. D., Operations Research (14e), KedarNathRamnath Publications, 2005
- 5. Kanthiswaroop, Gupta and Manmohan, *Operations Research*, Sultan Chand and Sons, 2003.

❖ Formal Language & Automata Theory [3 0 0 3]

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Alphabet, languages and grammars, productions a ndderivation, Chomskyhierarchyoflanguages.	6	
2	Regularlanguagesandfiniteautomata:Regularexpressionsandl anguages,deterministicfiniteautomata(DFA)andequivalence withregularexpressions,nondeterministicfiniteautomata(NFA)andequivalencewithDFA,regulargrammarsandequivalence ewithfiniteautomata,propertiesofregularlanguages,pumpinglemmaforregularlanguages,minimizationoffiniteautomata)	7	

3	Context-freelanguagesandpushdownautomata:Context-freegrammars(CFG)andlanguages(CFL),Chomskyand Greibachnormalforms, nondeterministicpushdownautomata(PDA)andequivalencew ithCFG,parsetrees,ambiguityinCFG,pumpinglemmaforconte xt-freelanguages,deterministicpushdownautomata,closureprope rties ofCFLs.	6	
4.	Context-sensitivelanguages:Context-sensitivegrammars(CSG)andlanguages,linearboundedautom ata andequivalencewithCSG.	6	
5	Turingmachines: The basic model for Turingmachines (TM), Turingrecognizable (recursively enumerable) and Turingdecidable (recursive) languages and their closure properties, variants of Turingmachines, nondeterministic TMs and equivalence with deterministic TMs, unrestricted grammars and equivalence with Turingmachines, TMs as enumerators	6	
6	Undecidability:Church- Turingthesis,universalTuringmachine,theuniversalanddiago nalizationlanguages,reductionbetweenlanguagesandRicesthe orem,undecidableproblems about languages	6	

Introduction to IOT and its security [3 0 0 3]

Outline sy	llabus
Unit 1	OVERVIEW
A	IoT-An Architectural Overview- Building an architecture, Main design principles and needed
	capabilities, An IoT architecture outline, standards considerations.
В	M2M and IoT Technology Fundamentals- Devices and gateways, Local and wide area
	networking, Data management,
C	Business processes in IoT, Everything as a Service(XaaS), M2M and IoT Analytics, Knowledge
	Management
Unit 2	REFERENCE ARCHITECTURE
A	IoT Architecture-State of the Art – Introduction, State of the art, Reference Model and
	architecture, IoT reference Model
В	IoT Reference Architecture- Introduction, Functional View, Information View, Deployment and
	Operational View, Other Relevant architectural views.
C	Real-World Design Constraints- Introduction, Technical Design constraints-hardware is popular
	again, Data representation and visualization, Interaction and remote control.
Unit 3	Conceptualizing the Secure Internet of Things
A	The BadUSB Thumb Drive, Air-Gap Security, Stuxnet,
В	
	Designing Safe and Secure Cyber-Physical Systems

С	Constrained Computing and Moore's Law, Trusted IoT Networks and the Network Edge
Unit 4	Base Platform Security Hardware Building Blocks
A	
	Background and Terminology
В	Identity Crisis, Device Boot Integrity, Data Protection,
C	RunTime Protection, Threat Mitigated
Unit 5	IOT Software Security Building Blocks
A	Operating System, Hypervisors and Virtualization
В	Software separation and containment, Network stack and security management, Device
	Management
С	System Firmware and Root of Trust Update Services, Application level language Framework,
	Message Orchestration

Reference Books:

1. Sunil Cheruvu, Anil Kumar, Ned Smith, David M. Wheeler "Demystifying Internet of Things Security"

Solution Biology [2 1 0 3]

Unit	Content	Hrs/Unit
1	ToconveythatBiologyis as importanta scientificdisciplineas	2
	Mathematics, Physics and Chemistry Bringout the	
	fundamentaldifferences betweenscience and engineering	
	by drawing a	
	comparisonbetweeneye and camera,Bird flyingand	
	aircraft.Mentionthemostexciting	
	aspectofbiology asan	
	independentscientificdiscipline. Whywe need to	
	studybiology?	
	Discusshowbiologicalobservationsof18thCenturyt	
	hat lead to majordiscoveries.	
	ExamplesfromBrownianmotionandtheoriginofthermodyna	
	mics byreferring to the	
	originalobservationofRobertBrownandJuliusMayor.Thesee	
	xamples	
	willhighlightthefundamentalimportanceofobservationsinan	
	vscientificinauiry.	

2	Theunderlyingcriterion, such as morphological, biochemicalor ecological behighlighted. Hierarchyoflifeformsatphenomenologicallevel. A commonthread weaves this hierarchyClassification. Discuss classification based on (a) cellularity-Unicellularor multicellular(b) ultrastructure-prokaryotes or eucaryotes. (c) energy and Carbonutilisation-Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion — aminotelic, uricoteliec, ureotelic (e) Habitata-acquaticor terrestrial (e) Moleculartaxonomy-three major kingdoms of life. Agivenorganism can come under different category based on classification. Modelorganisms for the stud yof biology come from different groups. E. coli, S. cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus	3
3	Toconveythat"Genetics is to biologywhatNewton's lawsare to PhysicalSciences"Mendel'slaws,Conceptofsegregation and independent assortment.Conceptofallele.Gene mapping, Geneinteraction,Epistasis.Meiosis and Mitosis betaught as a part of genetics. Emphasis to be given otto the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance.Concept of mapping of phenotype to genes. Discuss about the single genedisor ders in humans. Discuss the concept of complementation using human genetics.	4
4.	Biomolecules:Toconveythat all formsoflife havethesamebuilding blocksand yetthemanifestations are asdiverse as onecanimagineMolecules oflife. In this contextdiscussmonomeric unitsandpolymericstructures. Discuss aboutsugars,starchandcellulose.Aminoacids and proteins.Nucleotides andDNA/RNA.Twocarbonunits andlipids.	4

5	Enzymes:Toconvey that withoutcatalysis lifewould not have existed onearth Enzymology:Howto monitorenzymecatalysedreactions.Howdoesanenzymec atalysereactions?Enzymeclassification.Mechanismofen zymeaction. Discuss atleast two examples.Enzymekineticsandkineticparameters.Whyshoul d weknowtheseparameters to understandbiology? RNA catalysis.	4
6	InformationTransfer:Themolecular basisofcodinganddecoding genetic informationisuniversal Molecular basis ofinformationtransfer.DNA asageneticmaterial.Hierarchyof DNA structure-fromsinglestranded to doublehelixtonucleosomes.Conceptofgeneticcode. Universality and degeneracyofgeneticcode.Definegeneinterms ofcomplementation andrecombination.	4
7	Macromolecularanalysis: How to analysebiologicalprocesses atthereductionistlevelProteins-structure andfunction. Hierarchinproteinstructure. Primarysecondary, tertiary andquaternarystructure. Proteins asenzymes, transporters, receptors and structural elements.	5
8	Metabolism:Thefundamentalprinciplesofenergytransacti ons arethesameinphysicalandbiologicalworld. Thermodynamics asappliedto biologicalsystems. Exothermic and endothermicversusendergonicandexergoincreactions.C onceptofKeqand its relation tostandardfreeenergy. Spontaneity.ATP asanenergycurrency.Thisshouldinclude thebreakdownofglucosetoCO2 + H2O(GlycolysisandKrebscycle) andsynthesis ofglucose from CO2 and H2O(Photosynthesis).Energyyielding andenergyconsumingreactions.ConceptofEnergychar ge	4
9	MicrobiologyConceptofsinglecelled organisms.Conceptofspecies andstrains.Identificationandclassificationofmicroorganisms.Microscopy. Ecological aspects of singlecelled organisms.Sterilizationandmediacompositions.Growthkin	3

Textbooks/referencebooks:

- 1. Biology: A globalapproach: Campbell, N.A.; Reece, J.B.; Urry, Lisa; Cain, M, L.; Wasserman, S.
- A.; Minorsky, P.V.; Jackson, R.B. Pearson Education Ltd
- 2. OutlinesofBiochemistry,Conn,E.E;Stumpf,P.K;Bruening,G;Doi,R.H.JohnWileyandSons
- 3. PrinciplesofBiochemistry(VEdition), ByNelson, D.L.; and Cox, M.M.W.H. Freeman and Company
- 4. MolecularGenetics(Secondedition), Stent, G.S.; and Calender, R.W.H. Freeman and company, Distributed by Satish Kumar Jainfor CBS Publisher
- 5. Microbiology, Prescott, L.M.J.P. Harleyand C.A. Klein 1995. 2ndedition Wm, C. Brown Publishers

❖ Computer Graphics [3 0 0 3]

Unit-1 Introduction 9 hours

Types of computer graphics, Graphic Displays- Random scan displays, Raster scan displays, Frame buffer and video controller, Points and lines, Line drawing algorithms, Circle generating algorithms, Midpoint circle generating algorithm, and parallel version of these algorithms.

Unit-2Transformations 9 hours

Basic transformation, Matrix representations and homogenous coordinates, Composite transformations, Reflections and shearing. Windowing and Clipping: Viewing pipeline, Viewing transformations, 2-D Clipping algorithms-Line clipping algorithms such as Cohen Sutherland line clipping algorithm, Liang Barsky algorithm, Line clipping against non rectangular clip windows; Polygon clipping – Sutherland Hodgeman polygon clipping, Weiler and Atherton polygon clipping, Curve clipping, Text clipping.

Unit-3Three Dimensional 9 hours

3-D geometric primitives, 3-D Object representation, 3-D Transformation, 3-D viewing, projections, 3-D Clipping.

Unit-4Curves and Surfaces 9 hours

Quadric surfaces, Spheres, Ellipsoid, Blobby objects, Introductory concepts of Spline, Bspline and Bezier curves and surfaces.

Unit-5Hidden Lines and Illumination models

Hidden Lines and Surfaces: Back Face Detection algorithm, Depth buffer method, A-buffer method, Scan line method, basic illumination models – Ambient light, Diffuse reflection, Specular reflection and Phong model, Combined approach, Warn model, Intensity Attenuation, Color consideration, Transparency and Shadows.

Text/ReferenceBooks:

- 1. Donald Hearn and M Pauline Baker, "Computer Graphics C Version", Pearson Education, India; 2 edition 2002.
- 2. David Rogers, "Procedural Elements of Computer Graphics", McGraw Hill Education; 2 edition, 2017.
- 3. Steven Harrington, "Computer Graphics: A Programming Approach", McGraw-Hill Inc., US; 2nd Revised edition, 1983.
- 4. David Rogers, "Procedural Elements of Computer Graphics", McGraw Hill Education, 2 edition, 2017.

❖ DATABASE SYSTEMS [3 1 0 4]

Introduction: Database System Applications, View of data, Database languages, Database users and Administrator. Introduction to Relational Model: database schema, keys, schema diagrams, Relational Query

Languages, Relational Operations. Introduction to SQL: Data Definition, Basic structure of SQL queries, Basic operations, Set operations, Null values, Aggregate Functions, Nested subqueries, Modification of the database. Intermediate SQL: Join expressions, Views, Transactions, Integrity Constraints, SQL Data types and schemas, Authorization, Advanced SQL-PL/SQL, Cursors, Functions,

Procedures, Triggers, recursive queries, advanced aggregation features. Database Design and Entity-Relationship Model: Design Process, ER Model, Reduction to Relational schema. Relational Database design: Functional dependencies, Normal forms, Closure, Canonical cover, Lossless joins, dependency preserving decomposition, Storage and File structure, Indexing & Hashing. Query Processing, Overview, Measure of query cost, selection, Join operation, sorting, Evaluation of expressions. Query Optimization: Overview, Estimating statistics of expression results, Materialized Views. Transactions: Concepts, Simple transaction model, Transaction atomicity and durability, Transaction Isolation, Serializability, Transaction Isolation Levels. Concurrency Control- Lock based protocols, Deadlock Handling, Multiple granularity, Timestamp-based Protocols, Validation-based Protocols. Recovery System: Failure classification, Storage, Recovery algorithm, Buffer Management. Unstructured database: Introduction to NoSQL, Basics of document-oriented database, MongoDB.

References:

- 1. Abraham Silberschatz, Henry Korth, S. Sudarshan, *Database System Concepts*, 6th Edition, McGraw Hill, 2010.
- 2. RamezElmasri, ShamkantNavathe, *Fundamentals of Database System*, 6th Edition, Addison Wesley Publications Co., 2010.
- 3. Raghu Ramakrishnan, Johannes Gehrke, *Database Management System*, 3rd Edition, WCB/McGraw Hill Publisher, 2014.
- 4. Ivan Bayross, SQL, PL/SQL-The Programming Language of Oracle, 4th Edition, BPB Publications, 2010.
- 5. Shashank Tiwari, *Professional NoSQL*, Wiley, 2015.

Computer Graphics Lab [0 0 3 1]

- 1. Write a program to plot a pixel on the screen in a particular color.
- 2. Write a program for creating a simple two-dimensional shape of any object using lines, circle, etc.
- 3. Using different graphics functions available for text formatting, write a program for displaying text in different sizes, different colors, font styles.
- 4. Implement the DDA algorithm for drawing lines (programmers are expected to shift the origin to the center of the screen and divide the screen into required quadrants)
- 5. Write a program to input the line coordinates from the user to generate a line using Bresenham's method and DDA algorithm. Compare the lines for their values on the plotted line.
- 6. Write a program to generate a complete moving wheel using Midpoint circle drawing algorithm and DDA line drawing algorithm.
- 7. Write a program to draw an ellipse using the Midpoint ellipse generation algorithm for both the regions.
- 8. Write a program to draw any 2-D object and perform the transformations on it according to the input parameters from the user, namely: Translation, Rotation or Scaling.
- 9. Write a program to rotate a triangle about any one of its end coordinates..
- 10. Write a program to draw a house like figure and perform the following operations. a.Scaling about the origin followed by translation. b. Scaling with reference to an arbitrary point.
- 11. Write a program for filling a given rectangle with some particular color using boundary fill

algorithm.

- 12. Write a program for filling a polygon using Scanline Polygon fill algorithm.
- 13. Write a program to perform clipping on a line against the clip window using any line clipping algorithm. The output must be twofold showing the before clipping and after clipping images.
- 14. Write a program to implement the Sutherland Hodgeman Polygon Clipping algorithm for clipping any polygon.

❖ DATABASE LAB [0 0 3 1]

Introduction to SQL, Integrity Constraints in SQL, Simple and complex queries, PL/SQL Basics, Exception Handling, Cursors, Transactions, Procedures, Functions and Packages, Triggers, Exercises on NoSQL MongoDB, MsAccess. Mini Project.

References:

- 1. Silberschatz, Korth, Sudarshan, Database System Concepts, (6e), McGraw-Hill, 2011
- 2. Ivan Bayross, SQL, PL/SQL, (2e/3e), BPB Publications
- 3. G. Reese, Database Programming with JDBS and Java, (2e), O'Reilly, 2000

❖ Application Oriented Programming using Python Lab [0 1 3 2]

List of Experiments
1. Implement Python script to read person's age from keyboard and display whether he is eligible for voting
or not.
Implement Python script to find biggest number between two numbers.
☐ Implement Python Script to generate prime numbers series up to n
☐ Implement Python Script to check given number is palindrome or not.
☐ Implement Python script to print factorial of a number.
☐ Implement Python Script to perform various operations on string using string libraries
☐ Implement Python Script to check given string is palindrome or not.
□ Define a function max_of_three() that takes three numbers as arguments and returns the largest of them.
\Box Write a program which makes use of function to display all such numbers which are divisible by 7 but are not a multiple of 5, between 1000 and 2000.
☐ Define a function which generates Fibonacci series up to n numbers
□ a) Write a program which accepts a sequence of comma-separated numbers from console and generate a list and a tuple which contains every number.
Suppose the following input is supplied to the program: 34,67,55,33,12,98. Then, the output should be: ['34', '67', '55', '33', '12', '98'] ('34', '67', '55', '33', '12', '98').
b) With a given tuple (1,2,3,4,5,6,7,8,9,10), write a program to print the first half values in one line and the last half values in one line.
 a) Write a python script to perform basic dictionary operations like insert, delete and display. b) Write a python script to find frequency of words in a file using dictionaries.
 a) Write Python script to display file contents. b) Write Python script to copy file contents from one file to another.

References

- 1. Allen B. Downey, Think Python: How to Think Like a Computer Scientist, Shroff/O'Reilly; Second edition, 2016.
- 2. Tony Gaddis, Starting Out with Python, 3rd edition, Pearson, 2014.
- 3. Y. Daniel Liang, Introduction to Programming Using Python, Pearson, 2013.
- 4. Budd T A, Exploring Python, 2011, Tata McGraw Hill Education, 2011.
- 5. Downey, Allen B., Think Python: How to Think Like a Computer Scientist. O'Reilly, 2012
- 6. Python Programming: An Introduction to Computer Science (Second Edition) John Zelle, ISBN 978-1-59028-241-0-9, Franklin, Beedle& Associates Inc., 2004.

THIRD YEAR

SIXTH SEMESTER

Introduction to Block Chain Technology [3 0 0 3]

Introduction

The consensus problem - Asynchronous Byzantine Agreement and its analysis

Abstract Models for BLOCKCHAIN - GARAY Model - RLA Model

Proof of Work (PoW) as random oracle - formal treatment of consistency, liveness and fairness - Proof of Stake (PoS) based Chains - Hybrid models (PoW + PoS)

Cryptographic Basics For Cryptocurrency

A Short Overview of Hashing

Signature Schemes,

Encryption Schemes

Bitcoin - Wallet

Merkley Tree - Hardness of Mining

Transaction Verifiability - Anonymity - Forks - Double Spending

Mathematical Analysis of Properties Of Bitcoin

Ethereum

Ethereum Virtual Machine (EVM) - Wallets for Ethereum

Smart Contracts - some attacks on smart contracts

Vulnerability, Attacks, Sidechain

Application and future of Blockchain

Zero Knowledge proofs and protocols in Blockchain

Succinct non interactive argument for Knowledge (SNARK)

Applications: Internet of Things, Medical Record Management System, Domain Name Service and future of Blockchain, Zcash

Reference Books:

- 1. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton University Press, 2016.
- 2. Joseph Bonneau et al, SoK: Research perspectives and challenges for Bitcoin and cryptocurrency, IEEE Symposium on security and Privacy, 2015 (article available for free download) { curtain raiser kind of generic article, written by seasoned experts and pioneers}.
- 3. J.A.Garay et al, The bitcoin backbone protocol analysis and applications EUROCRYPT 2015 LNCS VOI 9057, (VOLII), pp 281-310. (Also available at eprint.iacr.org/2016/1048). (serious beginning of discussions related to formal models for bitcoin protocols).
- 4. R.Pass et al, Analysis of Blockchain protocol in Asynchronous networks, EUROCRYPT 2017, (eprint.iacr.org/2016/454). A significant progress and consolidation of several principles).
- 5. R.Pass et al, Fruitchain, a fair blockchain, PODC 2017 (eprint.iacr.org/2016/916).

Privacy and Security in IoT [3 0 0 3]

Unit I: INTRODUCTION: SECURING THE IOT

8 lecture hours

Security Requirements in IoT Architecture - Security in Enabling Technologies - Security Concerns in IoT Applications. Security Architecture in the Internet of Things - Security Requirements in IoT - Insufficient Authentication/Authorization - Insecure Access Control - Threats to Access Control, Privacy, and Availability - Attacks Specific to IoT. Vulnerabilities - Secrecy and Secret-Key Capacity - Authentication/Authorization for Smart Devices - Transport Encryption - Attack & Fault trees

Unit II: CRYPTOGRAPHIC FUNDAMENTALS FOR IOT

8 lecture hours

Cryptographic primitives and its role in IoT – Encryption and Decryption – Hashes – Digital Signatures – Random number generation – Cipher suites – key management fundamentals – cryptographic controls built into IoT messaging and communication protocols – IoT Node Authentication

Unit III: IDENTITY & ACCESS MANAGEMENT SOLUTIONS FOR IOT 8 lecture hours

Identity lifecycle – authentication credentials – IoT IAM infrastructure – Authorization with Publish / Subscribe schemes – access control

Unit IV: PRIVACY PRESERVATION AND TRUST MODELS FOR IOT 8 lecture hours

Concerns in data dissemination – Lightweight and robust schemes for Privacy protection – Trust and Trust models for IoT – self-organizing

Unit V: CLOUD SECURITY FOR IOT

8 lecture hours

Cloud services and IoT – offerings related to IoT from cloud service providers – Cloud IoT security controls – An enterpriseIoT cloud security architecture – New directions in cloud enabled IoT computing.

Reference Books

- 1. Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations. By Fei Hu, 2016, by CRC Press.
- 2. The Internet of Things: Privacy and Security in a Connected World, Federal Trade Commission staff reports, United States. Federal Trade Commission, Publisher, DIANE Publishing Company, 2015, 1457867680

Digital Forensic [3 1 0 4]

INTRODUCTION TO COMPUTER FORENSICS

History of Forensics – Computer Forensic Flaws and Risks

Rules of Computer Forensics – Legal issues – Digital Forensic Principles

Digital Environments – Digital Forensic Methodologies

AN OVERVIEW OF DIGITAL FORENSICS INVESTIGATION

Live forensics and investigation –digital evidence

seizure methodology factors limiting the whole sale seizure of hardware- Demystifying computer/ cyber crime explosion of networking – explosion of wireless networks – interpersonal communication

DATA FORENSICS

Recovering deleted files and deleted partitions – deleted file recovery tools –

deleted partitioned recovery tools – data acquisition and duplication

data acquisition tools – hardware tools – backing up and duplicating data.

ROUTER FORENSICS AND NETWORK FORENSICS

overview of Routers – Hacking Routers – Investigating Routers

Investigating Wireless Attacks – Basics of wireless -Wireless Penetration Testing

Direct Connections to Wireless Access Point - Wireless Connect to a Wireless Access Point.

E-MAIL FORENSICS AND STEGANOGRAPHY

Forensics Acquisition – Processing Local mail archives –

Processing server level archives – classification of steganography

categories of steganography in Forensics – Types of password cracking.

Reference Books:

- 1. Anthony Reyes, Jack Wiles, "Cybercrime and Digital Forenscis", Syngress Publishers, Elsevier 2007.
- 2. John Sammons, "The Basics of Digital Forensics", Elsevier 2012
- 3. Linda Volonins, ReynaldsAnzaldua, "Computer Forensics for dummies", Wiley Publishing 2008.

\$ Ethical Hacking and Penetration Testing [3 1 0 4]

Unit 1	Introduction to Ethical Hacking		
A	Security Fundamental, Security testing, Hacker and Cracker, Descriptions		
В	Test Plans-keeping It legal, Ethical and Legality		
С	The Attacker's Process, The Ethical Hacker's Process, Security and the Stack		
Unit 2	Malware Threats		
A	Viruses and Worms, Trojans, Covert Communication		
В	Keystroke Logging and Spyware, Malware Counter measures		
C	Sniffers, Session Hijacking, Denial of Service and Distributed, Denial of		
	Service		
Unit 3	Web Server Hacking		
A	Web Server Hacking, Web Application Hacking		
В	Database Hacking		
C	Wireless Technologies, Mobile Device Operation and Security, Wireless LANs		
Unit 4	Understanding Penetration Testing		
A	Defining penetration testing, proliferation of Viruses and worm, Wireless		
	LANs.		
В	Complexity of networks today, frequency of software updates, availability of		
	hacking tools, the nature of open source		
C	Unmonitored mobile users and telecommuters, marketing demands, industry		
	regulation, administrator trust, Hacktivism, Attack Stages		
Unit 5	Legal and ethical consideration		
A	Ethics of penetration testing, Laws: US Law, Computer Fraud and abuse act		
	(CFAA), State Laws		
В	Regulatory Laws: Health Insurance Portability and Accountability Act		
	(HIPAA), Graham-Leach-Bliley (GLB)		
C	Federal Information Security Management Act (FISMA), Sarbanes-Oxley Act		
	(SOX)		

❖ Compiler Design [3 0 0 3]

Unit	Content	Hrs/Unit
1	IntroductiontoCompiling[3L] Compilers,Analysis of thesourceprogram, Thephasesof thecompiler,Cousins of the compiler.	3
2	Lexical Analysis[6L] The role of the lexical analyzer, Tokens, Patterns, Lexemes, Input buffering, Specifications of atoken, Recognition of a tokens, Finite automata, From a regular expression to an NFA, From a regular expression to NFA, From a regular expression to DFA, Design of a lexical analyzer generator (Lex).	6
3	Syntax Analysis[9L] The role ofaparser, Contextfree grammars, Writinga grammar, TopdownParsing, Non-recursive Predictive parsing (LL), Bottomup parsing, Handles, Viable prefixes, Operatorprecedenceparsing, LR parsers (SLR, LALR), Parsergenerators (YACC). Error Recoverystrategies for different parsing techniques.	9
4	Syntax directedtranslation[5L] Syntaxdirectordefinitions, Construction of syntaxtrees, Bottom-upevaluation of Sattributed definitions, Lattributed definitions, Bottom-upevaluation of inherited attributes.	5
5	Typechecking[4L] Type systems, Specification of a simpletypechecker, Equivalence of type expressions, Typeconversions	4
6	Runtimeenvironments[5L] Sourcelanguageissues(Activationtrees, Controlstack,scope ofdeclaration,Bindingofnames), Storage organization (Subdivision ofrun-time memory,Activationrecords),Storageallocationstrategies,Parameterpassing(call byvalue,callbyreference,copyrestore,call byname),Symbol tables,dynamicstorageallocationtechniques.	5
7	Intermediate code generation[4L] Intermediatelanguages, Graphical representation, Three-address code, Implementation of three address statements (Quadruples, Triples, Indirect triples).	4

8	Code optimization[5L] Introduction,Basicblocks &flowgraphs,Transformation of basicblocks, Dagrepresentationof basicblocks,The principle sourcesofoptimization,Loopsinflowgraph,Peephole optimization.	5
9	Code generations[4L] Issuesinthe design ofcode generator, a simplecode generator, Register allocation&assignment.	4

Text book and Reference books:

- 1. Aho, Sethi, Ullman "Compiler Principles, Techniques and Tools" Pears on Education.
- 2. Holub "CompilerDesigninC"- PHI.

Cryptography and Network Security [3 0 0 3]

Unit 1	Introduction to Network Security & Ethics			
A	Computer Security Concepts- OSI security Architecture, Security attacks, Services, mechanism, model of network security			
В	Classical encryption techniques- Substitution Cipher (Mono-alphabetic, Poly-alphabetic), Transposition cipher, Steganography			
С	Block Cipher- Encryption Principles, DES & strength of DES			
Unit 2	Mathematics of Cryptography			
A	Euclidean, Extended Euclidean Algorithm, Euler's Totient Function, Ferment little Theorem, Euler's Theorem			
В	Primality Testing-Miller Rabin test, Chinese Remainder Theorem			
С	Exponential- square and multiply method, Discrete Logarithm			
Unit 3	Asymmetric Cryptography & Key Exchange			
A	Public Key cryptography-RSA, Cryptanalysis of RSA			
В	Key management & distribution: KDC			
С	Diffie Hellman key exchange			
Unit 4	Digital Signatures			
A	User Authentication protocol- Kerberos, Digital Signature –RSA, Elgamal			
В	DSS, Data integrity algorithms-Hash Functions			
С	MD5, SHA-512			
Unit 5	Message Authentication & hash function			
A	Authentication requirement & functions, Message Authentication Code			
В	Security of Hash function & MAC			
С	Secure HASH & MAC algorithm.			

- 1. AtulKahate, "Network Security", Wiley India Pvt Ltd, 2010.
- 2. Michael T. Simpson, "Hands-on Cryptography& Network Security & Network Defense", Course Technology, 2010.
- 3. RajatKhare, "Network Seucirytand Cryptography& Network Security ", Luniver Press, 2006.
- 4. Bruce Schneier, "Applied Cryptography", John Wiley & Sons Inc, 2001.
- 5. Behrouz A. Forouzan, "Cryptography And Network Security"- McGraw Hill Internet as a resource for reference.

Digital Forensic Lab [0 0 3 1]

Unit 1	Introduction to computer forensics		
A	Learn to install wine / virtual box or any other equivalent software on the host os		
В	Perform an experiment to grab a banner with telnet and perform the task using netcat utility		
Unit 2	An overview of digital forensics investigation		
A	Perform an experiment for port scanning with nmap, superscan or any other software.		
В	Using nmap 1)find open ports on a system 2) find the machines which are active 3)find the version of remote os on other systems 4)find the version of s/w installed on other system		
Unit 3	Data forensics		
A	Perform an experiment on active and passive finger printing using xprobe2 and nmap.		
В	Performa an experiment to demonstrate how to sniff for router traffic by using the tool wireshark		
Unit 4	Router forensics and network forensics		
A	Perform an experiment how to use dumpsec.		
В	Perform an wireless audit of an access point / router and decrypt wep and wpa.		
С	Perform an experiment to sniff traffic using arp poisoning.		
Unit 5	E-mail forensics and steganography		
A	Install ipcop on a linux system and learn all the function available on the software.		
В	Install jcrypt tool (or any other equivalent) and demonstrate asymmetric, symmetric crypto algorithm, hash and digital/pki signatures		

- 1. Anthony Reyes, Jack Wiles, "Cybercrime and Digital Forenscis", Syngress Publishers, Elsevier 2007.
- 2. John Sammons, "The Basics of Digital Forensics", Elsevier 2012
- 3. Linda Volonins, ReynaldsAnzaldua, "Computer Forensics for dummies", Wiley Publishing 2008.

❖ Compiler Design Lab [0 0 3 1]

LaboratoryExperiments:

- 1. Implementation of Symbol Table
- 2. Develop a lexicalanalyzertorecognizeafewpatternsin C. (Ex.

identifiers, constants, comments, operators etc.)

- 3. Implementation of Lexical Analyzerusing LexTool
- 4. GenerateYACC specification for a few syntactic categories.
- a) Programtorecognize a validarithmetic expression that uses operator +, -, * and /.
- $b)\ Program to recognize\ a\ valid variable\ which starts with a letter followed by any number of\ letters or\ digits.$
- c)Implementation of Calculatorusing LEXand YACC
- 5. Convert the BNFrulesintoYaccformand writecode togenerateAbstractSyntaxTree.
- 6. Implementtypechecking
- 7. Implementcontrol flow analysis and Data flow Analysis
- 8. Implementanyonestorage allocationstrategies(Heap, Stack, Static)
- 9. Construction of DAG
- 10. Implement the back end of the compilerwhichtakesthethree address codeandproduces the 8086 assembly language instructions that can be assembled and run using a 8086 assembler. The target assembly instructions can be simple move, add, sub, jump. Also simple addressing modes are used.
- 11. Implementation of SimpleCode OptimizationTechniques(Constant Folding.,etc.)

Anyexperiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

❖ Cryptography and Network Security Lab [0 0 3 1]

Unit 1	Symmetric Encryption – Substitution (Stream Ciphers)			
A	Perform the following implementation			
В	1. Encryption and Decryption with Ceaser cipher			
C	2. Encryption and Decryption with Playfair cipher			
	3. Encryption and Decryption with Hill cipher			
	4. Encryption and Decryption with Vigenere cipher			
Unit 2	Symmetric Encryption – Transposition Technique			

	Perform the following implementation
	1. Transposition using Rail Fence Cipher
	2. Transposition using Columnar Transposition
	3. Transposition using Route Cipher
	4. Transposition using Scytale Cipher
Unit 3	Symmetric Encryption – Substitution (Block Ciphers)
	Perform the following implementation
	1. Encryption and Decryption with DES
	2. Encryption and Decryption with 3-DES
	3. Encryption and Decryption with AES
	4. Encryption and Decryption with IDEA
Unit 4	Asymmetric Encryption
	Perform the following implementation
	1. Encryption and Decryption with RSA
	2. Encryption and Decryption with Diffie-Hellman
	3. Encryption and Decryption with DSA
TT	Di-14-1 Ci
Unit 5	Digital Signature & Hashing & Authentication
	Perform the following implementation
	1. Digital signature of data using RSA
	2. Digital signature of data using Diffie-Hellman
	3. Hashing function – SHA-1
	4. Message Authentication Code (MAC)

- Cryptography and Network Security, 4th Edition, William Stallings, Prentice Hall, 2005
 Cryptography & Network Security by AtulKahate, Tata McGraw-Hill, 2008.
- 3. Internet as a Resource for Reference.

FOURTH YEAR

SEVENTH SEMESTER

❖ Programming for IoT [3 0 0 3]

UNIT 1: Introduction to Embedded Systems

9 lecture hours

Introduction, Generic Embedded system architecture, Components, sensors and actuators, analog/digital conversion, hardware and software, integrated circuits, microcontroller properties, microcontroller components, Python vs C/C++, Why networking, WAN structure, internet structure, protocols stack, TCP/IP layer, MANETs

UNIT 2: The Arduino Platform and C Programming

9 lecture hours

Arduino Platform, board, direct programming, arduino schematics, Install Arduino IDE, Arduino Shields and Libraries, Arduino basic setup, basic C variables and operators, conditions, loops, functions, arduinotoolchian, cross compilation, sketches, pins, input and output, Debugging, debug via serial, UART protocol and synchronization, UART parity and stop.

UNIT 3: Interfacing with Arduino

9 lecture hours

Introduction, Electrical circuits, properties, Ohm's Law, Electrical Components, Diodes, Switches, Potentiometers, Wiring, Sensors, Resistive Sensors, Resistive Sensor Demo, Actuators, Analog Actuators, making sounds, arduino libraries, EEPROM, Masking, arduino shield, Ethernet shield and library, Ethernet client, server

UNIT 4: The Raspberry Pi Platform and Python Programming for the Raspberry Pi

9 lecture hours

Raspberry Pi Board, Raspberry Pi Processor, Raspberry Pi vs. Arduino, Raspberry Pi IoT, Raspberry Pi Setup, Raspberry Pi Configuration, Overclocking, Python on Raspberry Pi, Python Programming Environment, Python Expressions, strings, functions, list, control flow, General Purpose IO Pins, Protocol Pins, GPIO Access, Graphic User Interface.

UNIT 5: Interfacing with the Raspberry Pi

9 lecture hours

Network, Secure Shell, SSH Client/Server, Network Programs, Internet Protocols, IP Addresses, Domain Names, Sockets, Sending Data, Server Code, Live Server, Internet Control, Network Libraries, Web Services, Public APIs, Camera Module, PWM on RPI, Servo Control, Servo Code.

Reference Books:

- 1. Raspberry Pi with Java: Programming the Internet of Things (IoT) (Oracle Press) Paperback 16 Nov 2015
- 2. The Internet of Things DoitYourself at Home Projects for Arduino Raspberry Pi and Beaglebone Black by Donald NorrisISBN: 9780071835206, 2016.
- 3. Link https://www.analyticsvidhya.com/blog/2016/06/11-read-books-summer-internet-iot/
- 4. Programming for the Internet of Things: Using Windows 10 IoT Core and Azure IoT Suite (Developer Reference) 1st EditionbyDawidBorycki (Author)

Cyber Security in Block Chain Technology [3 0 0 3]

Privacy, Security issues in Blockchain

Pseudo-anonymity vs. anonymity, Zcash and Zk-SNARKS for anonymity preservation

attacks on Blockchains - such as Sybil attacks, selfish mining, 51% attacks - -advent of algorand

Sharding based consensus algorithms to prevent these attacks

Cryptography

Public Key Infrastructure (PKI) and Cryptography

Conventional PKI, Blockchain as a Form of Distributed PKI, Blockchain vs PKI

Blockchain - Public Key Cryptography, Decentralized Public Key Infrastructure (DPKI)

Digital Signature

Digital Signature from Blockchain context

Undeniable signature

Diffie-Hellman, Digital signature scheme for information non-repudiation in blockchain

Blockchain-based time stamping

Time stamping Metadata Using Blockchain

Decentralized Trusted Time stamping Based on Blockchains

Content Time stamping

Use Cases of Blockchain In Cyber security

Decentralized Storage Solutions, How Guardtime uses blockchain technology to safeguard data

IoT Security, Safer DNS, Using blockchains to prevent DDoS attacks

Implementing Security in Private Messaging

Reference Books:

- 1. Blockchain Technology Basics: Blockchain cryptography and cybersecurity Kindle Edition by Raghava Shankar (Author), Srikanth RC Cherukupalli M.Tech (Author)
- 2. Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks Kindle Edition by Imran Bashir (Author) Format: Kindle Edition

Block Chain using Multi Chain [3 0 0 3]

Introduction

What is Block chain? Basic ideas behind blockchain, how it is changing the landscape of digitalization, Uses of Blockchain. Abstract Models for BLOCKCHAIN - GARAY model - RLA Model

What is Multichain? Objective of Multichain, Features of Multichain, Uses of Multichain, Process of mining in Multichain technology

AnalyseMultichain platform, why it is better than other open platforms

Privacy and Permissions in Multichain,

Privacy and Permissions in Multichain, compare Multichain Core, and Bitcoin Core, Hand-Shaking Process, Private blockchainsMultichain

Multiple configurable Blockchains using Multichain, Decentralized exchange

Wallets for Ethereum - Solidity - Smart Contracts - some attacks on smart contracts

DECENTRALIZED APPLICATIONS (DAPPS)

Characteristics of Decentralized application, Setting up a Private Blockchain, Multiple configurable Blockchains using Multichain

Deployment scenarios of Multichain, Centralized currency settlement, Bond issuance and peer-to-peer trading

Consumer-facing rewards scheme in Decentralized Applications

Introducing Multichain Feeds

Multichain feed Adapters, MultiChain Feeds for Database Integration, feed file adaptors, MultiChain streams

Purpose of Multichain streams, off chain data vs on chain data, JSON and Unicode text, Streams required to implement database, Streams and the MultiChain roadmap.

Three areas of high-level functionality, create the streams, publish the data into streams, retrieve the data from the streams using the key, and give permission to others to publish the data into the same streams.

Smart contract approaches

Hyperledger Fabric, smart filters, R3 Corda, Transaction rules in Hyperledger Fabric, smart filters, R3 Corda, Multichain, Etherium, Conflict transaction

Hyperledger Fabric vs MultiChain vs Ethereum vs Corda, Multichain Tools: MultiChain Explore, Multichain web demo

Applications of Multi chain: Internet of Things, Medical Record Management System, Domain Name Service and future of Blockchain

Reference books:

- 1. Blockchain From Concept to Execution: BitCoin, Ethereum, Quorum, Ripple, R3 Corda, Hyperledger Fabric/SawTooth/Indy, MultiChain, IOTA, CoCo Kindle Edition by DebajaniMohanty (Author)
- 2. Beginner's Guide to Ontology: The Public Multi-Chain & Distributed Trust Collaboration Platform: (crypto, cryptocurrency, forex, trading, bitcoin, invest, earn money, invest, ethereum, blockchain) Kindle Edition by Juan Jimenez (Author),
- 3. Mastering Blockchain, Second Edition Paperback 1 January 2018 by Imran Bashir (Author)

❖ FUNDAMENTALS OF BUSINESS ANALYTICS [3 0 0 3]

Data-Analytic Thinking for Business: The Ubiquity of Data Opportunities, Data Science as a strategic asset, data analytic thinking, Business Enterprise and its functions, Enterprise Applications – ERP, CRM, MIS.

Difference between Business Intelligence and Business Analytics. Database systems for Business: OLTP and OLAP systems for business overview and architecture overview. Business Problems and Data Science Solutions using CRISP-DM Approach: Business Understanding, preparation, modeling, evaluation, deployment. Performance Metrics in Analytics - Key performance

Indicators (KPIs), KPI based balanced score card, KPIs on Dashboards. Project Management - Project Management, phases, tools, techniques and methodologies in project management, Agile Framework and Scrum Approach. Quality Management - quality management philosophy, concepts and tools, Statistical Quality Control methods, Lean and Six Sigma, SERVQUAL model of service quality. Case studies – Human Capital Analytics, IT Analytics, Sales and Marketing Analytics, Analytics in telecom, Retail, healthcare, financial markets, social media, sports and other related business fields.

References:

- 1. Prasad, R, N. and Acharya, Seema Fundamentals of Business Analytics. Wiley India Pvt, Ltd, New Delhi, 2016
- 2. Provost and Fawcett , Data Science for Business, O'Reilly, 2013.
- 3. Shmueli, Patel, and Bruce, *Data Mining for Business Intelligence, Concepts, Techniques and Applications.* Wiley, 2009.
- 4. Clifford F. Gray, Erik W. Larson, Gautam V. Desai Project Management Tata McGraw Hill, 2014.
- 5. Schwaber Ken Agile project management with scrum, WP Publishers and Distributors, Bangalore, 2004.
- 6. Sridhar Bhatta, Total Quality Management, concepts and cases-Himalaya Publishing House, 2015.

Implementing Block Chain in Cloud [3 0 0 3]

INTRODUCTION

Why Blockchain?, IBM blockchain platform introduction, benefits and differentiators of deploying and using a blockchain environment of LinuxONE

LinuxONE, Kubernetes(K8s), IBM cloud private, Gluster FS, IBM secure service container, IBM blockchain platform,

Secure service container partition, IBM cloud private cluster.

PLANNING FOR INSTALLATION

Why secure service container? Persistant storage provider, setting up file storage system

IBM blockchain platform console, Minimum network , Pilot network, Production network, Component containers, Resource reallocation

Consideration for specific use cases

SECURE SERVICE CONTAINER INSTALLATION AND CONFIGURATION

Secure service container architecture, SSC bootleader overview, download the image

Hardware requirement for SSC partition, Networking, Supported operating system and platform, software requirement, supported docker version, Supported IBM Cloud Private Versions, required ports,

Creating SSC partitions, Installing IBM cloud private cluster, Deploying IBM cloud private, Uninstalling ICP and SSC, Updating cluster resource dynamically

IBM BLOCKCHAIN PLATFORM INSTALLATIONS AND CONFIGURATIONS

Loading Helm chart, setting up role based access control (RBAC) rules, scripted console installation, manual console installation

Creating peer organization, creating a peer, creating the ordering service, Open shift support				
Troubleshooting the installation PERFORMANCE AND CONSIDERATIONS				
Application client, Smart contract programming language, Endorsement policy, Orderer block configuration, Peer container resource allocation				
Hiper sockets, Hiper socket benefits				
Cryptography importance in block chain, CPACF's role in acceleration and protection				

- 1.
- Serious Cryptography: A Practical Introduction to Modern Encryption By Jean-Philippe Aumasson Handbook of Research on Blockchain Technology by Saravanan Krishnan, Valentina Emilia Balas, Julie Golden, Y. Harold Robinson, S. Balaji, Raghvendra Kumar

❖ Information Security and Audit Monitoring [3 0 0 3]

Unit 1	Introduction to Information Security and IS Auditing			
A	Objectives of IS audit and control,			
В	The structure of an IS audit and audit reports,			
C	IS auditing standards, Computer assisted audit tools			
Unit 2	Organization Security and Controls			
A	Physical security controls: contingency plan, disaster recovery and reconstruction			
В	Logical security controls: operating system security and access control, Operating controls: segregation of duties, monitoring and logging controls			
C	Personnel security and management practices: user training and incident reporting, third-party access and outsourcing, Application software control: software development control, input, processing and output control			
Unit 3	Basics of Cryptographic Technologies			
A	Symmetric encryption, Asymmetric encryption			
В	Basics of message authentication and cryptographic hash functions			
C	Digital signatures and digital certificates, Public-key Infrastructure & Web of Trust			
Unit 4	Network Security & Network Defense			
A	Network Security: User Authentication, Access Control and Identity Management			
В	Network Security – Attack & Defense, Network Attacks: Host based attacks, Network attacks, Web based attacks			
C	Network Defense: Intrusion detection systems & firewall, IPSec and DNSSec, IPv6, Cloud Computing			
Unit 5	Information System Security Auditing, Computer Forensic and Other Security Technologies			
A	Security auditing and security standards			
В	Incident handling and computer forensic			
С	Other security technologies including blockchain			

- William Stallings and Lawrie Brown, Computer Security Principles and Practice, (3rd Edition), Pearson, 2014
- 2. Bruce Schneier, Applied Cryptography: Protocols, Algorithms and Source Code in C, Wiley, 2015
- 3. Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno, Cryptography Engineering: Design Principles and Practical Applications, John Wiley & Sons, 2010.
- 4. Julia H. Allen, Sean J. Barnum, Robert J. Ellison, Gary McGraw, Nancy R. Mead, Software Security Engineering: A Guide for Project Managers, Addison-Wesley, 2008.

❖ IOT Lab [0 0 3 1]

List of Experiments:

- 1. Control an IoT Device using a web service.
- Conduct an experiment with a temperature sensor connected to Arduino which is connected to Raspberry Pi
- 3. Demonstrate the capability of sending and receiving SMS messages is by application for home automation.
- 4. Execute a LED operation with different names remotely wireless operation using Respherry Pi
- 5. Demonstrate a Bluetooth Controlled LED Operation on Sound Detection
- 6. Demonstrate an operation using interfacing angle rotary sensor with Intel Galileo Gen 2 Controlled Brightness of LED
- 7. Experiment onInterfacing temperature sensor with Intel Galileo Gen 2 Controlled when temperature above threshold
- 8. Experiment on Interfacing Ultrasonic sensor with Intel Galileo Gen 2 and send data to mobile phone
- 9. Experiment on Interfacing light sensor with Intel Galileo Gen 2 and sending data to mobile application via Bluetooth
- 10. Experiment on Body health condition monitor with Respberry Pi and BP, Glucometer etc. sensors

Reference Books:

1. Raspberry Pi with Java: Programming the Internet of Things (IoT) (Oracle Press) Paperback – 16 Nov 2015

- 2. The Internet of Things DoitYourself at Home Projects for Arduino Raspberry Pi and Beaglebone Black by Donald NorrisISBN: 9780071835206, 2016.
- 3. Link https://www.analyticsvidhya.com/blog/2016/06/11-read-books-summer-internet-iot/
- 4. Programming for the Internet of Things: Using Windows 10 IoT Core and Azure IoT Suite (Developer Reference) 1st Editionby DawidBorycki (Author)

thical Hacking Lab [0 0 3 1]

Unit 1	Introduction to Ethical Hacking
	To learn about hacking tools and skills.
Unit 2	To study about Fingerprinting.
Unit 3	Malware Threats
	To study about system Hacking.
Unit 4	Web Server Hacking
	To study about Wireless Hacking
Unit 5	IDS, Firewalls and Honeypots
	To learn & study about Sniffing & their tools.

Reference Books:

- 1. Ec-Council, "Ethical Hacking and Countermeasures: Attack Phases", Delmar Cengage Learning, 2009.
- 2. Michael T. Simpson, Kent Backman, James E. Corley, "Hands-On Ethical Hacking and Network Defense", Cengage Learning, 2012
- 3. Patrick Engebretson, "The Basics of Hacking and Penetration Testing Ethical Hacking and Penetration Testing Made Easy", Syngress Media, Second Revised Edition, 2013.
- 4. Jon Erickson, "Hacking: The Art of Exploitation", No Starch Press, Second Edition, 2008.

PROGRAMELECTIVES:

Sub.Co de	SubjectName	Sub.Co de	SubjectName
1	Advanced DataStructuresand Algorithms	2	SoftwareEngineering
3	BlockchainTechnologies	4	Internetof Things
5	QuantumComputing	6	SocialNetworkAnalysis
7	DataForensics	8	InformationRetrieval
9	SoftComputingTechniques	10	EnterpriseDataArchitecture
11	ComputerVision	12	Robotics&Automation
13	Finance& Accounting	14	RiskAnalytics
15	FinancialMarketAnalytics	16	Business&EconomicAnalytics
17	DigitalMarketing	18	SupplyChainManagement
19	HealthInformatics	20	Bioinformatics
21	MedicalImageProcessing	22	Biostatistics
23	AlgorithmicTrading	24	AppliedEconometrics

Open Elective – I

- Multimedia Technology
 Introduction to Philosophical Thoughts

PROGRAM ELECTIVES

♣ ADVANCED DATA STRUCTURES [3 0 0 3]

Advanced Search Trees: Review of Binary Search Trees, AVL Tree, R-B Trees and Splay Trees, Advanced Search Data Structures Like- Treaps, Skip Lists, Finger Search Trees, Biased Search Trees; Data Structures For External Storage: Review of 2-3-4 Trees and 2-3 Trees, B-Tree, B+ Trees, Priority Queues and Concatenable Queues Using 2-3 Trees; Advanced Heaps: Review of Heaps, Binomial Trees, Implementing Binomial Heaps and its Operations, Structure of Fibonacci Heaps, Mergeable Heap Operations, Decreasing Key and Deleting a Node, Bounding the Maximum Degree, Amortized Analysis of Fibonacci Heaps; Dictionaries and Hashing: Review of Dictionaries and Implementation, Review of Hashing- The Bucket Approach, Index File Approach, Universal Hashing, Perfect Hashing, Locality-Sensitive Hashing, Collision Resolution Techniques in Hashing, Separate Chaining, Open Addressing, Quadratic Probing, Double Hashing, Rehashing, Extendible Hashing, Synopses, Fingerprints, Fault Tolerant Data Structures; Graph Theory And Sorting Network: Review Of Graph Representation and Basic Algorithms, Algorithms for Connectedness, Finding all Spanning Trees in a Weighted Graph, Bipartite Graphs: Maximum Matching, the Hungarian Algorithm, Maximum Flow in a Transport Network - the Ford–Fulkerson Algorithm; Sorting Network: Comparison Network, Zero-One Principle, Bitonic Sorting and Merging Network Sorter.

References:

- 1. Cormen, T. H., Leiserson, C. E., Rivest, R.L., and Stein, C. *Introduction to Algorithms*, (3e), MIT Press, 2009.
- 2. Aho, V., Hopcroft, J. E. and Ullman, J. D. *The Design and Analysis of Computer Algorithms*, (1e), Fourth Impression, Pearson Education, 2009.
- 3. Horowitz, E., Sahni, S. and Rajasekaran, S, Computer Algorithms, (2e), University Press, 2007.
- 4. Weiss, M. A, Data Structures and Algorithm Analysis in C++, (2e), Pearson Education India, 2004.
- 5. Goodrich, M. T., Tamassia, R., Algorithm Design, (1e), John Wiley, 2002.

♣ BLOCK CHAIN TECHNOLOGIES [3 0 0 3]

Introduction, Structure of a Block, The Genesis Block, Linking Blocks in the Blockchain, Merkle Trees, Simplified Payment Verification, Using hash functions to chain blocks, for Proof-of-Work, Digital Signatures to sign transactions, Distributed Ledger, Byzantine Agreement, Eventual Consistency & Bitcoin Consistency-Availability and Partitions, Bitcoin, Smart Contracts, Weak Consistency, Distributed Storage, Consistent Hashing, Hypercubic Networks, Mining and Consensus: Decentralized Consensus, Independent Verification of Transactions Mining Nodes, Aggregating Transactions into Blocks, Constructing the Block Header, Successfully Mining the Block, Validating a New Block, Assembling and Selecting Chains of Blocks, Consensus Attacks, Changing the Consensus Rules, Soft Fork Signaling with Block Version, Consensus Software Development, Ethereum and Bitcoin, block format, mining algorithm, proof-of-stake (PoS) algorithm, account management, contracts and transactions, Solidity language, account management, contracts and transactions, Applications of Blockchain: Case studies

References:

- 1. Andreas M. Antonopoulos, "Mastering Bitcoin: unlocking digital cryptocurrencies", O'Reilly Media, (1e) 2014
- 2. Roger Wattenhofer, "Distributed Ledger Technology, The science of the Blockchain", Inverted Forest Publishing, (2e), 2017.
- 3. Antonopoulos, Andreas M. and Wood, Gavin. "Mastering Ethereum", O'Reilly Media, 2018.
- 4. George Icahn, "Blockchain: the complete guide to understanding blockchain technology", Amazon publishers, 2017.

♣ INTERNET OF THINGS [3 0 0 3]

Introduction to internet of things, IoT in global context, Design Principles, IoT Technology Fundamental-Devices and gateways, Local and wide area networking, Data management, Business processes in IoT, IoT reference Architecture, IoT Domain Model, Functional Model. Information Model, Communication Model, Deployment and Operational View, IoT Prototyping- Prototyping Embedded Devices, Electronics, Sensors, Actuator, Embedded Computing Basics, Arduino, Raspberry Pi, BeagleBone Black, IoT Use Cases - Industrial Automation, Smart Home, Smart City, Commercial Building Automation.

References:

- 1. McEwen A., Designing the Internet of Things, Wiley, 2014
- 2. Holler J., From *Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence*, Academic Press, 2014.
- 3. Francis daCosta, *Rethinking the Internet of Things: A Scalable Approach to Connecting* Everything, Apress Publications, 2013
- 4. Pethuru R., The Internet of Things: Enabling Technologies, Platforms, and Use Cases, CRC Press, 2017
- 5. Vijay M., Internet of Things (A Hands-on-Approach), Universities Press, 2014
- 6. Daniel M., Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, Wiley, 2013.

QUANTUM COMPUTING [3 0 0 3]

Introduction, Fundamental concepts. Quantum bits, Quantum computation, Quantum algorithms, Quantum Information, Introduction to Quantum Mechanics, Liner algebra, Postulates of quantum mechanics, Quantum Computation, Quantum circuits, Controlled operations, Measurement, Universal quantum gates, The Quantum Fourier Transform, The quantum Fourier transform, Phase estimation, Applications, Quantum Search Algorithms, Quantum counting, Speeding up the solution of NP-Complete problems, Quantum Information, Classical noise and Markov processes, Quantum Operations, Quantum Error Correction, The Shor code, Theory of quantum error correction, Entropy and Information, Shannon entropy, Basic properties of entropy, Von Neumann entropy, Quantum Information Theory, Distinguishing quantum states and the accessible information, Data compression, Classical information versus noisy quantum channels, Quantum information versus noisy quantum cryptography.

References:

- 1. Michael A Nielsen, and Isaac L. Chuang "Quantum Computation & Quantum Information", (10e), Cambridge University Press, 2011.
- 2. F. Benatti, M. Fannes, R. Floreanini, and D. Petritis, "Quantum Information, Computation and Cryptography" Springer, 2010.
- 3. Mika Hirvensalo, "Quantum Computing", (2e), Springer-Verlag New York, 2004.
- 4. JozefGruska, "Quantum Computing", McGraw Hill, 1999.
- 5. Phillip Kaye, Raymond Laflamme and Michele Mosca, "An Introduction to Quantum Computing", Qxford University Press, 2006.

♣ SOCIAL NETWORK ANALYSIS [3 0 0 3]

Introduction to Social Web, Nodes, Edges and Network Measures, Describing Nodes and Edges, Describing Networks, Layouts, Visualizing network features, The role of Tie strength, Measuring Tie strength and its network structures, network propagation, Link prediction, entity resolution, Case study, Introduction to community discovery, communities in context, quality functions, The Kernighan-Lin algorithm, Agglomerative algorithms, spectral algorithms, multi-level graph partitioning, Markov clustering, Other approaches, Introduction to social influence, Influence related statistics, social similarity and influence, Homophily, Existential Test for social influence, Influence and actions, Influence and interactions, influence maximization in viral marketing.

References:

- 1. Jennifer Golbeck., Analysing the Social Web, Morgan Kaufmann publications, 2013
- 2. Charu C. Aggarwal, Social Network Data Analytics, Springer publications, 2011
- 3. John Scott, Social Network Analysis, (3e), Sage publications limited, 2013
- 4. Jay Goldman, Facebook Cookbook, O'Reilly, 2009
- 5. Shamanth Kumar, Fred Morstatter, Huan Liu, Twitter Data Analytics, Springer publications, 2013

♣ DATA FORENSICS [3 0 0 3]

Introduction, the history of forensics, the objectives of computer forensics, computer forensics flaws and risks, computer forensics- rules, procedures and legal issues, computer forensics lab, essential laboratory tools. Forensics investigation process: Introduction, investigating computer crime, conducting a computer forensics investigation, Recovering Deleted Files and Deleted Partitions, Data

Acquisition and Duplication. Hard disk and file systems: Introduction, file systems and hard disks, digital media devices, image file forensics, boot process-windows, linux and macintosh. Advanced forensics: Operating system forensics, Network forensics, Database forensics, Mobile forensics; cloud forensics, Malware forensics, investigating web and email attacks. Forensics analysis, validation and Report writing: Determine what data to collect and analyze, validating forensics data, addressing data hiding techniques, understanding the importance of reports, guidelines for writing reports, generating report findings with forensics software tools.

References:

- 1. Nelson, Phillips Enfinger, Steuart, Computer Forensics and Investigations, CENGAGE Learning, 2013.
- 2. Dave Kleiman, The official CHFI study guide, Syngress publishing, 2017
- 3. Chris Pogue, *Unix and Linux forensic analysis DVD toolkit*, Syngress publishing, 2008.
- 4. John R. Vacca, Charles, Computer Forensics, Computer Crime Investigation, River Media, 2005.
- 5. Eoghan Casey, Handbook of digital forensics and investigation, Elsevier Academic press, 2010.
- 6. Harlan Cavery, Windows forensic analysis DVD toolkit, Syngress Publishing, 2009.
- 7. Keith J. Jones, Richard Bejtiich, Curtis W. Rose, *Real Digital Forensics*, Addison Wesley Pearson Education, 2005.

↓ INFORMATION RETRIEVAL [3 0 0 3]

Introduction to Information Retrieval: Mathematical Basics, Vector spaces and Similarity, Probabilities and Statistics, Text Analysis; Pre-processing: Document processing, Stemming, String Matching, Basic NLP tasks – POS Tagging Shallow Parsing; Overview of Text Retrieval Systems: System Architecture, Boolean Models, Inverted Indexes, Document Ranking, IR Evaluation; Retrieval Models and Implementation: Vector Space Models, TF-IDF Weighting, Retrieval Axioms, Implementation Issues, Probabilistic Models; Statistical Language Models: Okapi/BM25, Language Models, KL-divergence, Smoothing; Query Expansion and Feedback: Query Reformulation, Relevance feedback, Pseudo-Relevance Feedback, Language Model Based, Feedback; Web Search Engines: Models of the Web, Web Crawling; Static Ranking: Page Rank HITS, Query Log Analysis, Adversarial IR, Information Filtering: Adaptive Filtering, Collaborative Filtering, User Interfaces, Text Classification, Naïve Bayes, K-nearest neighbors, Feature selection, Semi-supervised Learning; Text Clustering: Vector-space Clustering; K-means, EM algorithm, Text shingling; Graph-Based Methods: WordNet, Document and Word Graphs, Network Analysis, Random Walks, Harmonic Functions.

References:

- 1. Christopher D. Manning, PrabhakarRaghavan and HinrichSchütze, *Introduction to Information Retrieval*", (2e), Cambridge University Press, 2015.
- 2. B. Croft, D. Metzler, T. Strohman, Search Engines: Information Retrieval in Practice, (3e), MIT Press, 2016.

3. ChengxiangZhai, *Statistical Language Models for Information Retrieval* (Synthesis Lecture Series on Human Language Technologies), (2e), Morgan & Claypool Publishers, 2017.

♣ SOFT COMPUTING TECHNIQUES [3 0 0 3]

Introduction to Soft Computing: Concept of Computing Systems, Soft Computing Versus Hard Computing, Characteristics of Soft Computing, Some Applications of Soft Computing Techniques; Fuzzy Logic: Introduction to Fuzzy Logic- Fuzzy Sets and Membership Functions, Operations on Fuzzy Sets, Fuzzy Relations, Rules, Propositions, Implications and Inferences, Defuzzification Techniques - Fuzzy Logic Controller Design, Some Applications of Fuzzy Logic; Artificial Neural Networks: Biological Neurons and its Working, Simulation of Biological Neurons to Problem Solving, Different ANNs Architectures, Training Techniques for ANNs, Applications of ANNs to Solve Some Real Life Problems; Nature Inspired Algorithms: Genetic Algorithms, Concept of "Genetics" and "Evolution" and its Application to Probabilistic Search Techniques, Basic GA Framework and Different GA Architectures, GA Operators- Encoding, Crossover, Selection, Mutation, etc., Solving Single-Objective Optimization Problems Using GAs, Particle Swarm Optimization- Implementation, Operators, Case Studies, Ant Bee Colony Optimization-Implementation, Operators, Case Studies; Multi-Objective Optimization: Problem Solving Concept of Multi-Objective Optimization Problems (MOOPs) and Issues of Solving Them. Multi-Objective Evolutionary Algorithm (MOEA), Non-Pareto Approaches to Solve MOOPs, Pareto-Based Approaches to Solve MOOPs, Some Applications with MOEAs.

References:

- 1. Martin, F., Neill, Mc. and Thro, E., Fuzzy Logic: A Practical approach, AP Professional, 2000.
- 2. Ross, T, J., Fuzzy Logic with Engineering Applications, (3e), Willey India, 2010.
- 3. Kasabov, N. K., Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, MIT Press, 1998.
- 4. Ibrahim, A. M., Fuzzy Logic for Embedded Systems Applications, Elsevier Press, 2004.
- 5. Mitchell, M., AnIntroduction to Genetic Algorithms, MIT Press, 2000.
- 6. Goldberg, D. E., *Genetic Algorithms In Search, Optimization And Machine Learning*, Pearson Education India, 2002.
- 7. Rajasekaran, S. and VijayalakshmiPai, G. A., *Neural Networks, Fuzzy Logic and Genetic Algorithms:* Synthesis, and Applications, Prentice Hall India, 2007.
- 8. Pratihar, D. K., *Soft Computing*, (1e), Narosa Publishing, 2008.
- 9. Jang, J.-S. R., Sun, C.-T. and Mizutani, E., Neuro-Fuzzy and Soft Computing", (1e), PHI Learning, 2009.
- 10. Haykin, S., Neural Networks and Learning Machines, (3e), Prentice Hall India, 2011.

♣ ENTERPRISE DATA ARCHITECTURE [3 0 0 3]

Introduction to Enterprise Architecture , Overview, core elements , analysis and planning approaches, Structure and culture of Enterprises, Enterprise data governance, Value and risk of creating an Enterprise Architecture, Developing an Enterprise Architecture. Implementation methodology, Analysis and Documentation Framework, Components and Artifacts, Developing Current Architect Views, Developing an Enterprise Architecture Management Plan, Investment Planning and Project Management, Role of Security and Privacy, Enterprise Architecture Repository and Support Tools. Data Quality Management – Concepts and Implementation. Service Oriented Architecture (SOA) and Virtualization. Data Warehousing, data modeling for data warehousing and business intelligence. Enterprise Big Data Storage Models. Outsourcing and Vendor Management. Service Level Agreements (SLAs), Performance testing and monitoring; Disaster Recovery strategies. Fault Tolerance and Recovery. Effective Metadata modeling, design and management. Case Studies.

References:

1. Scott A. Bernard , An Introduction to Enterprise Architecture, Third Edition, , AuthorHouse .

- 2. Paul Clements, Felix Bachmann , Len Bass, David Garlan, James Ivers, Reed Little, Paulo Merson , Robert Nord, Judith Stafford , *Documenting Software Architectures: Views and Beyond* , (2nd Edition) Addison-Wesley Professional.
- 3. Jeanne W Ross, Peter Weill, David Robertson, Enterprise Architecture As Strategy: Creating a Foundation for Business Execution. Harvard Business Review Press, 2006
- 4. Mario Godinez, Eberhard Hechler, Klaus Koenig, Steve Lockwood, Martin Oberhofer, and Michael Schroeck, *The Art of Enterprise Information Architecture: A Systems-Based Approach* for Unlocking Business Insight, IBM Press, 2010.
- 5. Stefan Bente, Uwe Bombosch, and ShailendraLangade, *Collaborative Enterprise Architecture: Enriching EA with Lean*, Agile, and Enterprise 2.0 practices, Morgan Kaufmann, 2012.

♣ COMPUTER VISION [3 0 0 3]

Introduction: Image Processing, Components of Image processing system, Image formation and digitization concepts, Neighbours of pixel adjacency connectivity, regions and boundaries, Distance measures, Image processing operations, Arithmetic, Logical, Geometrical, Convolution and Correlation Operations, Applications: Document Image Analysis, Biometrics, Object Recognition, Tracking, Medical Image Analysis, Content-Based Image Retrieval, Video Data Processing, Multimedia, Virtual Reality and Augmented Reality, Image Formation, Image representations (continuous and discrete), Image pre-processing Techniques, Feature Extraction-Point, Line and Edge Detection, Color, Texture, Shape and structure Features in spatial and frequency domains, Corner Detection, Hough Transform, Image Segmentation: Boundary detection based techniques, Point, line detection, Edge detection, Edge linking, local processing, regional processing, Hough transform, Thresholding, Iterative thresholding, Otsu's method, Moving averages, Multivariable thresholding, Region-based segmentation, Watershed algorithm, Use of motion in segmentation, Computer Vision: Computer Vision, What is Computer Vision - Low-level, Mid-level, High-level, Overview of Diverse Computer Vision Applications, Fundamentals of object recognition, Low-level computer vision-Edges, contours, textures, shapes, and colors, Motion, optical flow, and tracking Local features, invariance, bag-of-words models, Fisher vector, Middle-level representations of objects: parts, attributes, embedding.

References:

- 1. David Aforsyth& Jean ponce "Computer vision A modern Approach, Prentice Hall, Pearson Education India; Edition: Second, ISBN-13: 978-9332550117, 2015.
- 2. R. C. Gonzalez, R. E. Woods. "Digital Image Processing". Pearson, Inc., Edition-Fourth, ISBN. 978-0131687288, 2017.
- 3. A. K. Jain. "Fundamentals of Digital Image Processing. Prentice-Hall, Pearson; Edition: First, ISBN-13: 978-0133361650, 1994.
- 4. David A forsyth& Jean ponce, "Computer vision A modern Approach", Prentice Hall ,2002.
- 5. Bernd Jahne and Horst HauBecker, "Computer vision and Applications" Academic press, 2000.

♣ ROBOTICS AND AUTOMATION [3 0 0 3]

Introduction: Definition, Applications of mobile robotics, History of mobile robotics. Design of system and navigation architecture: Reference control scheme of a mobile robotics environment, Temporal decomposition of architecture, Control decomposition, Hybrid architecture, Mobile architecture, Perception, Representation and the mapping process. Locomotion: Issues for locomotion, Legged mobile robots, Wheeled mobile robots. Kinematics: Kinematics introduction, Forward and reverse kinematics, Wheeled kinematics and its constraints, Mobile system locomotion, Human biped locomotion as a rolling polygon, Representation of robot position through the reference frame. Power

Sources and Sensors: Hydraulic, pneumatic and electric drives, determination of HP of motor and gearing ratio, variable speed arrangements, path determination, micro machines in robotics, machine vision, ranging, laser, acoustic, magnetic, fiber optic and tactile sensors. Manipulators, Actuators and Grippers: Construction of manipulators, manipulator dynamics and force control, electronic and pneumatic manipulator control circuits, end effectors, U various types of grippers, design considerations. Navigation: Localization overview,

Path planning. Computational intelligence: Swarm intelligence, Evolutionary computation, Artificial immune system, Ant algorithm. Mobile robot programming.

References:

- 1. Ronald Siegwart, Illah R. Nourbakhsh, "Introduction to Autonomous Mobile Robots", MIT Press,
- 2. Andries P. Engelbrecht, "Computational Intelligence: An Introduction", Wiley 2nd Edition, 2007
- 3. Ronald C. Arkin, "Intelligent Robotics and Autonomous Agents", MIT Press, 1997
- 4. Ulrich Nehmzow, "Mobile Robotics: A practical Introduction", Springer-Verlag London, 2003
- 5. Robin R. Murphy, "Introduction to AI Robotics", MIT Press, 2000
- 6. Leandro N. de Castro and Jonathan Timmis, "Artificial Immune system: A new Computational Intelligence Approach", Springer-Verlag, Germany 2002.

♣ DS4152: FINANCE & ACCOUNTING [3 0 0 3]

Understanding the Financial Data: Financial Statements, Type of Accounting and finance data, Nature and behavior of financial and accounting data. Preparation of financial statements in excel, Calculation, projection of various reports with finance and accounting data, Understanding data in finance, sources of data, cleaning and pre-processing data, Understanding stock price behaviour, Time series analysis in finance . Review of Financial Statements: Sources for Financial Statement Information, Types of financial statements: Income statement, Balance Sheet, Cash flow and funds flow statement, Ratio Analysis, DuPont Analysis, Profitability and Turnover Ratios, Liquidity Ratios, Forecasting of ratios and future financial statements, Preparation financial reports using MS Excel. Valuation of Equity and Firm/Business: Free Cash Flow to Equity (FCFE), Free Cash Flow to the firm (FCFF), Discounted cash flow approach to equity and business valuation, Relative Valuation approach to valuation, non-financial performance metrics affecting company valuations. Investment Analysis: Capital Budgeting Techniques - Pay Back Method, Discounted Pay Back Method, Accounting Rate of Return, Net Present Value Method, Internal Rate of Return and Profitability Index. Risk Analysis in Capital Budgeting - Nature of risk, Statistical Techniques for risk analysis, Conventional techniques of risk analysis and Sensitivity Analysis. Capital Rationing. Capital Structure and Valuation: Meaning. Operating Leverage. Financial Leverage, EBIT-EPS Analysis. Combined Leverage. Meaning of Capital Structure. Capital Structure Theories – Definitions, Net Income Approach, Net Operating Income Approach, Modigliani Miller Approach, and Traditional Approach. Practical Considerations in Determining Capital Structure. Working Capital Analysis: Meaning, Need and Nature of Working Capital [Concept and Definitions]. Determinants of Working Capital. Trade-off between Profitability and Risk. Determining Financing Mix. Computation/Estimation of Working Capital. Cash Management and Receivables and payables management.

References:

- 1. Prasanna Chandra., Fundamentals of Financial Management, Tata Mc-Graw Hill Companies, New Delhi, 2005.
- 2. James L Riggs, David D Bedworth and Sabah U Randhawa., *Engineering Economics*, Tata McGraw Hill Publishing Company Ltd, New Delhi, 2004.
- 3. T. Ramachandran., Accounting and Financial Management, Scitech Publications Pvt. Ltd. India, 2001.
- 4. Eugene F. B. & Joel F. H., *Fundamentals of Financial Management*, 12th ed., Cengage Learning Publisher, 2009.
- 5. Johnston, J, Econometric Methods, McGraw-Hill Book Co., New York.
- 6. Maddala, G.S, Econometrics, McGraw-Hill Book Co., New York, 3rd Rd.
- 7. Gujarathi, D.N, Basic Econometrics, Fourth Edition, Tata McGraw-Hill, New Delhi.

♣ RISK ANALYTICS [3 0 0 3]

Introduction to risk analysis: Nature of risk and uncertainty; Why do a risk analysis?; Management's responsibility with regard to risk; Discuss risk management; Upside and downside risk; Handling big data; Cost and benefits associated with investing in information systems; Recommended techniques for the Boards to manage risks. Quantification of risk: Quantification of risk using expected values, standard deviations and

probability tables; Calculating Beta & Capital Asset Pricing Model; Decision trees; Decision models to deal with uncertainty in decision making-Max-min, Max-max, and Min-max regret criteria; Payoff tables. Probability mathematics and simulation: Types of risks; Types of market risks; Market risk measurement, Value at Risk (VaR); VaR as a key parameter to measure market risk; Elements of VaR system; Stress testing; VaR Methods- An overview of VaR methods; VaR local and full valuation; Delta normal methods; Historical simulation; Monte Carlo simulation; Examples of VaR applications. Financial risk analysis modelling: Introduction to credit risk; Credit risk management; Settlement risk; Measuring credit risk; Measuring Credit VaR; Types of credit derivatives. Forecasting with uncertainty: Properties of a Time Series Forecast; Common Financial Time Series Models; Autoregressive Models; Time Series Projection of Events Occurring Randomly in Time; Time Series Models with Leading Indicators. Hedging Techniques: Hedging-Hedging linear risk; Optimal hedging; Hedge ratio as regression coefficient; Duration hedging; Beta hedging; Non-linear risk hedging; Delta and dynamic hedging.

References:

- 1. Vose David, Risk Analysis: A Quantitative Guide, John Wiley & Sons Inc, 2018.
- 2. Hull John C., Risk Management and Financial Institutions, John Wiley & Sons Inc, 2018.

♣ FINANCIAL MARKET ANALYTICS [3 0 0 3]

Money and Capital market, Fundamental Analysis: Economic analysis, Industry Analysis, Company analysis. Technical Analysis, chart formations, Moving average analysis, Relative strength analysis, Technical indicators. Merits and demerits of technical analysis. Random Walk Hypothesis: Efficient market theory, weak form, semi-strong form, strong form, Implications for investment analysis. Equity valuation: Balance sheet valuation, Dividend discount model, Earnings multiplier approach, Earnings to price ratio, Expected return, and growth. Analysis and Valuation of debt: Bond pricing, Bond yield, Risk in debt. Portfolio Analysis: Risk and Return analysis, Markowitz Theory. Portfolio Theories –CAPM. Markowitz Theory, Single Index Model, Two Factor Model Theory, Arbitrage Pricing Theory.

References:

- 1. Donald Fischer and Jordan Security Analysis and Portfolio Management PHI, New Delhi, 2017.
- 2. William F. Sharpe Investments

♣ BUSINESS & ECONOMIC ANALYTICS [3 0 0 3]

Consumers, producers & production: Consumer Behavior, Production, cost & revenue analysis. Price and Output determination under different market structure: Perfect competition, Price and output determination under Monopoly, monopolistic competition, oligopoly. National Income Accounting: Circular flow of income model; methods and concepts in national income accounting and limitations, Inflation: Types, causes, effects and control measures for Inflation. Macro policies: Meaning, objectives and tools and effects of monetary and fiscal policies. External Sector: Economic openness, Balance of Payments, BoP crisis, exchange rate concepts, foreign capital flow.

References:

- 1. SoumyenSikdar., *Principles of Macroeconomics*, OXFORD University Press, 2017.
- 2. Robert Pindycik Daniel Rubinfeld., Microeconomics, 8TH ed., Pearson India Education services Pvt Ltd.
- 3. Gujarathi, D.N, Basic Econometrics, Fourth Edition, Tata McGraw-Hill, New Delhi, 2017.

♣ DIGITAL MARKETING [3 0 0 3]

Introduction: Online Market space- Opportunities for building Brand, Digital eco system and channels, Market and customer segmentation, Digital Marketing Strategy Components, Combining digital and traditional media. Search Engine Optimization: How Search Engine works, SEM components, PPC

advertising with Google ad words, Display Advertisement. Search Engine Optimization: SEO success factors (On-Page and Off-Page Techniques), Google analytics. Display Advertising: Real time bidding, executing display advertising, E-commerce Models. Social Media Marketing: Social Media Channels. Facebook, Twitter, LinkedIn, Instagram, other Soc. Media channels. Leveraging Social media for brand conversations and buzz, Successful /benchmark Social media campaigns. Social Media Marketing: Promoting/advertising brand in Social media, Social Media Feedback, Measuring Social media impact. E- Mail Marketing: Types of E- Mail Marketing, Email Automation, Lead Generation, Integrating Email with Social Media and Mobile, Digital Marketing for B2B, Measuring and maximizing email campaign effectiveness. Online Reputation Management: Combining digital and traditional media, Power of Social Media, Monitoring SM, Proactive and reactive reputation management. Creating a Digital Marketing Strategy: Elements of strategy, Operational aspects of strategy, Digital Marketing plans .Mobile Marketing: Mobile Inventory/channels, Location based, Context based, Coupons and offers, Mobile Apps, Mobile Commerce, SMS Campaigns ,Profiling and targeting. Web Analytics and Channel Attribution Strategies: Social Media Analytics, Website Analytics, Channel attribution model.

References:

- 1. Maity, Moutusy, *Internet Marketing: A Practical Approach in the Indian Context*, Oxford University Press, 2017.
- 2. Richard Gay, Alan Charlesworth and Rita Esen, *Online Marketing- a customer led approach*, Oxford University Press, New York, 2013.
- 3. Alan Charlesworth, Digital Marketing: A Practical Approach, 2014.
- 4. AvinashKaushik, Web Analytics 2.0: The Art of Online Accountability, 2009.

♣ SUPPLY CHAIN MANAGEMENT [3 0 0 3]

Introduction and objectives of supply chain, Decision phases in a supply chain, Purchasing tools and techniques, Value analysis, Project planning and control techniques, Pricing and revenue management, Costing fundamentals, Types of costing, Managing inventory in a supply chain, Economic order quantity, EOQ determination with instantaneous delivery and without shortages, Effect of quantity discount, safety stock, reorder level & lead time. Facility decisions in supply chain; Factors influencing network design in supply chain, Models for facility location and capacity allocation, Transportation decisions in a supply chain, Routing and scheduling in transportation, Multistage transportation problems, Truck allocation problem, Travelling salesman problem, Vehicle routing problems, Financial evaluation of supply chain Decisions, The impact of financial factors on supply chain decisions, Discounted cash flow analysis, Evaluating supply chain decisions using decision trees.

References:

- 1. Chopra and Meindl., Supply Chain Management Strategy, Planning and Operation, (3e), Pearson Education, New Delhi, 2009.
- 2. Raghuram and Rangaraj, Logistics and Supply Chain Management: Cases and Concepts, Macmillan, New Delhi, 2000.
- 3. Simchi-Levi and Kaminski, *Designing and Managing the Supply Chain: Concepts, Strategies* and Case Studies, McGraw-Hill, 2003.
- 4. Shapiro J., Modelling the Supply Chain, Duxbury Thomson Learning, U.S.A., 2009.
- 5. Krajewski Lee J. and Ritzman Larry P., *Operations Management, Pearson Education (Singapore)* Pte. Ltd., Delhi, 2005.

♣ HEALTH INFORMATICS [3 0 0 3]

Introduction to Health care and Information Technology-HealthCare Data – Types of HealthCare Data – HealthCare Databases & Applications – Healthcare Informatics Vs Clinical Informatics-EMR, HER and EPR.

Interoperability Standards in Healthcare – Introduction to healthcare standards-need for such standards-HL7-Digital Image Communication in Medicine (DICOM)- Picture Archival and Communication System (PACS)-Clinical Document Architecture (CDA)- Integrating the Healthcare Enterprise . Imaging Systems in Healthcare – Imaging Modalities- Xray, CT, MRI, US- Radiology Information Systems-PACS. Ethics in Healthcare – Protected Healthcare Information-HIPPA-Mobile in Healthcare. Telehealth-Telemedicine-Tele Radiology-Data Compression Techniques- IT for rural healthcare.

References:

- 1. Ramona Nelson and Nancy Staggers, Health Informatics: An Interprofessional Approach, 2016.
- 2. WIlliam Hanson, Healthcare Informatics, McGraw-Hill Education, 2017.
- 3. K. Kirk Shung, Michael B. Smith, Benjamin M.W. Tsui Principles of Medical Imaging".
- 4. Oleg S Pianykh, "Digital Imaging and Communication in Medicine(DICOM)", Springer.
- 5. HIMSS, "HIMSS Dictionary of Healthcare Information Technology Terms, Acronyms and Organizations", Second Edition, 2016
- 6. Victor Lyuboslavsky, "Telemedicine and Telehealth 2.0: A Practical Guide for Medical Providers and Patients".
- 7. "Erich H. Loewy, M.D., Roberta Springer Loewy, *Textbook of Healthcare Ethics*" 2nd Edition, Kluwer Academic Publishers New York, 2017.

♣ BIOINFORMATICS [3 0 0 3]

Introduction to Bioinformatics, Central dogma of biology, Digital code of life, database sequence search & Alignment, The evolutionary basis of sequence alignment, The modular nature of proteins, Optimal alignment methods, Substitution scores and gap penalties, Statistical significance of alignments, Structure file formats; Visualizing structural information, Motifs and Pattern, Protein structure prediction, Searching for trees, Rooting trees, Evaluating trees and Data, Phylogenetic software, Phylogenetics on the web, Some simple practical considerations, Genome annotation, Comparative genomics, Genome compression.

References:

- 1. Arthur M. Lesk. Introduction to Bioinformatics. Oxford University Press, 2002
- 2. Stuart M. Brown. *BIOINFORMATICS: A biologists guide to biocomputing and the internet*. NYU Medical Center, 2000.

♣ MEDICAL IMAGE PROCESSING [3 0 0 3]

Review of signals, systems & transforms; 2D signals & systems; Medical Imaging: Imaging modalities and their applications; Computed tomography (CT): mathematical basis, the Radon transform & the central slice theorem; Image reconstruction from projections: the Direct Fourier Method, convolution back projection (CBP) algorithm, Algebraic Reconstruction Techniques (ART); reconstruction from fan-beam projections; Extension to 3D – cone-beam CT, spiral CT. Tomosynthesis; X-rays: utility, generation and detection; X-ray CT systems. Emission CT: principles, Positron emission tomography (PET); attenuation correction in ECT; Ultrasound in clinic: benefits/risks, Basics of Ultrasound - review, Ultrasound imaging; Contrast enhanced ultrasound imaging; Motion artifacts in ultrasound imaging. Clutter filtering; elastography, plane wave imaging; Magnetic resonance imaging: Principles of data-generation, resolving the tissues, resolving the spatial locations, and extension to 2D. Resolution & Field of View; Data sampling and the concept of bandwidth.

References:

1. R.C Gonzalez and R.E. Woods, *Digital Image Processing*, (4e), Pearson Education Inc., 2017.

- 2. A.K. Jain, Fundamentals of Digital Image Processing, Prentice- Hall, Fourth Indian Reprint, 1989.
- 3. A.C. Kak and M. Slaney, *Principles of Computerized Tomographic Imaging, SIAM's Classics in Applied Mathematics*, Philadelphia, SIAM, 2001.
- 4. Kline Jacob, *Handbook of Biomedical Engineering*, Academic Press, 1988.
- 5. Carol M. Rumack, Deborah Levine, Diagnostic Ultrasound, (5e), Elsevier, 2017

♣ BIOSTATISTICS [3 0 0 3]

Introduction, Summarizing Quantitative Data, Summarizing Categorical Data; Prevalence, Incidence, Relative Risk, Risk Difference, Sampling Bias, Confidence Intervals, Study Design, Probability & Screening; Probability distributions: Binomial & Normal Distributions, Sampling Distributions, Confidence Intervals. Introduction to statistical design: Introduction to factorial designs, 2k factorial design, main effects, interaction effects Screening designs: Fractional factorial designs, Plackett-Burmann screening designs. Model reduction, model assumption checking, residual plots. Optimization designs: Response surface methodology – concepts & methods, central composite designs and Box-Behnken design.

References:

- 1. Sullivan, L.M., Essentials of biostatistics for the health sciences, (3e), Jones & Bartlett Learning, 2018.
- 2. Machin, Campbell and Walters, Medical Statistics, (4e)., Wiley, 2007.
- 3. Motulsky, H., Intuitive Biostatistics: *A nonmathematical guide to statistical thinking*, (3e), Oxford University Press, New York, 2014.
- 4. Utts, J and Heckard, R., Mind on statistics, (5e), Cengage Learning, USA.

♣ ALGORITHMIC TRADING [3 0 0 3]

Basic Trading strategies- Discretionary, Algorithmic Trading, Hybrid. Algorithmic vs. High-Frequency/Low Latency Trading. Industry Overview- Alternatives, Hedge Funds, Commodity Trading Advisor Funds, Quant Funds. Tracking Funds, Tracking Benchmarks, Basic Portfolio Strategies. Mathematics for algorithmic trading- Prediction of prices, Risk calculation, Capital Allocation, locking in Options & Futures Review of Time Series, Capital Allocation, Momentum, Options and futures- trend, seasonal, cyclical and irregular components, white noise, Brownian motion, Auto covariance, autocorrelation and criteria. ARIMA models, Autoregressive Models, Moving Average Models, ARMA Models. Box-Jenkins method, characteristic polynomials, Sharpes and Skewness, Stationary vs. Non-stationary processes, criteria (AIC, BIC) for model choice, Cross Validation, Bootstrap and Stochastic Differential Equations (SDE)s., Kalman Filters. Algorithmic Trading Basics- Back testing, Automated Execution, Momentum, Mean Reversion, Carry, Value, Basic Portfolio Strategies, Over fitting. Mean Reversion Strategies - Mean Reversion of Stocks, ETFs, Currencies and Futures, Timescales/horizons associated with MR, Momentum and Value, Volume and Mean Reversion Liquidity, Unit Root Tests, Augmented Dickey Fuller Tests. KPSS Tests, Variance Ratio Tests. Co-integration and Johansen Test. Momentum/Trend Following- properties and tradeoffs, Inter-day and Intraday Momentum Strategies, Risk Management. Skewness over horizon results, momentum modelling. Filters, Change points - sequential binary segmentation, switching Kalman filters, Carry, Value, P vs. Qmeasure. Over fitting- p-hacking, lack of reproducibility, holdout over fitting. Adjusted Sharpe Ratios. Multiple Hypothesis Testing – Holm-Bonferroni . BHY adjustments. ML for Algorithmic trading, pitfalls and future opportunities. Case Studies: Introduction to Quantopian, Mini project using open source technologies to build and test simple algorithmic models.

References:

- 1. Earnest Chan, Algorithmic Trading: Winning Strategies and Their Rationale, John Wiley &Sons , 1st edition, 2013.
- 2. Ernie Chan, Quantitative Trading: How to Build Your Own Algorithmic Trading Business, John Wiley & Sons;, 1 edition, 2008

- 3. Rishi K. Narang, Inside the Black Box: The Simple Truth about Quantitative Trading, John Wiley & Sons, 1st edition, 2009.
- 4. Barry Johnson, Algorithmic Trading and DMA: An introduction to direct access trading strategies, 4Myeloma Press, 2010.
- 5. David J. Leinweber, Theodore R. Aronson, Nerds on Wall Street: Math, Machines and Wired Markets, John Wiley & Sons, 1st edition, 2009.
- 6. Alex Kuznetsov, The Complete Guide to Capital Markets for Quantitative Professionals (McGraw-Hill Library of Investment and Finance). McGraw-Hill Education, 1 edition, 2006.

♣ APPLIED ECONOMETRICS [3 0 0 3]

Financial Econometrics: Nature of Econometrics and Economic Data. Time Series Econometrics. The Experimental Ideal: selection problem, random assignment, regression analysis of experiments. Regression Modeling: Linear regression modeling, properties of regression, omitted variables, decomposition techniques, regression and causality, heterogeneity and nonlinearity. Logit and probit models, problems of inference. Causal Modeling: Panel data, Instrumental variables. Instrumental variables in action: Causality, asymptotic 2SLS Inference, Two sample, Split Sample Instrumental variables, IV with heterogeneous potential outcomes. Individual Fixed Effects. Differences-in-differences, Fixed effects versus lagged dependent variables. Regression discontinuity: designs, sharp and fuzzy regression discontinuity. Quantile regression model: estimation of quantile treatment effects, nonstandard standard error issues, bias of robust standard error estimates, clustering and serial correlation in panels. Methods from Statistical Learning: Cross validation and k-fold, Shrinkage methods (Ridge and LASSO), Basis functions, Tree models.

References:

- 1. Joshua D. Angrist and Jorn-Steffen Pischke, *Mostly Harmless Econometrics- An Empircist's Companion*, Princeton University Press, 1 edition, 2009.
- 2. Jeffrey M. Woolridge, *Introductory Econometrics: A Modern Approach*, CENGAGE Learning Custom Publishing; 5th edition , 2012.
- 3. Maurice DeGroot, Mark J Schervish, Probability and Statistics, Pearson Publications, 4 edition, 2011.
- 4. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, An Introduction to Statistical Learning with Applications in R, Springer Science, 2017.

Open Elective – I

> MultimediaTechnology

Unit	Content	Hrs/U	Marks/ Unit
1	Introduction: Multimediatoday, Impact of Multimedia, Multimedia Systems, Components and Its Applications	2	
2	Text and Audio, Imageand Video(14L) Text: Types ofText, WaystoPresentText, AspectsofTextDesign, Character, CharacterSet, Codes, Unicode, Encryption; Audio: BasicSound Concepts, Types ofSound, DigitizingSound, ComputerRepresentation ofSound (SamplingRate, SamplingSize, Quantization), AudioFormats, A udio tools, MIDI	14	
	Image: Formats, ImageColor Scheme, ImageEnhancement; Video: AnalogueandDigital Video, RecordingFormats and Standards (JPEG, MPEG, H.261) Transmission of VideoSignals, VideoCapture, and Computerbased Animation.		
3.	Synchronization, Storage models and Access Techniques: Temporal relationships, synchronization accuracy specification factors, quality of service, Magnetic media, optical media, file systems (traditional, multimedia) Multimedia devices – Output devices, CD-ROM, DVD, Scanner, CCD	8	
4.	Imageand Video Database, Document Architecture and Content Management (17L): Imagere presentation, segmentation, similarity based retrieval, imageretrie val by color, shape and texture; indexing-k-dtrees, R-trees, quadtrees; Casestudies-QBIC, Virage. Video Content, querying, video segmentation, indexing, Content Designand Development, General Design Principles Hypertext: Concept, Open Document Architecture (ODA), Multimedia and Hypermedia Coding Expert Group (MHEG), Standard Generalized Markup Language (SGML), Document Type Definition (DTD), Hypertext Markup Language (HTML) in Web Publishing. Casestudy of Applications	17	
5.	MultimediaApplications(4L):Interactivetelevision, Video- on-demand, Video Conferencing, Educational Applications, Industrial Applications, Multimedia archives and digital libraries, media editors	4	

Text book and Reference books:

- $1. \qquad Ralf Stein met zand Klara Nahrstedt, Multimedia: Computing, Communications \& Applications \ , \\ Pearson \ Ed.$
- 2. NalinK.Sharda,MultimediaInformationSystem, PHI.
- 3. FredHalsall,MultimediaCommunications, PearsonEd.
- 4. KoegelBuford ,Multimedia Systems , PearsonEd.
- 5. FredHoffstetter ,MultimediaLiteracy, McGraw Hill.
- 6. Ralf Stein met zand Klara Nahrstedt, Multimedia Fundamentals: Vol. 1-Media Coding and Content Processing, PHI.
- 7. J.Jeffcoate, Multimedia in Practice: Technology and Application, PHI.
- $8. \hspace{1.5cm} V.K. Jain, Multimedia and Animation, Khanna Publishing House, New Delhi (AICTER ecommended Textbook-2018)\\$

> IntroductiontoPhilosophical

Unit	Content	Hrs/Unit	Marks/Unit
1	Nature ofIndian Philosophy: Pluralityaswellascommonconcerns. 2. Basicconceptsofthe Vedicand Upanisadicviews: Atman, Jagrata, Svapna, Susupti, Turiya, Brahman, Karma, Rna, Rna,	17	
2	Carvakaschool:itsepistemology,metaphysicsandethics.Mukti	9	
3	Jainism: Concepts of sat,dravya,guna,paryaya,jiva,ajiva,anekantavada,syadvada,a ndnayavada;pramanas,ahimsa,bondageandliberation.		
4	5. Buddhism:theoryof pramanas, theoryofdependent origination, thefournoble truths;doctrineof momentaryness; theoryof no soul.The interpretation of these theoriesinschools ofBuddhism:Vaibhasika,Sautrantrika,Yogacara,Madhyamik a.	5	
5	6. Nyaya:theoryofPramanas; theindividualselfanditsliberation; the ideaof Godandproofsfor Hisexistence.	5	

Text book and Reference books:

1. M. Hiriyanna: OutlinesofIndianPhilosophy.

- 2. C.D.Sharma: A Critical Surveyof Indian Philosophy.
- $3.\ S.N. Das Gupta: A\ History of Indian Philosophy Vol-Ito V.$
- 4. S.Radhakrishnan: Indian PhilosophyVol–I&II.
- 5. T.R.V.Murti: CentralPhilosophyofBuddhism.
- 6. J.N.Mahanty: ReasonandTradition ofIndianThought.
- 7. R.D.Ranade: A Constructive Surveyof Upanisadic Philosophy.
- 8. P.T.Raju: Structural Depths ofIndianThought.
- 9. K.C.Bhattacharya:Studies in PhilosophyVol-1.
- 10. DattaandChatterjee :Introduction of Indian Philosophy