Syllabus for B.Tech in Computer Science and Information Technology

Contents:

- 1. Key Notes: Page 2
- 2. Proposed Members of the Board of Studies who had prepared the draft syllabus: Page 3
- 3. Block Syllabus of the Semester I VIII. Page 4 8
- 4. Existing Syllabus of the Semester I & II of CSE: Page 4 27
- 5. Credit Distribution as per guidelines: Page 9
- 6. Proposed Detailed Syllabus of 3rd to 8th Semester : Page 34 120

Key Notes

The draft syllabus has been developed based on the existing CSE syllabus of MAKAUT and the AICTE Model Syllabus (2022), ensuring alignment with industry requirements and contemporary educational standards.

- 1. Industry trends and demands have been carefully considered to make the syllabus relevant and future-ready.
- 2. Since the AICTE model syllabus is widely followed across institutions, some commonalities with other syllabi are inevitable.
- 3. The syllabus is structured to equip students with global competencies.
- 4. While the proposed syllabus is unique, similarities exist due to its foundation in the MAKAUT syllabus and AICTE model guidelines. Credit distribution across classified areas has been structured per MAKAUT norms, incorporating subject-wise and semester-wise modifications as recommended by the Board of Studies (BoS), which includes industry experts, faculty members, and external academicians.
- 5. The existing CSE syllabus for Semesters I & II is included without changes, as the first year remains common across all disciplines.
- 6. Paper codes for retained subjects and syllabi remain unchanged.
- 7. If an existing subject has been moved to a different semester, its paper code has been updated while keeping the syllabus intact.
- 8. Only newly introduced topics have undergone syllabus revision; existing subjects with unchanged content have been retained as is.
- 9. Course Outcomes (COs) for existing papers, where unavailable in online records, have been freshly created based on the syllabus content.
- 10. The proposed syllabus has been benchmarked against the AICTE model syllabus to ensure consistency and standardization.

Syllabus for B. Tech. in Computer Science and Information Technology

			First Year (First Semester)					
SI No	Category	Subject Code	Subject Name			ımb t ho	er of urs	Credit
•				L	Т	P	Н	S
1	Basic Science Courses	BS-PH101/ BS-CH101	Physics-I(Gr-A)/ Chemistry-I(Gr-B)	3	1	0	4	4
2	Basic Science Courses	BS-M101	Mathematics—IA	3	1	0	4	4
3	Engineering Science Courses	ES-EE101	Basic Electrical Engineering	3	1	0	4	4
		Tota	al Theory	9	3	0	12	12
Prac	tical							
4	Basic Science Courses	BS-PH191/ BS-CH191	Physics-I Laboratory (Gr-A)/Chemistry-I Laboratory (Gr-B)	0	0	3	3	1.5
5	Engineering Science Courses	ES-EE191	Basic Electrical Engineering Laboratory	0	0	2	2	1
6	Engineering Science Courses	ES-ME191/ ES- ME192	Engineering Graphics & Design (Gr-B) / Workshop/ Manufacturing Practices (Gr-A)	1	0	4	5	3
		Tota	l Practical	1	0	9	10	5.5
		Total of I	First Semester	10	3	9	22	17.5

SI				Total	Num	ber of c	ontact	
	Category	Subject Code	Subject Name		h	ours		Credits
No.				L	T	P	Н	
	Basic Science	BS-PH201/		_		0		
1	Courses	BS-CH201	Physics-I (Gr-B)/ Chemistry-I (Gr-A)	3	1	U	4	4
	Basic Science			3	1	0	4	4
2	Courses	BS-M201	Mathematics—IIA	3		U	4	4
	Engineering			3		0	3	3
3	Science Courses	ES-CS201	Programming for Problem Solving	3	0	U	3	3
	Humanities and							
	Social							
	Sciences including			2	0	0	2	2
	Management							
4	Courses	HM-HU201	English					
		Tot	al Theory	11	2	0	13	13
Prac	tical							
	Basic Science	BS-PH291/	Physics—I Laboratory (Gr—			3	3	4.5
5	Courses	BS-CH291	B)/Chemistry-I Laboratory (Gr-A)	0	0	5	3	1.5
6	Engineering	ES-CS291	Programming for Problem Solving	0	0	4	4	2

Syllabus for B. Tech. in Computer Science and Information Technology

	Science Courses							
7	Engineering Science Courses	ES-ME291/ ES-ME292	Engineering Graphics & Design (Gr–A)/ Workshop / Manufacturing Practices (Gr–B)	1	0	4	5	3
8	Humanities and Social Sciences including Management Courses	HM-HU291	Language Laboratory	0	0	2	2	1
			Practical	1	0	13	14	7.5
		Total of Se	cond Semester	12	2	13	27	20.5

				Tota	l Num	ber of co	ntact	
SI	Category	Subject	Subject Name		h	ours		Credits
No.		Code		L	T	P	Н	
	Engineering Science			3	0	0	3	3
1	Courses	ESC-301	Analog and Digital Electronics	3	"	U	3	3
	Professional Core	PCC-		3	0	0	3	3
2	Courses	CS301	Data Structure & Algorithms	3	0	U	3	3
	Professional Core	PCC-		3	0	0	3	3
3	Courses	CSIT301	Discrete Mathematics	3	"	U	3	3
	Professional Core	PCC-	Formal Language & Automata	3	0	0	3	3
4	Courses	CSIT302	Theory	3	"	U	3	3
	Humanities and Social							
	Sciences including	HSMC-	Economics for Engineers	3	0	0	3	3
5	Management Courses	301	(Humanities–II)					
		Total	Theory	15	0	0	15	15
Prac	tical							
	Professional Core	PCC-	IT Workshop (Sci	0	0	4	4	2
6	Courses	CS393	Lab/MATLAB/Python/R)	0	"	4	4	2
	Engineering Science			0	0	4	4	2
7	Courses	ESC-391	Analog and Digital Electronics	0	"	4	4	2
	Professional Core	PCC-		0		4	4	2
8	Courses	CS391	Data Structure & Algorithms	0	0	4	4	2
		Total F	Practical	0	0	12	12	6
		Total of Thi	rd Semester	15	0	12	27	21

SI	Catagoni	Subject	Subject Name	Total Number of contact	Credits
No.	Category	Code	Subject Name	hours	Credits

Syllabus for B. Tech. in Computer Science and Information Technology

				L	Т .	P	н	
	Professional Core	PCC-		3	1	0	4	3
1	Courses	CSIT401	Computer Organisation	3	'	U	4	3
	Professional Core	PCC-		3	0	0	3	3
2	Courses	CSIT402	Computer Network	3	"	U	3	3
	Professional Core	PCC-		2		_	2	2
3	Courses	CSIT403	Compiler Design	3	0	0	3	3
	Professional Core	PCC-		3	0	0	3	3
4	Courses	CS404	Design & Analysis of Algorithms	3	"	U	3	3
	Basic Science			2	4	_	3	3
5	Courses	BSC-401	Biology	2	1	0	3	3
6	Mandatory Courses	MC-401	Environmental Sciences	1	0	0	1	0
	Humanities and							
	Social							
	Sciences including			3	0	0	3	3
	Management	HSMC-	Introduction to Industrial Management					
7	Courses	401	(Humanities III)					
		To	otal Theory	18	2	0	20	18
Pract	tical							

	Professional Core	PCC-						
8	Courses	CS494	Design & Analysis of Algorithms	0	0	4	4	2
	Professional Core	PCC-						
9	Courses	CSIT491	Computer Organisation	0	0	4	4	2
		Tot	tal Practical	0	0	8	8	4
		Total of	Fourth Semester	18	2	8	28	22

			Third Year (Fifth Semester)					
SI No	Category	Subject Code	Subject Name		al N onta	Credit		
•		Code		L	Т	P	Н	S
1	Engineering Science Courses	ESC-501	Software Engineering	3	0	0	3	3
2	Professional Core Courses	PCC- CSIT501	Computer Architecture	3	0	0	3	3
3	Professional Core Courses	PCC- CS502	Operating Systems	3	0	0	3	3
4	Professional Core Courses	PCC- CSIT502	Advanced Programming for Real Life Applications	3	0	0	3	3

Syllabus for B. Tech. in Computer Science and Information Technology

	Professional Elective]					
6	Courses		Elective I	3	0	0	3	3
		PEC-						
		IT501A	Theory of Computation					
		PEC-						
		CSIT501A	Signals & Systems					
		PEC-						
		CSIT501B	Mobile Computing					
		PEC-						
		IT501D	Computer Graphics					
		Mc-	Constitution of India/ Essence of Indian	_				
7	Mandatory Courses	CS501	Knowledge Tradition	1				
		-						
			Total Theory	16	0	0	15	15
Prac	tical		Total Theory	16	0	0	15	15
Prac	tical Professional Core	PCC-	Total Theory					
Prac		PCC- CSIT591	Computer Architecture	0	0	4	4	2
	Professional Core		•	0	0	4	4	2
	Professional Core Courses		•					
7	Professional Core Courses Engineering Science	CSIT591	Computer Architecture	0	0	4	4	2
7	Professional Core Courses Engineering Science Courses	CSIT591 ESC-591	Computer Architecture	0	0	4	4	2
7	Professional Core Courses Engineering Science Courses Professional Core	CSIT591 ESC-591 PCC-	Computer Architecture Software Engineering	0 0	0 0	4 4	4 4	2 2 2
7	Professional Core Courses Engineering Science Courses Professional Core Courses	CSIT591 ESC-591 PCC- CS592	Computer Architecture Software Engineering Operating Systems	0	0	4	4	2
7 8 9	Professional Core Courses Engineering Science Courses Professional Core Courses Professional Core	CSIT591 ESC-591 PCC- CS592 PCC- CSIT592	Computer Architecture Software Engineering Operating Systems Advanced Programming for Real Life	0 0	0 0	4 4	4 4	2 2 2

		For	urth Year (Seventh Semester)					
SI	Category	Subject	Subject Name			lumbe		Credits
No.		Code		L	Т	P	Н	
1	Professional Core Courses	PCC- CSIT701	Mobile Application Development	3	1	0	4	3
2	Professional Elective Courses		Elective III	3	0	0	3	3
		PEC- IT701B	Quantum Computing					
		PEC- IT701C	Cloud Computing					
		PEC-	Data Warehousing & Data Mining					

Syllabus for B. Tech. in Computer Science and Information Technology

		CSIT701A						
		PEC-						
		CSIT701B	Computer Vision					
3	Open Elective Courses		Open Elective II	3	0	0	3	3
		OEC-						
		IT701A	Operations Research					
		OEC-	Introduction to Philosophical					
		IT701B	Thoughts					
		OEC-	Soft Skill & Interpersonal					
		IT701C	Communication					
	Humanities and Social							
	Sciences including		Project Management and	2	1	0	3	3
	Management Courses	HSMC 701	Entrepreneurship					
	Project, Seminar,	PROJ-		0	0	12	12	6
4	Internship	IT781	Project-II			12	12	
l		Total T	heory	11	2	12	25	18
Prac	tical							
		PCC-				_	_	_
5	Professional Core Courses	CSIT791	Mobile Application Development	0	0	4	4	2
		Total Pr	actical	0	0	4	4	2
		Total of Seven	th Semester	11	2	16	29	20

		ı	Fourth Year (Eight Semester)					
SI	Category	Subject	Subject Name	1	er of urs	Credits		
No.		Code		L T	Т	P	Н	
1	Professional Elective Courses		Elective IV	3	0	0	3	3
		PEC- IT801A	Cryptography & Network Security					
		PEC- IT801B	Speech and Natural Language Processing					
		PEC- IT801C	Internet of Things					
		PEC- IT801D	Remote Sensing and GIS					
2	Open Elective Courses		Open Elective III	3	0	0	3	3

Syllabus for B. Tech. in Computer Science and Information Technology

		OEC-						
		IT801B	Cyber Law and Ethics					
		OEC-						
		IT801D	Bioinformatics					
		OEC-						
		IT802C	Economic Policies in India					
3	Open Elective Courses		Open Elective IV	3	0	0	3	3
		OEC-						
		IT801E	Robotics					
		OEC-						
		IT802A	E-Commerce and ERP					
		OEC-						
		IT802B	Micro-electronics and VLSI Design					
		OEC-						
		CSIT802A	Data Analytics					
	Project, Seminar,	PROJ-				42	42	_
6	Internship	CS881	Project-III	0	0	12	12	6
		Total 1	Theory	9	0	12	21	15
		Total of Eigh	nt Semester	9	0	12	21	15

				CSE Model Syllabus								y.	CS	E-IT Dra	ft	Tr.					
S No.	Code	Category	Sem 1	Sem	2 Sem	3 Se	em 4 S	em 5	Sem 6	Sem 7	Sem 8	Total	Sem 1	Sem 2	Sem 3	Sem 4	Sem 5	Sem 6	Sem 7	Sem 8	Total
	Humanities and Social																				
	Sciences including	Humanities and Social Sciences including Management																			
1	Management Courses	courses	1		6	3	3	3	0	0	0	16	0	3	3	3	0	0	3		0 12
2	Basic Science Courses	Basic Science courses	g)	9	2	0	0	0	3	0	23	9.5	9.5	0	3	0	0	0	(0 22
	Engineering Science	Engineering Science courses including workshop, drawing,																			
3	Courses	basics of electrical/mechanical/computer etc.	8	3	8	10	0	3	0	0	0	29	8	8	5	0	5	0	0		0 26
9	Professional Core																				
4	Courses	Professional core courses	C)	0	8	18	14	14	5	0	59	0	0	13	16	15	15	5		0 64
	Professional Elective	Professional Elective courses relevant to chosen																			
5	Courses	specialization/branch	C		0	0	0	0	6	3	3	12	0	0	0	0	3	3	3		3 12
		Open subjects – Electives from other technical and /or																			
6	Open Elective Courses	emerging subjects	C)	0	0	0	0	0	3	6	9	0	0	0	0	0	3	3	(6 12
	Project, Seminar,																				
7	Internship	Project work, seminar and internship in industry or elsewhere	C)	0	0	0	0	3	6	6	15	0	0	0	0	0	3	6	1	6 15
9		Mandatory Courses [Environmental Sciences, Induction																			
		Program, Indian Constitution, Essence of Indian Knowledge																			
8	Mandatory Courses	Tradition]	C)	0	0	0	0	0	0	0	(non cr	0	0	0	0	0	0	0		0 0
		Total (*)	18	3	3	23	21	20	23	20	15	163	17.5	20.5	21	22	23	24	20	1!	5 163

Mapping of Course Outcomes with Program Outcomes

PROGRAM OUTCOME (POs)

- 1. **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or
 processes that meet the specified needs with appropriate consideration for the public health and safety, and the
 cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research—based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The Engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend andwrite effective reports and design documentation, make effective presentations, and giveand receive clear instructions.

Syllabus for B. Tech. in Computer Science and Information Technology

Effective from Academic Session 25-26

- 11. **Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

MODEL PROGRAM SPECIFIC OUTCOMES (PSOs)

- The Computer Science and Engineering graduates are able to analyze, design, develop, test and apply skills on the basis of mathematical and programming foundations in the development of computational solutions to design software and hardware.
- Work with and communicate effectively with professionals in inter-disciplinary fields and pursue lifelong professional development in computing and identify research gaps and hence to provide solution to new ideas and innovations to satisfy the environmental and social issues.

Syllabus for B. Tech. in Computer Science and Information Technology

Effective from Academic Session 25-26

CO Statements and CO-PO Mapping for Courses of New Syllabus: SEMESTER – I THEORY

Course Title: Mathematics –IA	Code: BS-M101
Type of Course: Theory	Course Designation: Compulsory
Semester: 1st	Contact Hours: 3L+1T/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
BS-M101.CO1	Learn the basic mathematical tools to deal with problems of engineering sciences.	Learn	Level I
BS-M101.CO2	Understand properties and application of Calculus and Linear Algebra.	Understand	Level II
BS-M101.CO3	Analyze of physical or engineering problems.	Analyze	Level IV
BS-M101.CO4	Acquire problem solving skills related to engineering science.	Acquire	Level II
BS-M101.CO5	Apply Calculus and Linear Algebra in real life problems.	Apply	Level III
BS-M101.CO6	Classify ensembles and differentiate between Calculus and Linear Algebra.	Classify	Level IV

Mapping of COs with POs and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	-	-	-	-	-	-	-	3	3	2
CO2	3	3	3	3	-	-	-	-	-	-	-	3	2	1
CO3	3	3	3	2	-	-	-	-	-	-	-	3	2	1
CO4	3	1	2	1	-	-	-	-	-	-	1	3	2	2
CO5	2	2	2	2	-	-	-	-	-	-	2	3	1	1
CO6	3	2	2	2	-	-	-	-	-	-	2	3	-	-
AVG.	2.83	2.33	2.5	2.33	0	0	0	0	0	0	1.6667	3	2	1.5

Unit	Content	Hrs/Unit
1	Calculus (Integration): Evolutes and involutes; Evaluation of definite and improper integrals; Beta and	8
	Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.	
2	Calculus (Dif erentiation): Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with	6
	remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.	
3	Matrices: Matrices, Vectors: addition and scalar multiplication, matrix multiplication; Linear systems of	7
	equations, linear Independence, rank of a matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss	
	elimination and Gauss-Jordan elimination.	
4	Vector Spaces: Vector Space, linear dependence of vectors, Basis, Dimension; Linear transformations	9
	(maps), Range and Kernel of a linear map, Rank and Nullity, Inverse of a linear transformation, Rank-	
	Nullity theorem, composition of linear maps, Matrix associated with a linear map.	
5	Vector Spaces (Continued): Eigenvalues, Eigenvectors, Symmetric, Skew-symmetric, and Orthogonal	10
	Matrices, Eigenbases. Diagonalization; Inner product spaces, Gram-Schmidt orthogonalization.	

Syllabus for B. Tech. in Computer Science and Information Technology

Effective from Academic Session 25-26

Course Title: Physics-I	Code: BS-PH101
Type of Course: Theory	Course Designation: Compulsory
Semester: 1st	Contact Hours: 3L+1T/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

Course Outcomes	Details	Action Verb	Knowledge Level
BS-PH101.CO1	Apply basic concepts of mechanics	Apply	K3
BS-PH101.CO2	Discuss Physical optics and analyze principles of lasers with applications	Discuss	K6
BS-PH101.CO3	Categorize di electric and magnetic properties of materials leading to Electromagnetic laws	Categorize	K4
BS-PH101.CO4	Differentiate between Classical Physics and Quantum Physics by introducing Planck's law	Differentiate	K5
BS-PH101.CO5	Apply wave particle duality in real life problems followed by simple quantum mechanics calculations	Apply	К3
BS-PH101.CO6	Classify ensembles and differentiate between classical and Quantum statistical mechanics	Classify	K4

Mapping of COs with Pos and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	-	-	-	-	-	-	-	-	-	-	-
CO2	1	3	2	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	1	1	-	-	-	-	-	-	-	-	-	-
CO4	1	3	2	-	-	-	-	-	-	-	-	-	-	-
CO5	1	3	2	0	-	-	-	-	-	-	-	-	-	-
CO6	-	1	3	2	-	-	-	-	-	-	-	-	-	-
AVG.	1.80	2.33	1.83	1.00	0	0	0	0	0	0	0	0	0	0

Unit	Content	Hrs/Unit					
1	Mechanics (7L) Problems including constraints & friction. Basic ideas of vector calculus and partial	7					
	differential equations. Potential energy function $F = -grad V$, equipotential surfaces and meaning of gradient.						
	Conservative and non-conservative forces. Conservation laws of energy & momentum. Non-inertial frames						
	of reference. Harmonic oscillator; Damped harmonic motion forced oscillations and resonance. Motion of a rigid body in a plane and in 3D. Angular velocity vector. Moment of inertia.						
2	Optics (5L)	5					
	Distinction between interference and diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits (only the expressions for max;min, & intensity and qualitative discussion of fringes); diffraction grating(resolution formulac only), characteristics of diffration grating and its applications.						
	Polarisation: Introduction, polarisation by reflection, polarisation by double reflection, scattering of light, circular and elliptical polarisation, optical activity.						
	Lasers: Principles and working of laser: population inversion, pumping, various modes, threshold population inversion with examples.						

3	Electromagnetism and Dielectric Magnetic Properties of Materials (8L)	8
	Maxwell's equations. Polarisation, permeability and dielectric constant, polar and non-polar dielectrics,	
	internal fields in a solid, Clausius- Mossotti equation(expression only), applications of dielectrics.	
	Magnetisation , permeability and susceptibility, classification of magnetic materials, ferromagnetism,	
	magnetic domains and hysteresis, applications.	

Syllabus for B. Tech. in Computer Science and Information Technology

Effective from Academic Session 25-26

Γ	4	Quantum Mechanics (16L)	16
		Introduction to quantum physics, black body radiation, explanation using the photon concept, Compton	
		effect, de Broglie hypothesis, wave-particle duality, verification of matter waves, uncertainty principle,	
		Schrodinger wave equation, particle in box, quantum harmonic oscillator, hydrogen atom.	
Ī	5	Statistical Mechanics (8L) Macrostate, Microstate, Density of states, Qualitative treatment of Maxwell	8
		Boltzmann, Fermi-Dirac and Bose-Einstein statistics.	

Course Title: Basic Electrical Engineering	Code: ES-EE101
Type Of Course: Theory	Course Designation: Compulsory
Semester: 1st	Contact Hours: 3L+1T/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
ES-EE101.CO1	Understand and analyze basic electric and magnetic circuits.	Understand	K2
ES-EE101.CO2	Study the working principles of electrical machines and power converters.	Study	K1
ES-EE101.CO3	Introduce the components of low voltage electrical installations.	Introduce	K1
ES-EE101.CO4	Understand the general structure of electrical power system.	Understand	K2
ES-EE101.CO5	Understand the construction and operation of single-phase transformer.	Understand	K2
ES-EE101.CO6	Explain the working principle of power converters.	Explain	K2

Mapping of COs with Pos and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	2	-	-	-	-	-	-	-	-	-
CO2	2	3	3	2	2	-	-	-	-	-	-	-	-	-
CO3	2	-	3	1	-	-	-	-	-	-	-	1	-	-
CO4	2	-	2	2	3	-	-	-	-	-	-	2	-	
CO5	2	2	-	2	3	-	-	-	-	-	-	1	-	
CO6	2	1	3	3	3	-	-	-	-	-	-	1	-	
AVG.	2.17	2	2.75	2	2.6	0	0	0	0	0	0	1.25	0	0

Unit	Content	Hrs/Unit
1	DC Circuits (8 hours) Electrical circuit elements (R, L and C), voltage and current sources, Kirchoff current and voltage laws, analysis of simple circuits with dc excitation.	8
	Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.	
2	AC Circuits (8 hours) Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.	8

3	Transformers (6 hours) Magnetic materials, BH characteristics, ideal and practical	6
	transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-	
	transformer and three-phase transformer connections.	
4	Electrical Machines (8 hours) Generation of rotating magnetic fields, Construction and	8
	working of a three-phase induction motor, Significance of torque-slip characteristic. Loss	
	components and efficiency, starting and speed control of induction motor. Single-phase	
	induction motor. Construction, working, torque-speed characteristic and speed control of	
	separately excited dc motor. Construction and working of synchronous generators.	
5	Power Converters (6 hours) DC-DC buck and boost converters, duty ratio control. Single-	6
	phase and three-phase voltage source inverters; sinusoidal modulation	
6	Electrical Installations (6 hours) Components of LT Switchgear: Switch Fuse Unit (SFU),	6
	MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important	
	Characteristics for Batteries. Elementary calculations for energy consumption, power factor	
	improvement and battery backup.	

SEMESTER – I PRACTICAL

Course Title: Physics-I Laboratory	Code: BS-PH191
Type of Course: Practical	Course Designation: Compulsory
Semester: 1st	Contact Hours: 3P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
BS-PH191.CO1	Observe and read data in slide calliper's, screw gauge. Calculate different modulus of elasticity to apply basic knowledge Physics of Elasticity and apply viscosity principle of streamline motion of water to calculate its viscosity coefficient required in fluid mechanics	Observe	K1
BS-PH191.CO2	Arrange sequential connection in electrical experiment to verify principles of Kirchhoff's law to verify passive elements of electrical circuit	Arrange	К3
BS-PH191.CO3	Operate optical instruments to illustrate physical properties of light and to observe spectral lines of light to verify medium specific characteristics. Calculate Rydberg constant by studying Hydrogen spectrum to visualize visible spectra and to assess this empirical fitting parameter as a fundamental physical constant	Operate	K3
BS-PH191.CO4	Determine Band Gap and Hall coefficient of a given intrinsic semiconductor and distinguish between different intrinsic semiconductors. Determine the dielectric constant of different capacitors to correlate their usage like insulator and limitation of their usage as a dielectric material.	Determine	K5
BS-PH191.CO5	Apply concepts of quantum mechanics to verify Bohr's atomic orbital theory	Apply	К3
BS-PH191.CO6	Determine Planck's constant and Stefan's constant applying modern Physics	Determine	K5

Mapping of COs with Pos and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	1	-	-	-	-	-	-	-	-	-	-
CO2	2	3	1	1	-	-	-	-	-	-	-	-	-	-
CO3	2	2	3	1	-	-	-	-	-	-	-	-	-	-
CO4	2	3	1	2	-	•	-	-	-	-	-	-	-	-
CO5	2	2	3	1	-	-	-	-	-	-	-	-	-	•
CO6	2	1	3	2	-	-	-	-	-	-	-	-	-	-
AVG.	2	2.33	2	1.33	0	0	0	0	0	0	0	0	0	0

University Syllabus:

Choose 10 experiments including at least one from Optics, Electricity and Magnetism and Quantum Mechanics and at least a total of six from these three groups.

Unit	Content									
1	Experiments in Optics									
1	1. Determination of dispersive power of the material of a prism									
	2. Determination of dispersive power of the material of a prism 2. Determination of wavelength of a monochromatic light by Newton's ring									
	3. Determination of wavelength of a monochromatic light by Fresnel's bi-prism									
	4. Determination of wavelength of the given laser source by diffraction method									
2	Electricity & Magnetism experiments									
	1. Determination of thermo electric power of a given thermocouple.									
	2. Determination of specific charge (e/m) of electron by J.J. Thompson's method.									
	3. Determination of dielectric constant of a given dielectric material.									
	4. Determination of Hall coefficient of a semiconductor by four probe method.									
	5. To study current voltage characteristics, load response, areal characteristic and spectral response of a									
	photovoltaic solar cell.									
	6. Determination of resistance of ballistic galvanometer by half deflection method and study of variation of									
	logarithmic decrement with series resistance.									
	7. Determination of unknown resistance using Carey Foster's bridge									
	8. Study of Transient Response in LR, RC and LCR circuits using expeyes									
	9. Generating sound from electrical energy using expeyes									
3	Experiments in Quantum Physics									
	1. Determination of Stefan-Boltzmann constant.									
	2. Determination of Planck constant using photocell.									
	3. Determination of Lande-g factor using Electron spin resonance spectrometer.									
	4. Determination of Rydberg constant by studying Hydrogen spectrum.									
	5. Determination of Band gap of semiconductor.									
	6. To study current voltage characteristics, load response, areal characteristic and spectral response of a									
4	photovoltaic solar cell.									
4	Miscellaneous experiments									
	1. Determination of Young's modulus of elasticity of the material of a bar by the method of flexure 2. Determination of bending moment and shear force of a rectangular beam of uniform cross-section									
	3. Determination of bending moment and shear force of a rectangular beam of uniform cross-section									
	4. Determination of rigidity modulus of the material of a wire by dynamic method									
	5. To determine the moment of inertia of a body about an axis passing through its centre of gravity and to									
	determine the modulus of rigidity of the material of the suspended wire									
	6. Determination of coefficient of viscosity by Poiseulle's capillary flow method									
	o. Determination of coefficient of viscosity by I obscure a capitally flow method									

Syllabus for B. Tech. in Computer Science and Information Technology

Effective from Academic Session 25-26

Course Title: Basic Electrical Engineering Lab	Code: ES-EE191
Type of Course: Practical	Course Designation: Compulsory
Semester: 1st	Contact Hours: 2P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
ES-EE191.CO1	Calibrate Ammeter and Wattmeter	Calibrate	К3
ES-EE191.CO2	Demonstrate the measuring instrument and electrical machines	Demonstrate	K3
ES-EE191.CO3	Conduct open circuit and short circuit test of single-phase transformer	Conduct	K2
ES-EE191.CO4	Measure 3 phase power using two wattmeters	Measure	K5
ES-EE191.CO5	Identify the components of LT switchgear	Identify	K1
ES-EE191.CO6	Understand the characteristic of RLC series and parallel circuit	Understand	K2

Mapping of COs with Pos and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	-	-	3	-	-	-	2	-	-	-	-	-
CO2	2	3	3	1	2	-	-	-	3	-	-	-	-	-
CO3	2	2	3	-	-	-	-	1	2	-	-	-	-	-
CO4	2	-	2	-	3	1	-	1	3	-	-	-	-	-
CO5	1	-	-	-	1	1	-	1	-	-	-	-	-	-
CO6	2	1	2	1	3	-	-	1	2	-	-	-	-	_
AVG.	1.83	2	2.5	1	2.4	0	0	0	2.4	0	0	0	0	0

University Syllabus:

Choose 10 experiments from the following:

Unit	Content			
1	First activity: Introduction to basic safety precautions and mentioning of the do's and Don'ts. Noting down list of experiments			
	to be performed, and instruction for writing the laboratory reports by the students. Group formation. Students are to be informed			
	about the modalities of evaluation.			
2	Introduction and uses of following instruments: (a) Voltmeter (b) Ammeter (c) Multimeter (d) Oscilloscope			
	Demonstration of real life resistors, capacitors with color code, inductors and autotransformer.			
3	Demonstration of cut-out sections of machines: DC machine, Induction machine, Synchronous machine and single phase			
	induction machine.			
4	Calibration of ammeter and Wattmeter.			
5	Determination of steady state and transient response of R-L, R-C and R-L-C circuit to a step change in voltage.			
6	Determination of steady state response of R-L and R-C and R-L-C circuit and calculation of impedance and power factor.			
7	Determination of resonance frequency and quality factor of series and parallel R-L-C circuit.			
8	(a) Open circuit and short circuit test of a single-phase transformer			
	(b) Load test of the transformer and determination of efficiency and regulation			
9	Demonstration of three phase transformer connections. Voltage and current relationship, phase shifts between the primary and			
	secondary side.			
10	Measurement of power in a three phase unbalanced circuit by two wattmeter method.			
11	Determination of Torque – Speed characteristics of separately excited DC motor.			
12	Determination of Torque speed characteristics and observation of direction reversal by change of phase sequence of connection			
	of Induction motor.			
13	Determination of operating characteristics of Synchronous generator.			
14	Demonstration of operation of (a) DC-DC converter (b) DC-AC converter (c) DC-AC converter for speed control of an			
	Induction motor.			
15	Demonstration of components of LT switchgear.			

Course Title: Workshop	Code: ES-ME192
Type Of Course: Practical	Course Designation: Compulsory
Semester: 1st	Contact Hours: 1L+4P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Course Outcomes Details				
ES-ME192.CO1	Understanding the applications of hand tools and machine tools.	Understand	K2		
ES-ME192.CO2	ES-ME192.CO2 Comprehend the safety measures required to be taken while using the tools.				
ES-ME192.CO3	ES-ME192.CO3 Select the appropriate tools required to manufacture an object of predetermined shape and size considering least wastage and cost.				
ES-ME192.CO4	Fabricate components with their own hands	Fabricate	K6		
ES-ME192.CO5	Practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes	Analyze	K6		
ES-ME192.CO6	Produce small devices of their interest, by assembling different components,	Produce	K6		

Mapping of COs with Pos and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	1	-	-	-	-	1	-	1	-	-	-	-	-	-
CO3	1	-	-	-	-	1	-	1	1	-	-	-	-	-
CO4	1	-	-	-	-	-	2	-	2	1	1	-	-	1
CO5	1	-	-	-	-	-	2	-	2	1	1	1	-	-
CO6	1	-	-	-	-	-	2	-	2	1	2	1	-	1
AVG.	1	0	0	0	0	1	2	1	1.75	1	1.33	1	0	1

Unit	Content			
1	Lectures & videos: Detailed contents:			
	1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods			
	2. CNC machining, Additive manufacturing			
	3. Fitting operations & power tools			
	4. Electrical &Electronics			
	5. Carpentry			
	6. Plastic moulding, glass cutting			

Syllabus for B. Tech. in Computer Science and Information Technology

Effective from Academic Session 25-26

7. Metal casting 8. Welding (arc welding & gas welding), brazing

2 Workshop Practice:

Machine shop (8 hours)

Typical jobs that may be made in this practice module:

To make a pin from a mild steel rod in a lathe.

To make rectangular and vee slot in a block of cast iron or mild steel in a shaping and / or milling machine. Fitting shop (8 hours)

Typical jobs that may be made in this practice module:

To make a Gauge from MS plate.

Carpentry (8 hours)

Typical jobs that may be made in this practice module:

To make wooden joints and/or a pattern or like.

Welding shop (8 hours (Arc welding 4 hrs + gas welding 4 hrs))

Typical jobs that may be made in this practice module: ARC WELDING (4 hours):

To join two thick (approx 6mm) MS plates by manual metal arc welding.

GAS WELDING (4 hours): To join two thin mild steel plates or sheets by gas welding. Casting (8 hours)

Typical jobs that may be made in this practice module: One/ two green sand moulds to prepare, and a casting be demonstrated.

Smithy (4 hours)

Typical jobs that may be made in this practice module: A simple job of making a square rod from a round bar orlike.

Plastic moulding & Glass cutting (4 hours) Typical jobs that may be made in this practice module:

For plastic moulding, making at least one simple plastic component should be made.

For glass cutting, three rectangular glass pieces may be cut to make a kaleidoscope using a black colour diamond cutter, or similar other components may be made. Electrical &Electronics (8 hours) Familiarization with LT switchgear elements, making its sketches and noting down its specification.

Kitkat fuse, Glass cartridge fuse, Plastic fuse holders (optional), Iron clad isolators, MCB style isolators, Single phase MCB, Single-phase wire, wiring cable.

Demonstration of domestic wiring involving two MCB, two piano key switches, one incandescent lamp, one LED lamp and plug point. Simple wiring exercise to be executed to understand the basic electrical circuit. Simple soldering exercises to be executed to understand the basic process of soldering. Fabrication of a single-phase full wave rectifier with a step down transformer using four diodes and electrolytic capacitor and to find its volt-ampere characteristics to understand basic electronic circuit fabrication.

Syllabus for B. Tech. in Computer Science and Information Technology

Effective from Academic Session 25-26

SEMESTER – II THEORY

Course Title: Chemistry-I	Code: BS-CH 201
Type of Course: Theory	Course Designation: Compulsory
Semester: 2 nd	Contact Hours: 3L+1T/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Course Outcomes Details					
BS-CH 201.CO1	Apply first and second law of thermodynamics to different chemical and physical processes under specified condition to determine the equilibrium condition, spontaneity and thermo-chemical behaviour of a reaction.					
BS-CH 201.CO2	Using the concept of conductance of ions analyze the design and working principle of different electrochemical cells.	Use	К3			
BS-CH 201.CO3	Derive rate of a reaction at a specified temperature under different medium	Derive	K4			
BS-CH 201.CO4	BS-CH 201.CO4 Explain the mechanism considering the structure of the molecules and type of electronic effect present in them.					
BS-CH 201.CO5	Analyze	K4				
BS-CH 201.CO6	Distinguish different types of polymer for diverse application.	Distinguish	K4			

Mapping of COs with POs and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	-	-	-	-	-	-	-	-	-	-
CO2	3	2	1	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	1	1	-	-	-	-	-	-	-	-	-	-
CO4	3	2	1	1	-	-	-	-	-	-	-	-	-	-
CO5	3	1	1	-	-	-	-	-	-	-	-	-	-	-
CO6	3	1	1	1	-	-	-	-	-	-	-	-	-	-
AVG.	3	1.66	1	1	0	0	0	0	0	0	0	0	0	0

Unit	Content	Hrs/Unit
1	Atomic and molecular structure (10 lectures)	10
	Schrodinger equation. Particle in a box solutions and their applications for simple	
	sample. Molecular orbitals of diatomic molecules (e.g.H2). Energy level diagrams of	
	diatomic. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field	
	theory and the energy level diagrams for transition metal ions and their magnetic	
	properties. Band structure of solids and the role of doping on band structures.	

Syllabus for B. Tech. in Computer Science and Information Technology

2	Spectroscopic techniques and applications (8 lectures)	8
	Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence	
	and its applications in medicine. Vibrational and rotational spectroscopy of diatomic	
	molecules. Applications. Nuclear magnetic resonance and magnetic resonance imaging,	
	surface characterisation techniques. Diffraction and scattering.	

3	Intermolecular forces and potential energy surfaces (4 lectures)	4
	Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and critical phenomena	
4	Use of free energy in chemical equilibria (8 lectures) First and second laws of thermodynamics and thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Water chemistry. Corrosion. Use of free energy considerations in metallurgy through Ellingham diagrams	8
5	Periodic properties (4 Lectures) Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries	4
6	Stereochemistry (4 lectures) Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compound	4
7	Organic reactions and synthesis of a drug molecule (4 lectures) Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule.	4

Syllabus for B. Tech. in Computer Science and Information Technology

Effective from Academic Session 25-26

Course Title: Mathematics – IIA	Code: BS-M201
Type of Course: Theory	Course Designation: Compulsory
Semester: 2 nd	Contact Hours: 3L+1T/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
BS-M201.CO1	Learn the basic mathematical tools to deal with problems of engineering sciences.	Learn	K1
BS-M201.CO2	Understand properties and application of Linear Algebra, Ordinary Differential Equations (ODE) and numerical analysis.	Understand	K2
BS-M201.CO3	Analyze of physical or engineering problems.	Analyze	K4
BS-M201.CO4	Acquire problem solving skills related to engineering science.	Acquire	K2
BS-M201.CO5	Apply Linear Algebra, Ordinary Differential Equations (ODE) and Numerical analysis in real life problems.	Apply	К3
BS-M201.CO6	Classify ensembles and differentiate among Linear Algebra, Ordinary Differential Equations (ODE) and numerical analysis.	Classify	K4

Mapping of COs with POs and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	1	-	-	-	-	-	-	-	3	1	-
CO2	2	2	3	1	-	-	-	-	-	-	-	3	2	-
CO3	3	3	3	1	-	-	-	-	-	-	-	3	1	-
CO4	3	2	3	2	-	-	-	-	-	-	1	3	3	1
CO5	3	2	3	2	-	-	-	-	-	-	2	3	3	-1
CO6	3	2	3	2	-	-	-	-	-	-	2	3	3	2
AVG.	2.83	2.17	3	1.5	0	0	0	0	0	0	1.67	3.00	2.17	1.33

Unit	Sity Synabus: Content	Hrs/Unit
1	Basic Probability: Probability spaces, conditional probability, independence; Discrete	11
	random variables, Independent random variables, the Multinomial distribution, Poisson	
	approximation to the Binomial distribution, infinite sequences of Bernoulli trials, sums of	
	independent random variables; Expectation of Discrete Random Variables, Moments,	
	Variance of a sum, Correlation coefficient, Chebyshev's Inequality.	
2	Continuous Probability Distributions: Continuous random variables and their properties,	4
	Distribution functions and densities, Normal, Exponential and Gamma densities.	
3	Bivariate Distributions: Bivariate distributions and their properties, distribution of sums	5
	and quotients, Conditional densities, Bayes' rule.	
4	Basic Statistics: Measures of Central tendency, Moments, Skewness and Kurtosis,	8
	Probability distributions: Binomial, Poisson and Normal and evaluation of statistical	
	parameters for these three distributions, Correlation and regression – Rank correlation	
5	Applied Statistics: Curve fitting by the method of least squares- fitting of straight lines,	8
	second degree parabolas and more general curves. Test of significance: Large sample test for	
	single proportion, difference of proportions, single mean, difference of means, and difference	
	of standard deviations.	
6	Small samples: Test for single mean, difference of means and correlation coefficients, test	4
	for ratio of variances - Chi-square test for goodness of fit and independence of attributes.	

Course Title:Programming for ProblemSolving	Code: ES-CS201
Type of Course: Theory	Course Designation: Compulsory
Semester: 2 nd	Contact Hours: 3L+1T/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
ES-CS201.CO1	Analyze the problem and formulate algorithms for them.	Analyze	K4
ES-CS201.CO2	Translate the algorithms to programs (in C language).	Understand	K2
ES-CS201.CO3	Understand the correct syntax of logical expression, branch instruction, iteration,	Understand	K2
ES-CS201.CO4	Apply array and pointer to solve problem.	Apply	К3
ES-CS201.CO5	Understand the use of, function, recursion.	Understand	K2
ES-CS201.CO6	Build analytical skill.	Create	K6

Mapping of COs with POs and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	1	1	1	1	1	2	2	3	3
CO2	3	3	3	3	-	1	1	1	1	1	2	2	3	3
CO3	3	3	3	3	-	-	-	-	1	1	-	2	2	2
CO4	3	3	3	3	-	-	-	-	1	1	-	2	2	2
CO5	3	3	3	3	-	-	-	-	1	1	-	2	2	2
CO6	3	3	3	3	-	-	-	-	1	1	-	2	2	2
AVG.	3	3	3	3	2	1	1	1	1	1	2	2	2.33	2.33

Unit	Content	Hrs/Unit
1	Introduction to Programming (4 lectures) Introduction to components of a computer	8
	system (disks, memory, processor, where a program is stored and executed, operating	1
	system, compilers etc.) - (1 lecture). Idea of Algorithm: steps to solve logical and	
	numerical problems. Representation of Algorithm: Flowchart/Pseudocode with	,
	examples. (1 lecture) From algorithms to programs; source code, variables (with data	,
	types) variables and memory locations, Syntax and Logical Errors in compilation,	1
	object and executable code- (2 lectures)	,
2	Arithmetic expressions and precedence (2 lectures)	2
3	Conditional Branching and Loops (6 lectures) Writing and evaluation of conditionals	6
	and consequent branching (3 lectures) Iteration and loops (3 lectures)	,
4	Arrays (6 lectures) Arrays (1-D, 2-D), Character arrays and Strings	6
5	Basic Algorithms (6 lectures) Searching, Basic Sorting Algorithms (Bubble, Insertion	6
	and Selection), Finding roots of equations, notion of order of complexity through	
	example programs (no formal definition required)	
6	Function (5 lectures) Functions (including using built in libraries), Parameter passing	5
	in functions, call by value, Passing arrays to functions: idea of call by reference	

7	Recursion (4 - 5 lectures) Recursion, as a different way of solving problems. Example	5
	programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick	
	sort or Merge sort.	
8	Structure (4 lectures) Structures, Defining structures and Array of Structures	4
9	Pointers (2 lectures) Idea of pointers, Defining pointers, Use of Pointers in self-	2
	referential structures, notion of linked list (no implementation)	
10	File handling (only if time is available, otherwise should be done as part of the lab)	

Course Title:English	Code: HM-HU201
Type of Course: Theory	Course Designation: Compulsory
Semester: 2 nd	Contact Hours: 2L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
HM-HU201.CO1	Understand and apply English Speech Sounds for enhancing English Communication	Understand	K2
HM-HU201.CO2	Apply English Language Presentation Skill in Academic and in Professional Communication	Apply	K3
HM-HU201.CO3	Apply Receptive Skills of English in Academics and in Engineering Profession	Apply	К3
HM-HU201.CO4	Apply Writing Skill of English in Academics and in Profession	Apply	К3
HM-HU201.CO5	Apply Grammar Skill of English in Academic and in Professional Communication	Apply	K3
HM-HU201.CO6	Apply Critical Thinking Skill of English in Academic and in professionional Communication	Apply	K3

Mapping of COs with POs and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	2	-	2	-	3	-	2	1	1
CO2	2	2	2	2	2	2	-	2	-	3	-	2	1	1
CO3	2	2	2	2	2	2	-	2	-	3	-	2	1	1
CO4	2	2	2	2	2	2	-	2	-	3	1	2	1	1
CO5	2	2	2	2	2	2	-	2	-	3	1	2	1	1
CO6	2	2	2	2	2	2	-	2	-	3	1	2	1	1
AVG.	2	2	2	2	2	2	0	2	0	3	0	2	1	1

Unit	Content
------	---------

Syllabus for B. Tech. in Computer Science and Information Technology

1	Vocabulary Building							
	1.1 The concept of Word Formation: Compounding, Backformation, Clipping, Blending.							
	1.2 Root words from foreign languages and their use in English							
	1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.							
	1.4 Synonyms, antonyms, and standard abbreviations: Acronyms							
2	Basic Writing Skills							
	2.1 Sentence Structures & Types: Simple, Compound, Complex							
	2.2 Use of phrases and clauses in sentences: Transformation of sentences, active, passive, narration							
	2.3 Importance of proper punctuation							

	2.4 Creating coherence: Arranging paragraphs & Sentences in logical order
	2.5 Creating Cohesion: Organizing principles of paragraphs in documents
	2.6 Techniques for writing precisely
3	Identifying Common Errors in Writing
	3.1 Subject-verb agreement
	3.2 Noun-pronoun agreement
	3.3 Misplaced modifiers
	3.4 Articles
	3.5 Prepositions
	3.6 Redundancies
	3.7 Clichés
4	Nature and Style of sensible Writing
	4.1 Describing
	4.2 Defining
	4.3 Classifying
	4.4 Providing examples or evidence
	4.5 Writing introduction and conclusion
5	Writing Practices
	5.1 Comprehension
	5.2 Précis Writing
	5.3 Essay Writing
	5.4 Business Letter, Cover Letter & CV; E-mail

Syllabus for B. Tech. in Computer Science and Information Technology

Effective from Academic Session 25-26

SEMESTER-II PRACTICAL

Course Title:Chemistry-I Laboratory	Code: BS-CH291
Type of Course: Practical	Course Designation: Compulsory
Semester: 2 nd	Contact Hours: 3P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
BS-CH291.CO1	Determine some physical parameter like viscosity of a solution and rate constant of a reaction	Determine	K5
BS-CH291.CO2	291.CO2 Determine the strength of an acid using conductometric method.		K5
BS-CH291.CO3	Determine the strength of an acid using pH metric method.	Determine	K5
BS-CH291.CO4	Determine partition coefficient of a compound	Determine	K5
BS-CH291.CO5	Estimate the amount of an ion present in a given solution using permanganometric and argentometric methods.	Estimate	K5
BS-CH291.CO6	Evaluate alkalinity (in terms of CaCO3 equvalent), hardness (in ppm) and amount of dissolved oxyzen (in mg/l) present in a given water sample using volumetric method.	Evaluate	K5

Mapping of COs with POs and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2	3	-	-	-	-	-	-	-	-	-	-
CO2	1	1	2	3	-	-	-	-	-	-	-	-	-	-
CO3	1	1	2	3	-	-	-	-	-	-	-	-	-	-
CO4	1	2	2	3	-	-	-	1	-	-	-	-	-	-
CO5	1	2	2	3	-	-	-	1	-	-	-	-	-	-
CO6	1	2	2	3	-	-	-	-	-	-	-	-	-	-
AVG.	1	1.5	2	3	0	0	0	0	0	0	0	0	0	0

University Syllabus:

Choose 10 experiments from the following:

Unit	Content
1	Conductometric titration for determination of the strength of a given HCl solution by titration against a standard NaOH
	solution.
2	pH- metric titration for determination of strength of a given HCl solution against a standard NaOH solution
3	Determination of dissolved oxygen present in a given water sample
4	To determine chloride ion in a given water sample by Argentometric method (using chromate indicator solution)
5	Determination of surface tension and viscosity
6	Thin layer chromatography
7	Ion exchange column for removal of hardness of water
8	Determination of the rate constant of a reaction
9	Determination of cell constant and conductance of solutions`
10	Potentiometry - determination of redox potentials and emfs
11	Saponification/acid value of an oil
12	Chemical analysis of a salt
13	Determination of the partition coefficient of a substance between two immiscible liquids
14	Adsorption of acetic acid by charcoal
15	Use of the capillary viscosimeters to the demonstrate of the isoelectric point as the pH of minimum viscosity for gelatin
	sols and/or coagulation of the white part of egg.

Syllabus for B. Tech. in Computer Science and Information Technology

Effective from Academic Session 25-26

Course Title:Programming for ProblemSolving	Code: ES-CS291
Type of Course: Practical	Course Designation: Compulsory
Semester: 2 nd	Contact Hours: 4P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
ES-CS291.CO1	Analyze the problem and formulate algorithms for them.	Analyze	K4
ES-CS291.CO2	Translate the algorithms to programs (in C language).	Understand	K2
ES-CS291.CO3	Understand the correct syntax of logical expression, branch instruction, iteration,	Understand	K2
ES-CS291.CO4	Apply array and pointer to solve problem.	Apply	К3
ES-CS291.CO5	Understand the use of, function, recursion.	Understand	K2
ES-CS291.CO6	Build analytical skill.	Create	K6

Mapping of COs with POs and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	-	-	-	-	-	-	-	2	2	1
CO2	2	2	2	2	-	-	-	-	-	-	-	2	2	1
CO3	2	2	2	2	-	-	-	-	-	-	-	2	2	1
CO4	2	2	2	2	-	ı	ı	-	-	-	-	2	2	1
CO5	2	2	2	2	-	ı	ı	-	-	-	-	2	2	1
CO6	2	2	2	2	-	-	ı	-	-	-	-	2	2	1
AVG.	2	2	2	2	0	0	0	0	0	0	0	2	2	1

University Syllabus:

The laboratory should be preceded or followed by a tutorial to explain the approach or algorithm to be implemented for the problem given.

Unit	Content
1	Tutorial 1: Problem solving using computers: Lab1: Familiarization with programming environment
	, , ,
2	Tutorial 2: Variable types and type conversions:
	Lab 2: Simple computational problems using arithmetic expressions
3	Tutorial 3: Branching and logical expressions:
	Lab 3: Problems involving if-then-else structures
4	Tutorial 4: Loops, while and for loops:
	Lab 4: Iterative problems e.g., sum of series
5	Tutorial 5: 1D Arrays: searching, sorting:
	Lab 5: 1D Array manipulation
6	Tutorial 6: 2D arrays and Strings
	Lab 6: Matrix problems, String operations
7	Tutorial 7: Functions, call by value:
	Lab 7: Simple functions
8	Tutorial 8 &9: Numerical methods (Root finding, numerical differentiation, numerical integration):
	Lab 8 and 9: Programming for solving Numerical methods problems
9	Tutorial 10: Recursion, structure of recursive calls
	Lab 10: Recursive functions
10	Tutorial 11: Pointers, structures and dynamic memory allocation
	Lab 11: Pointers and structures
11	Tutorial 12: File handling:
	Lab 12: File operations

Course Title: Engineering Graphics & Design	Code: ES-ME291
Type of Course: Practical	Course Designation: Compulsory
Semester: 2 nd	Contact Hours: 1L+4P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
ES-ME291.CO1	Understand the applications of hand tools and machine tools.	Understand	K2
ES-ME291.CO2	Comprehend the safety measures required to be taken while using the tools.	Create	K6
ES-ME291.CO3	Select the appropriate tools required to manufacture an object of predetermined shape and size considering least wastage and cost.	Evaluate	K5
ES-ME291.CO4	Fabricate components with their own hands.	Create	K6
ES-ME291.CO5	Confident on practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.	Understand	K2
ES-ME291.CO6	Produce small devices of their interest by assembling different components.	Create	K6

Mapping of COs with POs and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	1	-	-	-	-	1	-	1	-	-	-	-	-	-
CO3	1	-	-	-	-	1	-	1	1	-	-	-	-	-
CO4	1	-	-	ı	-	-	2	-	2	1	1	-	-	1
CO5	1	-	-	ı	-	-	2	-	2	1	1	1	-	-
CO6	1	-	-	-	-	-	2	-	2	1	2	1	-	1
AVG.	1	0	0	0	0	1	2	1	1.75	1	1.333	1	0	1.00

Unit	Content
1	INTRODUCTION TO ENGINEERING DRAWING Principles of Engineering Graphics and their
	significance, usage of Drawing instruments, lettering, Different types of lines and their use; Drawing standards and codes
2	LETTERING, DIMENSIONING, SCALES Plain scale, Diagonal scale and Vernier Scales.
3	GEOMETRICAL CONSTRUCTION AND CURVES Construction of polygons, Conic sections including
	the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid, Involute, Archemedian Spiral.
4	PROJECTION OF POINTS, LINES, SURFACES Principles of Orthographic Projections-Conventions - 1st and 3rd angle projection, Projections of Points and lines inclined to both planes; Projections of planes (Rectangle, pentagon, Hexagon etc.) inclined Planes - Auxiliary Planes.
5	PROJECTION OF REGULAR SOLIDS Regular solids inclined to both the Planes- Auxiliary Views; Draw simple annotation, dimensioning and scale (Cube, Pyramid, Prism, Cylinder, Cone).
6	COMBINATION OF REGULAR SOLIDS, FLOOR PLANS Regular solids in mutual contact with each other like Spheres in contact with cones standing on their base. Floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc.
7	ISOMETRIC PROJECTIONS Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions;
8	SECTIONS AND SECTIONAL VIEWS OF RIGHT ANGULAR SOLIDS Prism, Cylinder, Pyramid, Cone – Auxiliary Views; Development of surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone; Draw the sectional orthographic views of geometrical solids, objects from industry and dwellings (foundation to slab only)
9	OVERVIEW OF COMPUTER GRAPHICS, CUSTOMISATION& CAD DRAWING listing the computer technologies that impact on graphical communication, Demonstrating knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and compound Solids]; Set up of the drawing page and the printer, including scale settings, Setting up of units and drawing limits; ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles;
10	ANNOTATIONS, LAYERING & OTHER FUNCTIONS applying dimensions to objects, applying annotations to drawings; 10 Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command; orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation, Computer- aided design (CAD) software modeling of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises. Dimensioning guidelines, tolerancing techniques; dimensioning and scale multi views of dwelling;
11	DEMONSTRATION OF A SIMPLE TEAM DESIGN PROJECT Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid- modeling software for creating associative models at the component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modelling (BIM)

Draft Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title:Language Laboratory	Code: HM-HU291
Type of Course: Practical	Course Designation: Compulsory
Semester: 2 nd	Contact Hours: 2P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks
Writer: Course Coordinator	Approved by HoD (convenor of DAB)

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level		
HM-HU291.CO1	HM-HU291.CO1 Understand and apply English Speech Sounds for enhancing English Communication				
HM-HU291.CO2	Apply	К3			
НМ-НU291. СО3	Apply	К3			
НМ-НU291.СО4	Apply Writing Skill of English in Academics and in Profession	Apply	К3		
НМ-НU291. СО5	Apply Grammar Skill of English in Academic and in Professional Communication	Apply	К3		
НМ-НU291.СО 6	Apply Critical Thinking Skill of English in Academic and in professionional Communication	Apply	К3		

Mapping of COs with POs and PSOs (Course Articulation Matrix):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	2	-	2	1	3	-	2	1	1
CO2	2	2	2	2	2	2	-	2	1	3	-	2	1	1
CO3	2	2	2	2	2	2	-	2	1	3	-	2	1	1
CO4	2	2	2	2	2	2	ı	2	1	3	-	2	1	1
CO5	2	2	2	2	2	2	ı	2	1	3	-	2	1	1
CO6	2	2	2	2	2	2	ı	2	1	3	-	2	1	1
AVG.	2	2	2	2	2	2	0	2	1	3	0	2	1	1

Unit	Content
1	Honing 'Listening Skill' and its sub skills through Language Lab Audio device;
2	Honing 'Speaking Skill' and its sub skills
3	Helping them master Linguistic/Paralinguistic features (Pronunciation/Phonetics/ Voice modulation/ Stress/
	Intonation/ Pitch &Accent) of connected speech
4	Honing 'Conversation Skill' using Language Lab Audio –Visual input; Conversational Practice Sessions (Face
	to Face / via Telephone, Mobile phone & Role Play Mode)
5	Introducing 'Group Discussion' through audio -Visual input and acquainting them with key strategies for
	success
6	G D Practice Sessions for helping them internalize basic Principles (turn- taking, creative intervention, by
	using correct body language, courtesies & other soft skills) of GD
7	Honing 'Reading Skills' and its sub skills using Visual / Graphics/ Diagrams / Chart Display/Technical/Non
	Technical Passages Learning Global / Contextual / Inferential Comprehension;
8	Honing 'Writing Skill' and its sub skills by using Language Lab Audio –Visual input; Practice Sessions

Draft Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

SEMESTER — III THEORY

Course Title: Analog and Digital Electronics	Code: ESC 301
Type of Course: Theory	Course Designation: Compulsory
Semester: 3 rd	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcome	Details	Action Verb	Knowledge Level
ESC 301.CO1	Explain Different Classes of Amplifiers – (Class–A, B, AB and C, power, efficiency; Summarize the basic concepts of Feedback and Oscillation. Demonstrate Phase Shift, Wein Bridge oscillators Astable & Monostable Multivibrators; Schimtt Trigger circuits, 555 Timer.	Explain	К2
ESC 301.CO2	Define the basic concepts of Boolean algebra, binary number system. 1's and 2's complement methods, Binary arithmetic. Define the representation in SOP and POS forms;	Define	К1
ESC 301.CO3	Demonstrate the concept of Minimization of logic using algebraic and k-map. Build various combinational circuits like Adder and Subtractor circuits, Encoder, Decoder, Comparator, Multiplexer, De-Multiplexer and Parity Generator.	Demonstrate	К2
ESC 301.CO4	Explain Sequential Circuits – Basic Flip-flop & Latch, Flip-flops – SR, JK, D, T and JK Master–slave Flip Flops.	Explain	K2
ESC 301.CO5	Build Registers (SISO, SIPO, PIPO, PISO) Ring counter, Johnson counter, Synchronous and Asynchronous counters, Mod N Counter.	Build	К6
ESC 301.CO6	Explain A/D and D/A conversion techniques — Basic concepts (D/A :R—2-R only A/D: successive approximation). Explain Logic families—TTL, ECL, MOS and CMOS—basic concepts.	Explain	K2

Unit	Content	Hrs/Unit
1	Different Classes of Amplifiers – (Class–A, B, AB and C – basic concepts, power, efficiency; Recapitulation of basic concepts of Feedback and Oscillation, Phase Shift, Wein Bridge oscillators Astable & Monostable Multivibrators; Schmitt Trigger circuits, 555 Timer	1
2	Binary Number System & Boolean Algebra (recapitulation); BCD, ASCII, EBDIC, Gray codes and their conversions; Signed binary number representation with 1's and 2's complement methods, Binary arithmetic, Venn diagram, Boolean algebra (recapitulation); Representation in SOP and POS forms; Minimization of logic expressions by algebraic method. Combinational circuits – Adder and Subtractor circuits (half & full adder & subtractor); Encoder, Decoder, Comparator, Multiplexer, De Multiplexer and Parity Generator	
3	Sequential Circuits – Basic Flip–flop & Latch, Flip–flops –SR, JK, D, T and JK Master–slave Flip Flops, Registers (SISO, SIPO, PIPO, PISO) Ring counter, Johnson counter Basic concept of Synchronous and Asynchronous counters (detail design of circuits excluded), Design of Mod N Counter	
4	A/D and D/A conversion techniques — Basic concepts (D/A :R-2-R only [2L] A/D: successive approximation [2L]) Logic families— TTL, ECL, MOS and CMOS — basic concepts. (2L)	6

Draft Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Data Structure & Algorithms	Code: PCC-CS301
Type of Course: Theory	Course Designation: Compulsory
Semester: 3 rd	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CS301.CO1	Construct algorithms from problems.	Construct	К3
PCC-CS301.CO2	Understand the basics of abstract data types.	Understand	K2
PCC-CS301.CO3	Categorize the property of linear and nonlinear data structures.	Categorize	К4
PCC-CS301.CO4	Learn the use of Tree and graph.	Learn	К3
PCC-CS301.CO5	Compare different shorting and searching methods.	Compare	K5
PCC-CS301.CO6	Learn the use of hashing.	Learn	К3

Unit	Content	Hrs/Unit
1	Introduction: Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion,	10
	deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space trade off.	
	Searching: Linear Search and Binary Search Technique sand their complexity analysis.	
2	Stacks and Queues: ADT Stack and its operations: Algorithms and their complexity analysis, Applications	9
	of Stacks: Expression Conversion and evaluation $-$ corresponding algorithms and complexity analysis.	
	ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority	
	Queue; Operations on each types of Queues: Algorithms and their analysis.	
3	Linked Lists: Singly linked lists: Representation in memory, Algorithms of several operations: Traversing,	10
	Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header	
	nodes, Doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations	
	their algorithms and the complexity analysis. Trees: Basic Tree Terminologies, Different types of Trees:	
	Binary Tree, Threaded Binary Tree, Binary Search Tree, AVL Tree; Tree operations on each of the trees	
	and their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+ Tree: definitions,	
	algorithms and analysis	
4	Sorting and Hashing: Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort,	9
	Insertion Sort, Quick Sort, Merge Sort, Heap Sort; Performance and Comparison	
	among all the methods, Hashing. Graph: Basic Terminologies and Representations, Graph search and	
	traversal algorithms and complexity analysis.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title:Discrete Mathematics	Code: PCC-CSIT301
Type of Course: Theory	Course Designation: Compulsory
Semester: 3 rd	Contact Hours: 3L+1T/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CS301.CO1	Define fundamental mathematical concepts such as sets, relations, functions, and integers.	Define	К1
PCC-CS301.CO2	Demonstrate induction hypotheses and simple induction proofs.	Demonstrate	K2
PCC-CS301.CO3	Solve numbers of possible outcomes of elementary combinatorial processes such as permutations and combinations.	Solve	КЗ
PCC-CS301.CO4	Explain a logic sentence in terms of predicates, quantifiers, and logical connectives.	Explain	К2
PCC-CS301.CO5	Classify algebraic structure for a given mathematical problem.	Classify	K4
PCC-CS301.CO6	Apply graph theory models of data structures and state machines to solve problems of connectivity and constraint satisfaction.	Apply	кз

Unit	Content	Hrs/Unit
1	Sets, Relation and Function: Operations and Laws of Sets, Cartesian Products, Binary Relation, Partial	8
	Ordering Relation, Equivalence Relation, Image of a Set, Sum and Product of Functions, Bijective	
	functions, Inverse and Composite Function, Size of a Set, Finite and infinite Sets, Countable and	
	uncountable Sets, Cantor's diagonal argument and The Power Set theorem, Schroeder–Bernstein	
	theorem. Principles of Mathematical Induction: The Well- Ordering Principle, Recursive definition, The	
	Division algorithm: Prime Numbers, The Greatest Common Divisor: Euclidean Algorithm, The	
	Fundamental Theorem of Arithmetic	
2	Basic counting techniques-inclusion and exclusion, pigeon-hole principle, permutation and combination	5
3	Propositional Logic: Syntax, Semantics, Validity and Satisfiability, Basic Connectives and Truth Tables,	8
	Logical Equivalence: The Laws of Logic, Logical Implication, Rules of Inference, The use of Quantifiers.	
	Proof Techniques: Some Terminology, Proof Methods and Strategies, Forward Proof, Proof by	
	Contradiction, Proof by Contraposition, Proof of Necessity and Sufficiency	
4	Algebraic Structures and Morphism: Algebraic Structures with one Binary Operation, Semi Groups, Monoids, Groups, Congruence Relation and Quotient Structures, Free and Cyclic Monoids and Groups, Permutation Groups, Substructures, Normal Subgroups, Algebraic Structures with two Binary Operation, Rings, Integral Domain and Fields. Boolean Algebra and Boolean Ring, Identities of Boolean Algebra, Duality, Representation of Boolean Function, Disjunctive and Conjunctive Normal Form	7
5	Graphs and Trees: Graphs and their properties, Degree, Connectivity, Path, Cycle, Sub Graph,	8
	Isomorphism, Eulerian and Hamiltonian Walks, Graph Colouring, Colouring maps and Planar Graphs,	
	Colouring Vertices, Colouring Edges, List Colouring, Perfect Graph, definition properties and Example,	
	rooted trees, trees and sorting, weighted trees and prefix codes, Bi-connected component and	
	Articulation Points, Shortest distances.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Formal Language & Automata Theory	Code: PCC-CSIT302
Type of Course: Theory	Course Designation: Compulsory
Semester: 3 rd	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CS302.CO1	Write a formal notation for strings, languages and machines.	Write	К6
PCC-CS302,CO2	Design finite automata to accept a set of strings of a language.	Design	К6
PCC-CS302.CO3	For a given language determine whether the given language is regular or not	Determine	К5
PCC-CS302.CO4	Design context free grammars to generate strings of context free language.	Design	К6
PCC-CS302.CO5	Determine equivalence of languages accepted by Push Down Automata and languages generated by context free grammars	Determine	К5
PCC-CS302,CO6	Write the hierarchy of formal languages, grammars and machines and Distinguish between computability and non-computability and Decidability and undecidability	Write	К6

Unit	Content	Hrs/Unit
1	Introduction: Alphabet, languages and grammars, productions and derivation, Chomsky hierarchy of languages.	6
2	Regular languages and finite automata: Regular expressions and languages, deterministic finite automata (DFA) and equivalence with regular expressions, nondeterministic finite automata (NFA) and equivalence with DFA, regular grammars and equivalence with finite automata, properties of regular languages, pumping lemma for regular languages, minimization of finite automata)	7
3	Context-free languages and pushdown automata: Context-free grammars (CFG) and languages (CFL), Chomsky and Greibach normal forms, nondeterministic pushdown automata (PDA) and equivalence with CFG, parse trees, ambiguity in CFG, pumping lemma for context-free languages, deterministic push down automata, closure properties of CFLs.	6
4	Context-sensitive languages: Context-sensitive grammars (CSG) and languages, linear bounded automata and equivalence with CSG.	6
5	Turing machines: The basic model for Turing machines (TM), Turing recognizable(recursively enumerable) and Turing-decidable (recursive) languages and their closure properties, variants of Turing machines, nondeterministic TMs and equivalence with deterministic TMs, unrestricted grammars and equivalence with Turing machines, TMsas enumerators	6
6	Undecidability: Church–Turing thesis, universal Turing machine, the universal and diagonalization languages, reduction between languages and Rice's theorem, undecidable problems about languages	6

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Economics for Engineers (Humanities—II) Code: HSMC 301		
Type of Course: Theory	Course Designation: Compulsory	
Semester: 3 rd	Contact Hours: 3L/week	
Continuous Assessment: 25 Marks	Final Exam: 70 Marks	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
HSMC 301.CO1	Understand major principles of economic analysis for decision making among alternative courses of action in engineering.	Understand	К2
HSMC 301.CO2	Apply economic principles to prices and quantities in competitive supply and demand for goods and for money.	Apply	К3
HSMC 301.CO3	Solve economic problems involving comparison and selection of alternatives by using analytical techniques including benefit—cost ratio and breakeven analysis.	Solve	К3
HSMC 301.CO4	Evaluate the effect of inflation, deflation and price change with indexes in Engineering Economic Analysis	Evaluate	К5
HSMC 301.CO5	Analyze the effect of uncertainty in economic analysis by using various concepts like expected value, estimates and simulation	Analyze	К4
HSMC 301.CO6	Understand the concepts of depreciation and replacement analysis and solve associated problems	Understand	K2

Unit	Content	Hrs/Unit
1	1. Economic Decisions Making — Overview, Problems, Role, Decision making process.	9
	2. Engineering Costs & Estimation — Fixed, Variable, Marginal & Average Costs, Sunk Costs, Opportunity	
	Costs, Recurring And Nonrecurring Costs, Incremental Costs, Cash Costs vs Book Costs, Life-Cycle Costs;	
	Types Of Estimate, Estimating Models – Per Unit Model, Segmenting Model, Cost Indexes, Power-Sizing	
	Model, Improvement & Learning Curve, Benefits.	

2	3. Cash Flow, Interest and Equivalence: Cash Flow — Diagrams, Categories & Computation, Time Value of	9
	Money, Debt repayment, Nominal& Effective Interest.	
	4. Cash Flow & Rate of Return Analysis — Calculations, Treatment of Salvage Value, Annual Cash Flow	
	Analysis, Analysis Periods; Internal Rate of Return, Calculating Rate of Return, Incremental Analysis; Best	
	Alternative Choosing an Analysis Method, Future Worth Analysis, Benefit-Cost Ratio Analysis, Sensitivity	
	and Breakeven Analysis. Economic Analysis In The Public Sector –Quantifying And Valuing Benefits &	
	drawbacks.	
3	5. Inflation and Price Change — Definition, Effects, Causes, Price Change with Indexes, Types of Index,	9
	Composite vs Commodity Indexes, Use of Price Indexes In Engineering Economic Analysis, Cash Flows	
	that inflate at different Rates.	
	6. Present Worth Analysis: End-Of-Year Convention, Viewpoint Of Economic Analysis Studies, Borrowed	
	Money Viewpoint, Effect Of Inflation & Deflation, Taxes, Economic Criteria, Applying Present Worth	
	Techniques, Multiple Alternatives.	
	7. Uncertainty In Future Events – Estimates and Their Use in Economic Analysis, Range Of Estimates,	
	Probability, Joint Probability Distributions, Expected Value, Economic Decision	
	Trees, Risk, Risk vs Return, Simulation, Real Options.	
4	8. Depreciation – Basic Aspects, Deterioration & Obsolescence, Depreciation And Expenses, Types Of	9
	Property, Depreciation Calculation Fundamentals, Depreciation And Capital Allowance Methods,	
	Straight-Line Depreciation Declining Balance Depreciation, Common Elements Of Tax Regulations For	
	Depreciation And Capital Allowances.	
	9. Replacement Analysis – Replacement Analysis Decision Map, Minimum Cost Life of a New Asset,	
	Marginal Cost, Minimum Cost Life Problems.	
	10. Accounting $-$ Function, Balance Sheet, Income Statement, Financial Ratios Capital Transactions,	
	Cost Accounting, Direct and Indirect Costs, Indirect Cost Allocation.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

SEMESTER-III

PRACTICAL

Course Title:Analog and Digital Electronics	Code: ESC 391	
Type of Course: Practical	Course Designation: Compulsory	
Semester: 3 rd	Contact Hours: 4P/week	
Continuous Assessment: 40 Marks	Final Exam: 60 Marks	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
ESC 391.CO1	Understand of the fundamental concepts and techniques used in digital electronics.	Understand	K2
ESC 391.CO2	Understand and examine the structure of various number systems and its application in digital design.	Understand	К2
ESC 391.CO3	Apply the basic requirements for a design application and propose a cost effective solution of various combinational circuits.	Apply	КЗ
ESC 391.CO4	Analyze basic requirements for a design application and propose a cost effective solution of various sequential circuits.	Analyze	К4
ESC 391.CO5	Identify and prevent various hazards and timing problems in a digital design for developing skill to build, and troubleshoot in digital circuits.	Identify	КЗ
ESC 391.CO6	Design and examine the structure of analog circuits and verify its operations.	Design	К6

Unit	Content
1	Analog Electronics
	1 Design a Class A amplifier
	2 Design a Phase–Shift Oscillator
	3 Design of a Schmitt Trigger using 555 timer
2	Digital Electronics
	4 Design a Full Adder using basic gates and verify its output / Design a Full Subtractor circuit using basic gates and verify its
	output.
	5 Construction of simple Decoder & Multiplexer circuits using logic gates.
	6 Realization of RS / JK / D flip flops using logic gates
	7 Design of Shift Register using J-K / D Flip Flop
	8 Realization of Synchronous Up/Down counter
	9 Design of MOD- N Counter 10 Study of DAC

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Data Structure & Algorithm Lab Code: PCC-CS391		
Type of Course: Practical	Course Designation: Compulsory	
Semester: 3 rd	Contact Hours: 4P/week	
Continuous Assessment: 40 Marks	Final Exam: 60 Marks	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CS391.CO1	Construct algorithms from problems.	Construct	КЗ
PCC-CS391.CO2	Understand the basics of Stack, Queue.	Understand	K2
PCC-CS391.CO3	Categorize the necessarily of linked list and array implementation.	Categorize	К4
PCC-CS391.CO4	Learn the real life use of Tree and graph.	Learn	КЗ
PCC-CS391.CO5	Compare different shorting and searching methods.	Compare	К5
PCC-CS391.CO6	Understand the implementation mechanism of shorting and searching.	Understand	К2

Unit	Content
1	Linear Data Structure
	1 Implementation of array operations
	2 Stacks and Queues: adding, deleting elements Circular Queue: Adding & deleting elements
	3 Merging Problem: Evaluation of expressions operations on Multiple stacks & queues:
	4 Implementation of linked lists: inserting, deleting, inverting a linked list. Implementation of stacks & queues
	using linked lists
	5 Polynomial addition, Polynomial multiplication
2	Non Linear Data Structure
	6 Recursive and Non-recursive traversal of Trees
	7 Threaded binary tree traversal. AVL tree implementation
	8 Application of Trees. Application of sorting and searching algorithms
	9 Hash tables implementation: searching, inserting and deleting, searching & sorting techniques.

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: IT Workshop	Code: PCC-CS393	
Type of Course: Practical	Course Designation: Compulsory	
Semester: 3 rd	Contact Hours: 4P/week	
Continuous Assessment: 40 Marks	Final Exam: 60 Marks	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CS393.CO1	Interpret the basic syntax of python variables, datatypes and operator in python and	Interpret	К2
PCC-CS393,CO2	Make use of conditional and control flow statement in python fluently.	Make use of	КЗ
PCC-CS393,CO3	Define the use of string and list datatype in proficiency level.	Define	К1
PCC-CS393.CO4	Discover the method to create and manipulation of python data structure like tuple and dictionary.	Discover	К4
PCC-CS393.CO5	Explain the use of python function and uses of different modules in python.	Explain	К5
PCC-CS393,CO6	Discuss the concepts of object oriented programming like exception handling.	Discuss	К6

University Syllabus:

Programming with Python

Unit	Content	
1	Introduction History, Features, Setting up path, Working with Python, Basic Syntax, Variable and Data Types,	
	Operator	
2	Conditional Statements If, If– else, Nested if–else, Looping, For, While, Nested loops	
3	Control Statements Break, Continue, Pass	
4	String Manipulation Accessing Strings, Basic Operations, String slices, Function and Methods	
5	Lists Introduction, Accessing list, Operations, Working with lists, Function and Methods	
6	Tuple Introduction, Accessing tuples, Operations, Working, Functions and Methods	
7	Dictionaries Introduction, Accessing values in dictionaries, Working with dictionaries, Properties	
8	Functions Defining a function, Calling a function, Types of functions, Function Arguments, Anonymous functions,	
	Global and local variables	
9	Modules Importing module, Math module, Random module, Packages, Composition, Input-Output Printing	
	on screen, Reading data from keyboard, Opening and closing file, Reading and writing files, Functions	
10	Exception Handling Exception, Exception Handling, Except clause, Try? finally clause, User Defined Exceptions.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

SEMESTER-IV

THEORY

Course Title: Computer Organisation	Code: PCC-CSIT401
Type of Course: Theory	Course Designation: Compulsory
Semester: 4 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details		Knowledge Level
PCC-CSIT401.CO1	Illustrate the history of modern computers and the Von Neumann architecture.	Illustrate	К2
PCC-CSIT401.CO2	Demonstrate basic number systems, Binary numbers, representation of signed and unsigned numbers, Floating point representation.	Demonstrate	К2
PCC-CSIT401.CO3	PCC-CSIT401.CO3 Define addressing modes, instruction formats.		K1
PCC-CSIT401.CO4	PCC-CSIT401.CO4 Distinguish the organization of various parts of a system memory hierarchy i.e. cache memory , virtual memory etc.		К4
PCC-CSIT401.CO5 Classify basics of systems topics like, single-cycle (MIPS), multi-cycle (MIPS), parallel, pipelined, superscalar, and RISC/CISC architectures.		Classify	К4
PCC-CSIT401.CO6	Define different control unit operations and I/O organization.	Define	K1

Unit	Content	Hrs/Unit
1	Basic organization of the stored program computer and operation sequence for execution of a program.	8
	Role of operating systems and compiler/assembler. Fetch, decode and execute cycle, Concept of	
	operator, operand, registers and storage, Instruction format. Instruction sets and addressing modes.	
	[7L] Commonly used number systems. Fixed and floating point	
	representation of numbers.[1L]	
2	Overflow and underflow. Design of adders – ripple carry and carry look ahead principles. [3L] Design of	8
	ALU. [1L] Fixed point multiplication – Booth's algorithm. [1L] Fixed point division –	
	Restoring and non-restoring algorithms. [2L] Floating point - IEEE 754 standard. [1L]	
3	Memory unit design with special emphasis on implementation of CPU-memory interfacing. [2L]	10
	Memory organization, static and dynamic memory, memory hierarchy, associative memory. [3L]	
	Cache memory, Virtual memory. Data path design for read/write access. [5L]	
4	Design of control unit – hardwired and microprogrammed control. [3L] Introduction to	10
	instruction pipelining. [2L] Introduction to RISC architectures. RISC vs CISC architectures.	
	[2L] I/O operations – Concept of handshaking, Polled I/O, interrupt and DMA. [3L]	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Computer Networks	Code: PCC- CSIT402
Type of Course: Theory	Course Designation: Compulsory
Semester: 4 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC- CSIT402.CO1	Describe the fundamental concepts of computer networking, Data Communications System and learn its components.	Describe	К1
PCC- CS IT402.CO2	PCC- CS IT402.CO2 Explain the concept of function(s) of each layer of the OSI model and learn about TCP/IP.		К2
PCC- CS IT402.CO3	Identify the different types of network topologies, protocols, networking devices and make concepts about their functions within a network.	Identify	КЗ
PCC- CS IT402.CO4	Simplify building the skills of subnetting and routing mechanisms.	Simplify	К4
PCC- CS IT402.CO5	Justify the different system component parts of the network	Justify	К5
PCC- CS IT402.CO6	Develop an expertise in some specific areas of networking such as the design and learn about maintenance of individual networks	Develop	К6

Unit	Content	Hrs/Unit
1	Data communication Components: Representation of data and its flow Networks, Various Connection	9
	Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless LANs,	
	Connecting LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing – Frequency	
	division, Time division and Wave division, Concepts on spread spectrum.	
2	Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction – Fundamentals,	8
	Block coding, Hamming Distance, CRC; Flow Control and Error control protocols – Stop and Wait, Go	
	back - N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple	
	access protocols –Pure ALOHA, Slotted ALOHA,CSMA/CD,CDMA/CA	
3	Network Layer: Switching, Logical addressing — IPV4, IPV6; Address mapping — ARP, RARP, BOOTP	14
	and DHCP—Delivery, Forwarding and Unicast Routing protocols.	
4	Transport Layer: Process to Process Communication, User Datagram Protocol (UDP),	8
	Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoSimproving	
	techniques: Leaky Bucket and Token Bucket algorithm.	
5	Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP),	8
	WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Compiler Design	Code: PCC-CSIT403
Type of Course: Theory	Course Designation: Compulsory
Semester: 4 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CSIT403.CO1	Understand and list the different stages in the process of compilation.	Understand	К2
PCC- CSIT403.CO2	Identify different methods of lexical analysis	Identify	К3
PCC- CSIT403.CO3	Design top-down and bottom-up parsers	Design	К6
PCC- CSIT403.CO4	Identify synthesized and inherited attributes	Identify	КЗ
PCC- CSIT403.CO5	Develop syntax directed translation schemes	Develop	КЗ
PCC- CSIT403.CO6	Develop algorithms to generate code for a target machine	Develop	К6

Unit	Content	Hrs/Unit
1	Introduction to Compiling [3L] Compilers, Analysis of the source program, The phases of the compiler,	3
	Cousins of the compiler	
2	Lexical Analysis [6L] The role of the lexical analyzer, Tokens, Patterns, 6 Lexemes, Input buffering,	6
	Specifications of a token, Recognition of a tokens, Finite automata, From a regular expression to an NFA,	
	From a regular expression to NFA, From a regular expression to DFA,	
	Design of a lexical analyzer generator (Lex).	
3	Syntax Analysis [9L] The role of a parser, Context free grammars, Writing a grammar, Top down Parsing,	9
	Nonrecursive Predictive parsing (LL), Bottom up parsing, Handles, Viable prefixes, Operator precedence	
	parsing, LR parsers (SLR, LALR), Parser generators (YACC).	
	Error Recovery strategies for different parsing techniques.	
4	Syntax directed translation [5L] Syntax director definitions, Construction of syntax trees, Bottom-	5
	up evaluation of S attributed definitions, L attributed definitions, Bottom–up evaluation of inherited	
	attributes.	
5	Type checking [4L] Type systems, Specification of a simple type checker, Equivalence of type expressions, Type conversions	4
6	Run time environments [5L] Source language issues (Activation trees, Control stack, scope of declaration,	5
	Binding of names), Storage organization (Subdivision of run-time memory, Activation records), Storage	
	allocation strategies, Parameter passing (call by value, call by	
	reference, copy restore, call by name), Symbol tables, dynamic storage allocation techniques	
7	Intermediate code generation [4L] Intermediate languages, Graphical representation, Three-	4
	address code, Implementation of three address statements (Quadruples, Triples, Indirect triples).	
8	Code optimization [5L] Introduction, Basic blocks & flow graphs, Transformation of basic blocks,	5
	Dag representation of basic blocks, The principle sources of optimization, Loops in flow	
	graph, Peephole optimization.	

9	Code generations [4L] Issues in the design of code generator, a simple code generator, Register allocation	4
	& assignment	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Design and Analysis of Algorithms	Code: PCC-CS404
Type of Course: Theory	Course Designation: Compulsory
Semester: 4 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CS404.CO1	Analyse the complexities of different algorithms.	Analyze	K4
PCC-CS404.CO2	Develop the algorithm techniques (example Divide & Conquer, Dynamic Programming etc) to solve different mathematical models.	Develop	КЗ
PCC-CS404.CO3	Illustrate the techniques of Greedy paradigm, Branch and Bound, Backtracking etc and compare and contrast them.	Illustrate	К2
PCC-CS404.CO4	Discuss the types of Minimal spanning tree and traversal algorithm with their applications.	Discuss	К6
PCC-CS404.CO5	Understand the variations among tractable and intractable problems to introduce polynomial and non–polynomial reduction.	Understand	К2
PCC-CS404.CO6	Explain the randomized algorithms and approximation algorithms to illustrate their applications.	Explain	К5

Unit	Content	Hrs/Unit
1	Introduction: Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity	8
	bounds — best, average and worst—case behavior; Performance measurements of Algorithm, Time and	
	space trade-offs, Analysis of recursive algorithms through recurrence relations: Substitution method,	
	Recursion tree method and Masters' theorem.	
2	Fundamental Algorithmic Strategies: Brute-Force, Greedy, Dynamic Programming, Branch and-	8
	Bound and Backtracking methodologies for the design of algorithms; Illustrations of these	
	techniques for Problem-Solving, Bin Packing, Knap Sack TSP. Heuristics —characteristics and their application domains.	
3	Graph and Tree Algorithms: Traversal algorithms: Depth First Search (DFS) and Breadth First Search	6
	(BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting,	
	Network Flow Algorithm.	
4	Tractable and Intractable Problems: Computability of Algorithms, Computability classes — P,NP, NP-	10
	complete and NP-hard. Cook's theorem, Standard NP-complete problems and	
	Reduction techniques.	
5	Advanced Topics: Approximation algorithms, Randomized algorithms, Class of problems beyond NP	6
	- P SPACE	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Biology	Code: BSC 401	
Type of Course: Theory	Course Designation: Compulsory	
Semester: 4 th	Contact Hours: 2L+1T/week	
Continuous Assessment: 25 Marks	Final Exam: 70 Marks	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
BSC 401.CO1	Describe with examples the biological observations lead to major discoveries	Describe	К1
BSC 401.CO2	Explain the classification of kingdom and building blocks of life, classification at cellular, energy and excretory level, habitat, study of model organisms, explain techniques of biophysics to study biological phenomena, cancer diagnosis and treatment.	Explain	К2
BSC 401CO3	Identify DNA as genetic material in the molecular basis of information transfer	Identify	КЗ
BSC 401.CO4	Analyze biological processes at the reductionistic level.	Analyze	К4
BSC 401.CO5	Apply thermodynamic principles to biological systems.	Apply	КЗ
BSC 401.CO6	Identify microorganism	Identify	К3

Unit	Content	Hrs/Unit	
1	To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry Bring	2	
	out the fundamental differences between science and engineering by drawing a comparison between eye		
	and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent		
	scientific discipline. Why we need to study biology? Discuss how biological observations of 18th		
	Century that lead to major discoveries. Examples from Brownian motion and the origin of		
	thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These		
	examples will highlight the fundamental importance of observations in any scientific inquiry.		
2	The underlying criterion, such as morphological, biochemical or ecological be highlighted. Hierarchy of	3	
	life forms at phenomenological level. A common thread weaves this hierarchy Classification. Discuss		
	classification based on (a) cellularity– Unicellular or multicellular (b) ultrastructure– prokaryotes or		
	eucaryotes. (c) energy and Carbon utilisation –Autotrophs, heterotrophs, lithotropes (d) Ammonia		
	excretion — aminotelic, uricoteliec, ureotelic (e) Habitata— acquatic or terrestrial (e) Molecular		
	taxonomy– three major kingdoms of life. A given organism can come under different category based on		
	classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D.		
	Melanogaster, C. elegance, A. Thaliana, M. musculus		
3	To convey that "Genetics is to biology what Newton's lawsaretoPhysicalSciences" Mendel's laws, Concept	4	
	of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction,		
	Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of		
	cell division nor the phases but how genetic material passes from parent to offspring. Concepts of		

	recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics.	
4	Biomolecules: To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.Two carbon units and lipids	4
5	Enzymes: To convey that without catalysis life would not have existed on earth Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis.	4
6	Information Transfer:The molecular basis of coding and decoding genetic information is universal Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structure— from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and Recombination	4
7	Macromolecular analysis: How to analyse biological processes at the reductionist level Proteins–structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements	5
8	Metabolism: The fundamental principles of energy transactions are the same in physical and biological world. Thermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keqand its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge	4
9	Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.	3

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Environmental Sciences	Code: MC-401	
Type of Course: Theory	Course Designation: Compulsory	
Semester: 4 th	Contact Hours: 1L/week	
Continuous Assessment: 25 Marks	Final Exam: 70 Marks	
Course Coordinator:	Approved by HoD (convenor of DAB)	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
BSC 401.CO1	Resolve different open–ended problems related to air pollution acquiring the detailed knowledge about source, effect and mechanism of the pollution.	Resolve	КЗ
BSC 401.CO2	Solve various societal problems related to land pollution after detailed understanding about source, effect and mechanism of the pollution	Solve	КЗ
BSC 401CO3	Conceive the basic of the need of natural resource management, environmental protection and population control. Extend the knowledge as well as the consciousness related to environmental issues to the society considering the related laws, acts and legislations	Conceive	K2
BSC 401.CO4	Acquire skills for scientific problem-solving related to air, water, noise& land pollution.	Acquire	K1
BSC 401.CO5	Determine the issues related to noise pollution after studying the existing situation in detail.	Determine	K5
BSC 401.CO6	Develop awareness about the geographical feature of the country considering biodiversity and the variety of ecological systems present in the nature.	Develop	К6

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Unit	Content	Hrs/Unit
1	Basic ideas of environment, basic concepts, man, society & environment, their interrelationship (1L)	6
	Mathematics of population growth and associated problems, Importance of population study in	
	environmental engineering, definition of resource, types of resource, renewable, non- renewable,	
	potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development.	
	(2L) Materials balance: Steady state conservation system, steady state system with non-conservative	
	pollutants, step function. (1L) Environmental degradation: Natural environmental Hazards like	
	Flood, earthquake, Landslide-causes, effects and control/management; Anthropogenic degradation	
	like Acid rain-cause, effects and control. Nature and scope of Environmental Science and Engineering.	
	(2L)	
2	Elements of ecology: System, open system, closed system, definition of ecology, species,	6
	population, community, definition of ecosystem– components types and function. (1L) Structure and	
	function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic	
	ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain [definition and one	
	example of each food chain], Food web.(2L) Biogeochemical Cycle– definition, significance, flow chart of	
	different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur].(1L)	
	Biodiversity types, importance, Endemic species, Biodiversity Hot-spot, Threats to biodiversity,	
	Conservation of biodiversity.(2L)	
3	Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and	11
	Mesopause. (1L) Energy balance: Conductive and Convective heat transfer, radiation heat transfer,	
	simple global temperature model [Earth as a black body, earth as albedo], Problems.(1L) Green	
	house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea	
	water level, agriculture and marine food. Global warming and its consequence, Control of Global	
	warming. Earth's heat budget.(1L) Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric	
	stability, temperature inversion (radiation inversion).(2L) Atmospheric dispersion: Maximum mixing	
	depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L)	
	Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria	
	pollutant. Sources and effect of different air pollutants – Suspended particulate matter, oxides of carbon,	
	oxides of nitrogen, oxides of sulphur, particulate, PAN. (2L) Smog, Photochemical smog and London	
	smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases,	
	effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and	
	residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic	
	converter, scrubber (ventury), Statement with brief reference).(1L)	
4	Hydrosphere, Hydrological cycle and Natural water. Pollutants of water, their origin and effects: Oxygen	9
	demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, volatile	_
	organic compounds. (2L) River/Lake/ground water pollution: River: DO, 5- day BOD test, Seeded BOD	
	test, BOD reaction rate constants, Effect of oxygen demanding wastes on river [deoxygenation,	
	reaeration], COD, Oil, Greases, pH. (2L) Lake: Eutrophication [Definition, source and effect]. (1L) Ground	
	water: Aquifers, hydraulic gradient, ground water flow (Definition only)(1L) Standard and control: Waste	
	water standard [BOD, COD, Oil, Grease], Water Treatment system [coagulation and flocculation,	
	sedimentation and filtration, disinfection, hardness and alkalinity, softening Waste water treatment	
	system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated	
	sludge, sludge treatment, oxidation ponds] tertiary treatment definition. (2L) Water pollution due to	
	the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic (1L)	
5	Lithosphere; Internal structure of earth, rock and soil (1L) Solid Waste: Municipal, industrial, commercial,	3
	agricultural, domestic, pathological and hazardous solid wastes; Recovery and	
	disposal method- Open dumping, Land filling, incineration, composting, recycling. Solid waste	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

	management and control (hazardous and biomedical waste).(2L)	
6	Definition of noise, effect of noise pollution, noise classification [Transport noise, occupational noise, neighbourhood noise] (1L) Definition of noise frequency, noise pressure, noise intensity, noise threshold limit value, equivalent noise level, L10 (18hr Index) ,n Ld.Noise pollution control.(1L)	3
7	Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/ agreement/ protocol. (2L)	2

Course Title: Introduction to Industrial Management (Humanities III)	Code: HSMC-401
Type of Course: Theory	Course Designation: Compulsory
Semester: 4th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
HSMC-401.CO1	Recall the concepts of Accounting and Recognize different systems used in industrial applications.	Recall	K1
HSMC-401.CO2	Discuss on the design of appropriate accounting tool required for real life problems.	Discuss	К1
HSMC-401.CO3	Apply and demonstrate the use of Economical concepts.	Apply	К3

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

HSMC-401.CO4	Analyze and Simulate a sequential accounting tool for a system or process appropriate for required accuracy.	Analyze	К4
HSMC-401.CO5	Design a sequential economic policy that can work according to the required specifications.	Design	К6
HSMC-401.CO6	Justify a specific accounting technique for an specific purpose.	Justify	K5

Unit	Content	Hrs/Unit
1	Introduction System— concept, definition, types, parameters, variables and behavior. Management—definition and functions. Organization structure: i. Definition. ii. Goals. iii. Factors considered in formulating structure. iv. Types. v. Advantages and disadvantages. vi. Applications. Concept, meaning and importance of division of labor, scalar & functional processes, span of control, delegation of authority, centralization and decentralization in industrial management. Organizational culture and climate—meaning, differences and factors affecting them. Moral-factors affecting moral. Relationship between moral and productivity. Job satisfaction—factors influencing job satisfaction. Important provisions of factory act and labor laws.	6
2	Critical Path Method (CPM) and Programme Evaluation Review Technique (PERT): 2.1 CPM & PERT—meaning, features, difference, applications. 2.2 Understand different terms used in network diagram. Draw network diagram for a real life project containing 10–15 activities, computation of LPO and EPO.(Take minimum three examples). Determination of critical path on network. Floats, its types and determination of floats. Crashing of network, updating and its applications.	8
3	Materials Management: Material management-definition, functions, importance, relationship with other departments. Purchase – objectives, purchasing systems, purchase procedure, terms and forms used in purchase department. Storekeeping– functions, classification of stores as centralized and decentralized with their advantages, disadvantages and application in actual practice. Functions of store, types of records maintained by store, various types and applications of storage equipment, need and general methods for codification of stores. Inventory control: i. Definition. ii. Objectives. iii. Derivation for expression for Economic Order Quantity (EOQ) and numeric examples. iv. ABC analysis and other modern methods of analysis. v. Various types of inventory models such as Wilson's inventory model, replenishment model and two bin model. (Only sketch and understanding, no derivation.). 3.6 Material Requirement Planning (MRP)– concept, applications and brief details about software packages available in market.	6
4	Production planning and Control (PPC): Types and examples of production. PPC: i. Need and importance. ii. Functions. iii. Forms used and their importance. iv. General approach for each type of production. Scheduling— meaning and need for productivity and utilisation. Gantt chart— Format and method to prepare. Critical ratio scheduling— method and numeric examples. Scheduling using Gantt Chart (for at least 5–7 components having 5–6 machining operations, with processes, setting and operation time for each component and process, resources available, quantity and other necessary data), At least two examples. 4.7 Bottlenecking— meaning, effect and ways to reduce.	8
5	Value Analysis (VA) and Cost Control: 5.1 VA-definition, terms used, process and importance. VA flow diagram. DARSIRI method of VA. Case study of VA-at least two. Waste-types, sources	4

	and ways to reduce them. Cost control-methods and important guide lines.	
6	Recent Trends in IM: ERP (Enterprise resource planning) – concept, features and applications. Important features of MS Project. Logistics – concept, need and benefits. Just in Time (JIT) – concept and benefits. Supply chain management – concept and benefits.	4

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

SEMESTER - IV PRACTICAL

Course Title: Design & Analysis Algorithm Lab	Code: PCC-CS494
Type of Course: Practical	Course Designation: Compulsory
Semester: 4 th	Contact Hours: 4P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CS494.CO1	Analyse different types of applications of Divide & Conquer techniques	Analyze	К4
PCC-CS494.CO2	Understanding to implement Dynamic Programming techniques	Understand	К2
PCC-CS494,CO3	Examine to implement knapsack, Job sequencing with deadlines, Prim's and Kruskal's algorithms by using greedy method	Examine	К4
PCC-CS494,CO4	Discuss the implementation of the N-Queen and Graph Coloring Problem by using Backtracking	Discuss	К6
PCC-CS494.CO5	Develop 15 Puzzle problem by using Branch & Bound	Develop	КЗ
PCC-CS494.CO6	Explain the way of implementation of BFS and DFS by using Graph Traversal Algorithms	Explain	K2

Unit	Content
1	Divide and Conquer:
	1 Implement Binary Search using Divide and Conquer approach Implement Merge Sort using Divide and Conquer
	approach
	2 Implement Quick Sort using Divide and Conquer approach Find Maximum and Minimum element from a array of
	integer using Divide and Conquer approach
	3 Find the minimum number of scalar multiplication needed for chain of matrix
	4 Implement all pair of Shortest path for a graph (Floyed– Warshall Algorithm) Implement Traveling Salesman Problem
	5 Implement Single Source shortest Path for a graph (Dijkstra , Bellman Ford Algorithm
2	Brunch and Bound:
	6 Implement 15 Puzzle Problem
3	Backtracking:
	7 Implement
	8 Queen problem 8 Graph Coloring Problem Hamiltonian Problem
4	Greedy method
	9 Knapsack Problem Job sequencing with deadlines
	10 Minimum Cost Spanning Tree by Prim's Algorithm Minimum Cost Spanning Tree by Kruskal's Algorithm
5	Graph Traversal Algorithm:
	11 Implement Breadth First Search (BFS) Implement Depth First Search (DFS)

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Computer Organization Lab	Code: PCC-CSIT491
Type of Course: Practical	Course Designation: Compulsory
Semester: 4 th	Contact Hours: 4P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CSIT491.CO1	Understand the behaviour of logic gates.	Understand	K2
PCC- CSIT491.CO2	Design combinational circuits for basic components of computer system and Applications.	Design	К6
PCC- CSIT491.CO3	Analyze the operational behaviour and applications of various flip-flop.	Analyze	К4
PCC- CSIT491.CO4	Implement Arithmetic logic units and different types of memory blocks.	Implement	КЗ
PCC- CSIT491.CO5	Design to cascade multiple RAM chips for vertical and horizontal expansion.	Design	К6
PCC- CSIT491.CO6	Implement Carry-Look-Ahead Adder and BCD adder circuit.	Implement	КЗ

Unit	Content
1	Familiarity with IC-chips: a) Multiplexer, b) Decoder, c) Encoder b) Comparator Truth Table verification and
	clarification from Data–book.
2	Design an Adder/Subtractor composite unit.
3	Design a BCD adder.
4	Design of a 'Carry-Look-Ahead' Adder circuit.
5	Use a multiplexer unit to design a composite ALU
6	Use ALU chip for multibit arithmetic operation
7	Implement read write operation using RAM IC
8	(a) & (b) Cascade two RAM ICs for vertical and horizontal expansion.

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

SEMESTER-V

THEORY

Course Title: Software Engineering	Code: ESC501
Type Of Course: Theory	Course Designation: Compulsory
Semester: 5 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
ESC501.CO1	Identify and define the various phases of lifecycle for a given project and the appropriate process model depending on the user requirements in order to develop a cost effective software product.	the appropriate process model depending r requirements in order to develop a cost	
ESC501.CO2	Distinguish between a structure chart and a flow chart and Identify the activities carried out during transform.	Distinguish	К4
ESC501.CO3	Choose between the coding style(structured or OO)and Perform Code review, Code analysis, build process	Choose	КЗ
ESC501.CO4	Judge appropriate software testing techniques to the quality of a software product at modules, integration, and system granularity levels.	Judge	K5
ESC501.CO5	Apply the principles, processes and main knowledge areas for Software Project Management	Apply	КЗ
ESC501.CO6	Design different types of UML diagram with knowledge when and why use a particular type of dig based on the software product requirements	Design	К6

Unit	Content	Hrs/Unit
1	Overview of System Analysis & Design , Business System Concept, System Development Life Cycle, Waterfall Model , Spiral Model, Feasibility Analysis, Technical Feasibility, Cost–Benefit Analysis, COCOMO model. [10L]	10
2	System Design — Context diagram and DFD, Problem Partitioning, Top-Down And Bottom-Up design; Decision tree, decision table and structured English; Functional vs. Object-Oriented approach. [5L]	5
3	Coding & Documentation — Structured Programming, OO Programming, Information Hiding, Reuse, System Documentation. [4L] Testing — Levels of Testing, Integration Testing, Test case Specification, Reliability Assessment, Validation & Verification 12 Metrics, Monitoring & Control. [8L]	12
4	Software Project Management — Project Scheduling, Staffing, Software Configuration Management, Quality Assurance, Project Monitoring. [7L]	7
5	Static and dynamic models, why modeling, UML diagrams: Class diagram, interaction diagram: collaboration diagram, sequence diagram, state chart diagram, activity diagram, implementation diagram. [10 L]	10

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title:Computer Architecture	Code: PCC-CSIT501
Type of Course: Theory	Course Designation: Compulsory
Semester: 5 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CSIT501.CO1	Understand The basic of Computer architecture	Understand	K2
PCC-CSIT501.CO2	Discuss the Pipelining technique of Computer architecture	Discuss	К6
PCC-CSIT501.CO3	Illustrate Different memory management technology	Illustrate	K2
PCC-CSIT501.CO4	Develop The Instruction level parallelism	Develop	К3
PCC-CSIT501.CO5	Analyze array and vector processors.	Analyze	K4
PCC-CSIT501.CO6	Explain the multiprocessor architecture and different taxonomy	Explain	К5

Unit	Content	Hrs/Unit
1	Introduction: Review of basic computer architecture (Revisited), Quantitative techniques in computer	12
	design, measuring and reporting performance. (3L) Pipelining: Basic concepts, instruction and	
	arithmetic pipeline, data hazards, control hazards and structural hazards, techniques for handling	
	hazards. Exception handling. Pipeline optimization techniques; Compiler techniques for improving performance. (9L)	
2	Hierarchical memory technology: Inclusion, Coherence and locality properties; Cache memory organizations, Techniques for reducing cache misses; Virtual memory organization, mapping	8
	and management techniques, memory replacement policies. (8L)	
3	Instruction-level parallelism: basic concepts, techniques for increasing ILP, superscalar, super- pipelined and VLIW processor architectures. Array and	6
4	Multiprocessor architecture: taxonomy of parallel architectures; Centralized shared—memory architecture: synchronization, memory consistency, interconnection networks. Distributed shared—	7
	memory architecture. Cluster computers.(8L) Non von Neumann architectures: data	
	flow computers, reduction computer architectures, systolic architectures. (4L)	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Operating Systems	Code: PCC-CS502
Type Of Course: Theory	Course Designation: Compulsory
Semester: 5 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CS502.CO1	Demonstrate the concepts of Operating System Services, System calls, structure and types.	Demonstrate	К2
PCC-CS502.CO2	Discuss processes and threads for multiprogramming and multi-threading.	Discuss	К6
PCC-CS502,CO3	Develop algorithms for process scheduling for a given specification of CPU utilization, Throughput, Turnaround Time, Waiting Time, Response	Develop	КЗ
PCC-CS502.CO4	Explain algorithmic solutions to process synchronization problems for Inter–Process communication	Explain	К5
PCC-CS502.CO5	Analyse the necessary conditions for Deadlock avoidance and prevention to solve them.	Analyze	К6
PCC-CS502.CO6	Explain Memory management, Virtual Memory, I/O Hardware, File and Disk Management system.	Explain	К2

Unit	Content	Hrs/Unit
1	Introduction: Generations Concept of Operating Operating systems, Systems, Types of 3 Operating Systems, OS Services, System Calls, Structure of an OS – Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System.	3
2	Processes: Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads, Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Preemptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling:RM and EDF.	10

3	Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware	5
	Solution, Strict Alternation, Peterson's Solution, The Producer Consumer Problem,	
	Semaphores, Event Counters, Monitors, Message Passing, Classical	
	IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem.	
4	Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock	5
	Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and	
	Recovery.	
5	Memory Management: Basic concept, Logical and Physical address map, Memory allocation:	8
	Contiguous Memory allocation— Fixed and variable partition— Internal and External	
	fragmentation and Compaction; Paging: Principle of operation —Page allocation Hardware	
	support for paging, Protection and sharing, Disadvantages of paging. Virtual Memory: Basics of	
	Virtual Memory — Hardware and control structures — Locality of reference, Page fault ,	
	Working Set , Dirty page/Dirty bit — Demand paging, Page Replacement algorithms: Optimal,	
	First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently	
	used(LRU).	
6	I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O Software:	6
	Goals of Interrupt handlers, Device drivers, Device independent I/O software, Secondary-	
	Storage Structure: Disk structure, Disk scheduling algorithms File Management: Concept of	
	File, Access methods, File types, File operation, Directory structure, File System structure,	
	Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked	
	list, grouping), directory implementation (linear list, hash table), efficiency andperformance.	
	Disk Management: Disk structure, Disk scheduling – FCFS, SSTF, SCAN, C-SCAN, Disk	
	reliability, Disk formatting, Boot-block, Bad blocks.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Advance Programming for Real Life Applications	Code: PCC-CSIT502
Type Of Course: Theory	Course Designation: Compulsory
Semester: 5 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CSIT502,CO1	Understand advanced Python programming concepts, including memory management, metaprogramming techniques, concurrency, and parallelism, to enhance software efficiency and maintainability.	Understand	К2
PCC-CSIT502.CO2	Apply object-oriented programming (OOP) principles such as inheritance, polymorphism, encapsulation, and abstraction to design modular, scalable, and reusable software solutions.	Apply	КЗ
PCC-CSIT502.CO3	Implement well-established software design patterns, including creational, structural, and behavioral patterns, to solve complex real-world software development problems.	Implement	К4
PCC-CSIT502.CO4	Analyze software architecture and optimization strategies by profiling code, debugging efficiently, and integrating unit testing to improve code maintainability and scalability.	Analyze	K5
PCC-CSIT502,CO5	Develop real—world software applications using Python, OOP principles, and design patterns, ensuring performance optimization, maintainability, and adherence to industry best practices.	Develop	К6

Unit	Content	Hrs/Unit
1	Advanced Python Programming Concepts - Memory Management in Python: Understanding reference counting, garbage collection mechanisms, memory leaks, and best practices for efficient memory utilization. - Metaprogramming: Using decorators, metaclasses, and dynamic code execution techniques to write flexible and reusable code. - Iterators, Generators, and Coroutines: Implementing iterators for custom object traversal, creating efficient data pipelines using generators, and leveraging coroutines for asynchronous programming. - Concurrency and Parallelism: Exploring multi-threading, multiprocessing, and AsyncIO for writing high-performance, scalable applications that efficiently utilize CPU and I/O operations.	6
2	Object-Oriented Programming (OOP) in Python Core OOP Principles: In-depth study of classes, objects, constructors, destructors, and the principles of inheritance, polymorphism, encapsulation, and abstraction. Magic Methods and Operator Overloading: Implementing dunder methods likestr,repr,eq, and overloading arithmetic/logical operators to customize object behavior. Abstract Classes and Interfaces: Understanding and implementing abstract classes, interfaces, and multiple inheritance for designing extensible and modular applications. SOLID Principles: Applying industry-standard best practices (Single Responsibility, Open-Closed, Liskov Substitution, Interface Segregation, Dependency Inversion) to write clean, maintainable, and scalable code.	10

3	Software Design Patterns in Python - Creational Design Patterns: Implementing Singleton, Factory, and Builder patterns to manage object creation efficiently. - Structural Design Patterns: Using Adapter, Decorator, and Proxy patterns to enhance flexibility in application architecture. - Behavioral Design Patterns: Applying Observer, Strategy, and Command patterns for improved interaction between objects.	8
4	Real-Life Application Development Using Python - Web Development: Building scalable backend applications using Flask and FastAPI, including database integration and API handling. - Data Processing and Analysis: Using Pandas and NumPy for real-time data manipulation, visualization, and analytics in scientific computing and business intelligence applications. - API Development and Integration: Implementing RESTful APIs, GraphQL, and third-party API integrations to enable data exchange between software components. - GUI Development: Designing interactive user interfaces using Tkinter and PyQt for desktop applications.	12
5	Performance Optimization and Code Quality Code Profiling and Optimization: Using profiling tools like cProfile, line_profiler, and memory_profiler to analyze execution time, memory usage, and optimize performance bottlenecks. Debugging and Logging Best Practices: Leveraging Python's built—in debugging tools (pdb) and logging module for efficient debugging and traceability in large applications. Writing Maintainable and Scalable Code: Understanding modular programming, documentation best practices, and refactoring strategies for sustainable software development. Testing Strategies: Implementing unit testing, integration testing, and test—driven development (TDD) using the unittest and pytest frameworks.	6
6	Understand Case Studies and Industry Applications - Real-World Use Cases of OOP and Design Patterns: Exploring case studies from domains like e-commerce, banking, healthcare, and logistics where OOP and design patterns play a crucial role. - Application Development in Finance, Healthcare, and IoT: Developing financial modeling applications, predictive healthcare analytics, and IoT-based automation solutions. - Industry Best Practices for Scalable Software Solutions: Understanding CI/CD pipelines, containerization with Docker, and deployment strategies in enterprise software development.	6

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Theory of Computation	Code: PECIT-501A
Type Of Course: Theory	Course Designation: Compulsory
Semester: 5	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PECIT-501A,CO1	Define a system and recognize the behavior of a system. Minimize a system and compare different systems.	Define	K2
PECIT-501A.CO2	Convert Finite Automata to Regular Expression. Check equivalence between Regular Linear Grammar and Finite Automata.	Convert	КЗ
PECIT-501A,CO3	Minimize Context-Free Grammar and verify the equivalence of CFL and PDA.	Minimize	К4
PECIT-501A.CO4	Design Turing Machines and explore their computational capabilities.	Design	K6
PECIT-501A.CO5	Define a system and recognize the behavior of a system. Minimize a system and compare different systems.	Define	К2

Unit	Content	Hrs/Unit
	Fundamentals of Finite Automata	
	- Basic definition of sequential circuits, block diagrams, mathematical representation, transition table,	
	and transition diagram (relating Automata concepts to sequential circuits).	
	- Design of sequence detectors. Introduction to the finite state model.	
	- Finite State Machine (FSM): Definitions, capabilities, state equivalence, and kth-equivalent concepts.	
	– Merger graph, merger table, compatibility graph.	
	- Finite memory definiteness, testing table, and testing graph.	
1	– Deterministic Finite Automaton (DFA) and Non–Deterministic Finite Automaton (NFA).	13
	– Transition diagrams and language recognizers.	
	– NFA with ϵ –transitions, significance, acceptance of languages.	
	– Conversions and Equivalence: Equivalence between NFA with and without ε–transitions.	
	– NFA to DFA conversion.	
	– Minimization of FSM, Equivalence between two FSMs, Limitations of FSM.	
	- Application of finite automata.	
	– Finite Automata with output: Moore and Mealy machines.	
	Regular Languages and Grammar Formalism	
	- Regular Sets.	
	– Regular Expressions and Identity Rules.	
	- Arden's Theorem: Statement and Proof.	
	- Constructing Finite Automata from Regular Expressions.	
2	- Regular Strings accepted by NFA/DFA.	9
	– Pumping Lemma for Regular Sets.	
	- Closure properties of regular sets (proofs not required).	
	- Grammar Formalism: Regular Grammars—Right Linear and Left Linear Grammars.	
	– Equivalence between Regular Linear Grammar and Finite Automata.	
	– Interconversion of Regular Grammar and Finite Automata.	

	– Introduction to Context–Free Grammar (CFG).	
	- Derivation trees, sentential forms. Right-most and left-most derivations of strings (concept only).	
	Context-Free Grammars and Pushdown Automata (PDA)	
	- Context-Free Grammars (CFG) and Ambiguity in CFG.	
	- Minimization of Context-Free Grammars.	
	– Chomsky Normal Form (CNF) and Greibach Normal Form (GNF).	
	- Pumping Lemma for Context-Free Languages (CFL).	
	– Enumeration of properties of CFL (proofs omitted).	
3	- Closure properties of CFL.	9
	– Ogden's Lemma and its applications.	
	– Pushdown Automata (PDA): Definition and characteristics.	
	- Acceptance of CFL using PDA: Acceptance by final state and acceptance by empty stack (and their	
	equivalence).	
	– Equivalence of CFL and PDA, interconversion (proofs not required).	
	- Introduction to Deterministic Context-Free Languages (DCFL) and Deterministic PDA (DPDA).	
	Turing Machines and Computability	
	- Introduction to Turing Machines (TM): Definition and conceptual model.	
	- Designing simple Turing Machines.	
4	– Computable functions and recursive definitions.	5
	– Church's Hypothesis and Counter Machines.	
	- Types of Turing Machines (proofs not required).	
	- Universal Turing Machine and the Halting Problem.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Signals & Systems	Code: PECCSIT-501A
Type Of Course: Theory	Course Designation: Elective
Semester: 5 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PECCSIT-501A.CO1	Understand the concepts of continuous—time and discrete—time systems and their fundamental properties.	Understand	К2
PECCSIT-501A.CO2	Analyze systems in the complex frequency domain using Fourier, Laplace, and z-transforms.	Analyze	К4
PECCSIT-501A.CO3	Apply the sampling theorem and study its implications, including signal reconstruction and aliasing effects.	Apply	К3
PECCSIT-501A,CO4	Evaluate the behavior of linear time–invariant (LTI) systems and their response to various inputs.	Evaluate	К5

Unit	Content	Hrs/Unit
1	Introduction to Signals and Systems Overview of signals and systems as encountered in various fields of engineering and science. Properties of signals: periodicity, absolute integrability, determinism, and stochastic nature. Important signal types: unit step, unit impulse, sinusoidal, complex exponential, and time-limited signals. Classification of signals: continuous-time vs. discrete-time, continuous-amplitude vs. discrete-amplitude signals. System properties: linearity (additivity and homogeneity), shift-invariance, causality, stability, realizability. Examples of different types of systems.	3
2	Behavior of Continuous and Discrete—Time LTI Systems Impulse response and step response characterization of LTI systems. Convolution and input—output behavior with periodic convergent inputs. Cascade interconnections and system stability considerations. Causality and stability of LTI systems. Differential and difference equation representation of systems. State—space representation of systems: state—space analysis, multi—input multi—output (MIMO) representation. State transition matrix and its significance. Frequency response of LTI systems and its relation to impulse response.	8
3	Fourier, Laplace, and z-Transforms - Fourier series representation of periodic signals and waveform symmetries. - Computation of Fourier coefficients. - Fourier Transform: Convolution/multiplication properties and their impact in the frequency domain.	10

	– Magnitude and phase response analysis, Fourier domain duality.	
	- Discrete-Time Fourier Transform (DTFT) and Discrete Fourier Transform (DFT).	
	– Parseval's theorem and its applications.	
	– Review of the Laplace Transform for continuous–time signals and systems.	
	– System functions, poles, and zeros in Laplace domain analysis.	
	– Solving differential equations using Laplace transforms.	
	– Introduction to the z–Transform for discrete–time signals and systems.	
	– System functions, poles, and zeros of discrete–time systems.	
	 Analysis of discrete-time systems using z-transforms. 	
	Sampling Theorem and its Implications	
	– Fundamentals of the sampling theorem and its mathematical derivation.	
	- Frequency domain representation of sampled signals.	
	- Signal reconstruction techniques: ideal interpolator, zero-order hold, and first-order hold.	
4	- Aliasing effects and their mitigation strategies.	9
	 Relationship between continuous-time and discrete-time systems. 	
	- Applications of signal and system theory: modulation techniques in communication, filtering	
	applications, and feedback control systems.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Mobile Computing	Code: PEC-CSIT501B
Type of Course: Theory	Course Designation: Elective
Semester: 5 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-CSIT501B.CO1	Analyze the Personal Communication service and GSM architecture	Analyze	К4
PEC-CSIT501B.CO2	Develop the concept of GPRS architecture and WLAN standard	Develop	КЗ
PEC-CSIT501B.CO3	Illustrate the WLL structure and the concept of WAP protocol.	Illustrate	К2
PEC-CSIT501B.CO4	Discuss the 3G mobile services	Discuss	K1
PEC-CSIT501B.CO5	Understand the concept of Global Mobile Satellite Systems and its case studies	Understand	К2
PEC-CSIT501B.CO6	Explain the Server-side programming in Java and Pervasive web application architecture	Explain	К2

	, ,	
Unit	Content	Hrs/Unit
1	Introduction to Personal Communications Services (PCS): PCS Architecture, Mobility	5
	management, Networks signalling. Global System for Mobile Communication (GSM)	
	system overview: GSM Architecture, Mobility management, Network signalling.	
2	General Packet Radio Services (GPRS): GPRS Architecture, GPRS Network Nodes. Mobile Data	5
	Communication: WLANs (Wireless LANs) IEEE 802.11 standard, Mobile IP.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

3	Wireless Application Protocol (WAP): The Mobile Internet standard, WAP Gateway and Protocols, wireless mark up Languages (WML). Wireless Local Loop(WLL): Introduction to WLL Architecture, wireless Local Loop Technologies.	
4		
5	Global Mobile Satellite Systems; case studies of the IRIDIUM and GLOBALSTAR systems. Wireless Enterprise Networks: Introduction to Virtual Networks, Blue tooth technology, Blue tooth Protocols.	
6	Server-side programming in Java, Pervasive web application architecture, Device independent example application	8

Course Title: Computer Graphics	Code: PEC-IT501D
Type of Course: Theory	Course Designation: Elective
Semester: 5 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-IT501D.CO1	Understand the fundamentals of computer graphics, different graphics systems, and graphics hardware.	Understand	К2
PEC-IT501D.CO2	Apply various scan conversion techniques for drawing lines, circles, and polygons efficiently.	Apply	КЗ
PEC-IT501D.CO3	Analyze 2D and 3D transformations, coordinate transformations, and viewing pipelines.	Analyze	К4
PEC-IT501D.CO4	Implement clipping algorithms for points, lines, polygons, and 3D objects.	Implement	K4
PEC-1T501D.CO5	Evaluate different curve representation techniques, hidden surface elimination methods, and shading models in computer graphics.	Evaluate	К5

	Unit	Content	Hrs/Unit	
--	------	---------	----------	--

	Introduction to Computer Graphics & Graphics Systems		
	- Overview of computer graphics and its applications.		
	Representing pictures: preparing, presenting, and interacting with images for visualization and		
	presentations.		
	- Fundamentals of image processing and visualization techniques.		
	- RGB color model: direct coding and lookup tables.		
	- Graphics display technologies: storage tube graphics display, raster scan display, 3D viewing		
1	devices.		
•	- Graphics hardware: plotters, printers, digitizers, light pens, active and passive graphics devices.	14	
	- Overview of computer graphics software.		
	Scan Conversion Techniques		
	- Point and line drawing methods.		
	- Line drawing algorithms: Digital Differential Analyzer (DDA), Bresenham's line algorithm.		
	- Circle and ellipse generation algorithms.		
	- Polygon filling techniques: scan-line polygon fill, boundary fill algorithm, flood fill algorithm.		
	2D Transformations & Viewing		
	- Basic 2D transformations: translation, rotation, scaling.		
	- Matrix representation and homogeneous coordinates.		
	- Coordinate system transformations, reflection, and shear operations.		
	- Transformation of points, lines, parallel and intersecting lines.		
	- Viewing pipeline and window-to-viewport transformations.	20	
2	– Clipping techniques: point clipping, line clipping, polygon clipping.		
_	- Line clipping algorithms: Cohen-Sutherland, Cyrus-Beck.		
	– Polygon clipping: Sutherland–Hodgeman algorithm.		
	3D Transformations & Viewing		
	- Basic 3D transformations: translation, rotation, scaling, and other transformations.		
	 Rotation about an arbitrary axis in space, reflection through an arbitrary plane. 		
	– General parallel projection transformations.		
	- Clipping in 3D space, viewport clipping, and 3D viewing.		
	Curves and Surfaces Representation		
	– Introduction to curve representation techniques.		
	– Bezier curves and their properties.		
	– B–spline curves, periodic B–spline curves, and rational B–spline curves.		
	Hidden Surface Elimination		
	– Techniques for removing hidden surfaces and lines.		
3	- Depth comparison, Z-buffer algorithm, Back-face detection.	6	
	- Binary Space Partitioning (BSP) tree method, Painter's algorithm.		
	- Scan-line algorithm, wireframe models, and fractal geometry.		
	Color & Shading Models		
	– Light and color models, interpolative shading models, and texture mapping.		
	– Introduction to ray tracing, human vision and color perception.		
1	– Reflection and transmission models.		

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Constitution of India	Code: MC- CS501
Type of Course: Theory	Course Designation: Compulsory
Semester: 5 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
Mc-cs501.co1	Understand Basic Structure of the Constitution of India	Understand	K2
MC-CS501.CO2	Apply the understanding in Engineering Profession	Apply	КЗ
MC-CS501.CO3	Apply Constitutional Values in Engineering Education	Apply	КЗ
MC-CS501.CO4	Apply Constitutional Provisions in Policy matters of CSE	Apply	кз

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

MC-CS501.CO5	Apply Team Spirit and Constitutional Legislative	Ammler	К3
	Provisions for Industrial Design	Apply	K3
	Analyze Constitutional Valuesof Legislation, Executive &		
MC-CS501.CO6	Judiciary in the light of the Professional requirements	Analyze	K4
	of Computer Science Engineering		

Unit	Content	Hrs/Unit
1	Introduction: Constitution' meaning of the term,, Indian Constitution: Sources and	3
	constitutional history, Features: Citizenship, Preamble, Fundamental Rights and	
	Duties, Directive Principles of State Policy	
2	Union Government and its Administration : Structure of the Indian Union: Federalism, Centre-	6
	State relationship, President: Role, power and position, PM and Council of	
	ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha	
3	State Government and its Administration Governor: Role and Position, CM and Council of	6
	ministers, State Secretariat: Organisation, Structure and Functions	
4	Local Administration District's Administration head: Role and Importance,	8
	Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal	
	Corporation, Pachayati raj: Introduction, PRI: Zila Pachayat, Elected officials and their roles,	
	CEO Zila Pachayat: Position and role, Block level: Organizational Hierarchy (Different	
	4.departments), Village level: Role of Elected and Appointed officials, Importance of grass root	
	democracy	
5	Election Commission Election Commission: Role and Functioning, Chief Election	6
	Commissioner and Election Commissioners, State Election Commission: Role and	
	Functioning, Institute and Bodies for the welfare of SC/ST/OBC and women	
	1 directioning, Anstitute and Bodies for the Weindle Of Se/31/ ODE and Women	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

SEMESTER-V

PRACTICAL

Course Title: Computer Architecture Lab	Code: PCC-CSIT591
Type of Course: Practical	Course Designation: Compulsory
Semester: 5 th	Contact Hours: 4P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CSIT591.CO1	Discuss the various logic gates using the VHDL programming language.	Discuss	К6
PCC-CSIT591.CO2	Understanding the arithmetic operations of n- bit numbers using VHDL.	Understand	К2
PCC-CSIT591.CO3	Analyzing the synthesis of different combinational circuits using VHDL.	Analyze	К4
PCC-CSIT591.CO4	Illustrate the synthesis of the different sequential circuits using VHDL.	Illustrate	К2
PCC-CSIT591.CO5	Explain the construction of different memory elements using VHDL.	Explain	К5
PCC-CSIT591.CO6	Develop different processing elements using VHDL.	Develop	КЗ

Unit	Content
1	HDL introduction
2	Basic digital logic base programming with HDL
3	8-bit Addition, Multiplication, Division 4 5 6 7 8
4	8-bit Register design
5	Memory unit design and perform memory operations.
6	8-bit simple ALU design
7	8-bit simple CPU design
8	Interfacing of CPU and Memory

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Software Engineering Lab	Code: ESC591	
Type of Course: Practical	Course Designation: Compulsory	
Semester: 5 th	Contact Hours: 4P/week	
Continuous Assessment: 40 Marks	Final Exam: 60 Marks	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
ESC591.CO1	Understand the software engineering methodologies involved in the phases for project development.	Understand	К2
ESC591.CO2	Extract functional and non-functional requirement for given problem statement.	Extract	К2
ESC591.CO3	Choose between different design strategies for real life problem	Choose	КЗ
ESC591.CO4	Develop use case diagrams and activity diagrams, build and test class diagrams, sequence diagrams and add interface to class diagrams.	Develop	К6
ESC591.CO5	Design Test Script/Test Plan using Black box and White Box approach.	Design	К6
ESC591.CO6	Evaluate Process and Product Metrics using different models.	Evaluate	К5

Unit	Content
1	Laboratory Experiments: Problem Analysis and Project Planning –Thorough study of the problem — Identify Project scope, Objectives and Infrastructure.
2	Software Requirement Analysis — Describe the individual Phases/modules of the project and Identify deliverables. Identify functional and non–functional requirements.
3	Data Modeling — Use work products — data dictionary
4	Software Designing – Develop use case diagrams and activity diagrams, build and testclass diagrams, sequence diagrams and add interface to class diagrams.
5	Prototype model — Develop the prototype of the product The SRS and prototype model should be submitted for end semester examination

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Operating System Lab	Code: PCC-CS592	
Type of Course: Practical	Course Designation: Compulsory	
Semester: 5	Contact Hours: 4P/week	
Continuous Assessment: 40 Marks	Final Exam: 60 Marks	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CS592.CO1	Understanding of different Unix/Linux commands and shell programming	Understand	К2
PCC-CS592.CO2	Demonstrate the creation of processes and POSIX threads.	Demonstrate	КЗ
PCC-CS592.CO3	Develop the problems of process scheduling and process synchronization (Signal and Semaphore)	Develop	К6
PCC-CS592.CO4	Determine the deadlock avoidance and detection algorithms.	Determine	К5
PCC-CS592.CO5	Analyse different Memory allocation and File accessing techniques	Analyse	К4
PCC-CS592.CO6	Illustrate Inter-Process Communication through system calls.	Illustrate	К2

Unit	Content			
1	Managing Unix/Linux Operating System [8P]: Creating a bash shell script, making a script executable, shell			
	syntax (variables, conditions, control structures, functions, commands). Partitions, Swap space, Device files,			
	Raw and Block files, Formatting disks, Making file systems, Superblock, I- nodes, File system checker, Mounting			
	file systems, Logical Volumes, Network File systems, Backup schedules and methods Kernel loading, init and the			
	inittab file, Run-levels, Run level scripts. Password file management, Password security, Shadow file, Groups			
	and the group file, Shells, restricted shells, user-management commands, homes and permissions, default files,			
	profiles, locking accounts, setting passwords, Switching user, Switching group, Removing users &user groups.			
2	Process [4P]: starting new process, replacing a process image, duplicating aprocess image, waiting for a process,			
	zombie process.			

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

3	Signal [4P]: signal handling, sending signals, signal interface, signal sets.
4	Semaphore [6P]: programming with semaphores (use functions semctl, semget,semop, set_semvalue,
	del_semvalue, semaphore_p, semaphore_v).
5	POSIX Threads [6P]: programming with pthread functions (viz. pthread_create, pthread_join,
	pthread_exit, pthread_attr_init, pthread_cancel)
6	Inter-process communication [6P]: pipes (use functions pipe, popen, pclose), named pipes(FIFOs,
	accessing FIFO), message passing & shared memory(IPC version V).

Course Title: Advanced Programming for Real Life Applications	Code: PCC-CSIT592
Type of Course: Practical	Course Designation: Compulsory
mester: 5 th Contact Hours: 4P/week	
Continuous Assessment: 40 Marks	Final Exam: 60 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CSIT592.CO1	Develop proficiency in advanced Python programming concepts such as iterators, generators, concurrency, and memory management.	Develop	К3
PCC-CSIT592.CO2	Implement object-oriented programming principles including encapsulation, inheritance, polymorphism, and abstraction through practical assignments.	Implement	К4
PCC-CSIT592.CO3	Apply software design patterns to solve real–world problems and enhance software modularity and maintainability.	Apply	К4
PCC-CSIT592.CO4	Design and build real-world applications incorporating advanced programming techniques, database interactions, and API integrations.	Design	К5
PCC-CSIT592.CO5	Evaluate and optimize program performance using debugging, profiling, and testing methodologies.	Evaluate	К5

Unit	Content
------	---------

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

1	Advanced Python Programming Practicals - Implement iterators and generators to handle large data efficiently. - Develop programs using decorators and metaclasses for flexible code reuse. - Implement multi-threading, multiprocessing, and asynchronous programming for performance optimization. - Manage memory effectively using reference counting and garbage collection techniques.
2	Object-Oriented Programming (OOP) in Python - Develop Python programs demonstrating encapsulation, inheritance, polymorphism, and abstraction.
	– Implement operator overloading and magic methods.
	- Create a modular Python application using SOLID principles and interface-based design.
	Design Patterns and Software Architecture - Implement Singleton, Factory, and Builder patterns for object creation.
3	- Develop applications using Adapter, Decorator, and Proxy structural patterns.
	- Apply Strategy and Observer patterns to enhance code maintainability and reusability.
	Application Development with Python
	Develop a Flask/FastAPI-based web application with user authentication and database integration.
4	- Build a data processing pipeline using Pandas and NumPy.
	- Implement RESTful API integration with external services.
	- Design a simple GUI-based application using Tkinter or PyQt.
	Performance Optimization and Testing
	- Use profiling tools like cProfile to analyze code execution time.
5	– Implement logging and debugging techniques for large–scale applications.
	- Develop unit tests and integration tests using unittest and pytest.
	– Apply Test–Driven Development (TDD) methodology in a software project.
	Real-Life Project Implementation
	- Develop a complete real-life application using advanced Python techniques, incorporating OOP, design
,	patterns, API calls, and database interaction.
6	- Optimize performance and ensure maintainability by applying best practices in software development.
	- Document and present the developed project, demonstrating problem-solving skills and implementation
	strategies.

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

SEMESTER-VI

THEORY

Course Title: Database Management Systems	Code: PCC- CS601	
Type of Course: Theory	Course Designation: Compulsory	
Semester: 6 th	Contact Hours: 3L/week	
Continuous Assessment: 25 Marks	Final Exam: 70 Marks	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC- CS601.CO1	Describe the basic concept of database and different database models along with database languages like DDL, DML etc, Data Abstraction, and Data Independence.	Describe	К1
PCC- CS601.CO2	Identify different approaches for solving queries such as Relational algebra, Tuple and domain relational calculus, considering the query optimization strategies, and different normal forms for relational database normalization.	Identify	КЗ
PCC- CS601.CO3	PCC- CS601.CO3 Evaluate the applications of different storage strategies such as Indices, B-trees, hashing		К5
PCC- CS601.CO4	Understand the transaction processing and concurrency control strategies including ACID property, serializability of scheduling, locking and timestamp based schedulers, Database recovery.	Understand	К2
PCC- CS601.CO5	Analyze the database security approaches including authentication, authorization and access control, DAC, MAC and RBAC models, intrusion detection, SQL injection etc.	Analyze	К4
PCC- CS601.CO6	Explain the advanced concepts related to DBMS such as object oriented and object relational databases, logical databases, web databases, distributed databases, data warehousing and data mining.	Explain	К2

Unit	Content	Hrs/Unit	
1	Database system architecture: Data Abstraction, Data Independence, Data Definition Language(DDL), Data Manipulation Language(DML). Data models: Entity- relationship model, network model, relational and object oriented data models, integrity constraints, data manipulation operations.		
2	Relational query languages: Relational algebra, Tuple and domain relational calculus, SQL3, DDL and DML constructs, Open source and Commercial DBMS – MYSQL, ORACLE, DB2, SQLserver. Relational database design: Domain and data dependency, Armstrong's axioms, Normal forms, Dependency preservation, Losslessdesign. Query processing and optimization: Evaluation of relational algebra expressions, Query equivalence, Join strategies, Query optimization algorithms.	13	
3	Storage strategies: Indices, B-trees, hashing.	3	
4	Transaction processing: Concurrency control, ACID property, Serializability of scheduling, Locking and timestamp based schedulers, Multiversion and optimistic Concurrency Control schemes, Database recovery.	5	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

5	Database Security: Authentication, Authorization and access control, DAC, MAC and RBAC	3
	models, Intrusion detection, SQL injection.	
6	Advanced topics: Object oriented and object relational databases, Logical databases, Web	3
	databases, Distributed databases, Data warehousing and data mining.	

Course Title: Artificial Intelligence & Machine Learning	Code: PCC-CSIT601
Type of Course: Theory	Course Designation: Compulsory
Semester: 6 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-CSIT601.CO1	Explain the basic concepts of Regression/ Classification. Extend the concepts of statistical learning theory of various Regression/ Classification methods.	Explain	К2
PEC- CSIT601.CO2	Analyze the linear discriminant, logistic regression, non-linear SVM, Kernel methods.	Analyze	К4
PEC- CSIT601.CO3	Analyze the varoius concepts of unsupervised learning, Generative Models (mixture models and latent factor models), Dimension reduction, Kernel PCA, Matrix factorization.	Analyze	К4
PEC- CSIT601.CO4	Explain Sparse Modeling and Estimation, Modeling Sequence/Time-Series Data, Deep Learning and Feature Representation Learning	Explain	K2
PEC- CSIT601.CO5	Evaluate Machine Learning algorithms and Model Selection, Introduction to Statistical Learning Theory, Ensemble Methods (Boosting, Bagging, Random Forests)	Evaluate	К5
PEC- CSIT601.CO6	Explain the concepts of Scalable Machine Learning (Online and Distributed Learning), Inference in Graphical Models, Introduction to Bayesian Learning and Inference, the recent trends in various learning techniques of machine learning and classification methods.	Explain	К2

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

1	Introduction [2] Overview of Artificial intelligence – Problems of AI, AI technique, Tic	4
	– Tac – Toe problem.	
	Intelligent Agents [2]	
	Agents & environment, nature of environment, structure of agents, goal based agents, utility based agents, learning agents.	
	Problem Solving [2]	
	Problems, Problem Space & search: Defining the problem as state space search, production system,	
	problem characteristics,	
	issues in the design of search programs.	
2	Knowledge & reasoning [3]	3
	Knowledge representation issues, representation & mapping, approaches to knowledge representation,	
	issues in knowledge representation.	
3	Using predicate logic [2]	6
	Representing simple fact in logic, representing instant & ISA relationship, computable functions & predicates, resolution, natural deduction.	
	Probabilistic reasoning [4]	
	Representing knowledge in an uncertain domain, the semantics of Bayesian networks, Dempster–Shafer theory, Fuzzy sets &	
	fuzzy logics.	
4	Supervised Learning (Regression/Classification)	8
	Basic methods: Distance-based methods, Nearest-Neighbours, Decision Trees, Naive Bayes Linear	
	models: Linear Regression, Logistic Regression, Generalized Linear Models Support Vector	
	Machines, Nonlinearity and Kernel Methods Beyond Binary Classification: Multi-class/Structured	
	Outputs, Ranking	
5	Unsupervised Learning	5
	Clustering: K-means/Kernel K-means Dimensionality	
	Reduction: PCA and kernel PCA Matrix Factorization and	
	Matrix Completion	
	Generative Models (mixture models and latent factor models)	
6	Evaluating Machine Learning algorithms and Model Selection, Introduction to Statistical Learning	5
	Theory, Ensemble Methods (Boosting, Bagging, Random Forests)	
7	Sparse Modeling and Estimation, Modeling Sequence/Time-Series Data, Deep Learning and Feature	7
	Representation Learning	
8	Scalable Machine Learning (Online and Distributed Learning) A selection from some other advanced	7
	topics, e.g., Semi-supervised Learning, Active Learning, Reinforcement Learning,	
	Inference in Graphical Models, Introduction to Bayesian Learning and Inference	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Full stack for Web Technology	Code: PCC-CSIT602
Type of Course: Theory	Course Designation: Compulsory
Semester: 6 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
	Understand the architecture and components of full-stack		
	development using the MERN (MongoDB, Express.js, React.js,		
PCC-CSIT602.CO1	Node.js) stack.	Understand	K2
	Develop RESTful APIs using Node.js and Express.js for handling		
PCC-CSIT602.CO2	backend logic and database operations.	Develop	К3
	Implement database operations using MongoDB, including CRUD		
DCC CCTTCAA COA		Turn laura aura	1/4
PCC-CSIT602.CO3	operations, schema design, and indexing.	Implement	K4
	Build interactive and dynamic frontend applications using React.js,		
PCC-CSIT602.CO4	including state management with Redux.	Build	K4

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

	Integrate frontend and backend systems using API calls and		
PCC-CSIT602.CO5	authentication mechanisms (JWT, OAuth).	Integrate	K5
	Deploy and optimize MERN stack applications using cloud services,		
PCC-CSIT602.CO6	containerization, and CI/CD pipelines.	Deploy	К6

Unit	Content	Hrs/unit
	Introduction to Full Stack Development & MERN Stack	
1	- Overview of full-stack development and the role of frontend, backend, and database.	
	– Introduction to MERN stack and its advantages over other stacks.	6
	– Overview of JavaScript ES6+ features essential for MERN development.	
	– Introduction to Node.js and the role of a backend server.	
	- Understanding package managers (npm, yarn) and version control (Git, GitHub).	
	Backend Development with Node.js & Express.js	
	- Setting up a Node.js environment and understanding its asynchronous architecture.	
•	- Creating a RESTful API using Express.js, middleware, and routing.	
2	- Connecting to MongoDB using Mongoose and performing CRUD operations.	9
	Implementing authentication and authorization using JWT and bcrypt.	
	- Error handling and logging in Express.js applications.	
	Frontend Development with React.js	
	- Introduction to React.js: Components, JSX, and Virtual DOM.	
3	React Hooks and functional components (useState, useEffect, useContext). State was a support as in Parkey and Context APX.	9
	- State management using Redux and Context API.	
	- Handling forms and user inputs with validation.	
	- API calls from React to the backend using Axios and Fetch API.	
	Database Management with MongoDB	
	- Overview of NoSQL databases and MongoDB architecture.	
4	- Creating and managing databases, collections, and documents.	6
	- Schema design, data modeling, and relationships in MongoDB.	
	- Indexing and aggregation framework for efficient data retrieval.	
	- Implementing role-based access control in database management. Integration & Deployment	
	- Connecting React frontend with Node.js backend via REST APIs.	
_	- Implementing authentication with OAuth and third-party logins (Google, Facebook).	_
5	Deployment strategies using cloud platforms (Heroku, Vercel, AWS).	9
	- Containerizing MERN applications with Docker.	
	- Setting up CI/CD pipelines for automated testing and deployment.	
	Performance Optimization & Security	
	- Optimizing React applications for performance and scalability.	
	– Security best practices in MERN stack applications (CSRF, CORS, HTTPS, rate limiting).	
6	– Load balancing and caching strategies using Redis.	6
	- Monitoring applications with logging tools and performance metrics.	
	– Real–world case studies and best practices for full–stack applications.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Advanced Algorithms	Code: PEC-IT601A	
Type of Course: Theory	Course Designation: Elective	
Semester: 6 th	Contact Hours: 3L/week	
Continuous Assessment: 25 Marks	Final Exam: 70 Marks	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-IT601A.CO1	Apply the concepts of linear programming, analyze the feasibility region, and solve optimization problems using the Simplex algorithm.	Apply	КЗ
PEC-IT601A.CO2	Demonstrate an understanding of NP-completeness, prove NP-hardness, and analyze computational complexity in decision problems.	Demonstrate	К2
PEC-IT601A.CO3	Explore and implement advanced algorithms, including Approximation Algorithms, Randomized Algorithms, and Interior Point Methods for solving complex computational problems.	Explore	К4
PEC-IT601A.CO4	Investigate recent trends in problem-solving paradigms, incorporating advanced searching and sorting techniques using modern data structures.	Investigate	К5

Unit	Content	Hrs/Unit
1	Sorting: Review of various sorting algorithms, topological sorting	6
	Graph: Definitions and Elementary Algorithms: Shortest path by BFS, shortest path in edge—weighted case	
	(Dijkasra's), depth–first search and computation of strongly connected components, emphasis on correctness	
	proof of the algorithm and time/space	
	analysis, example of amortized analysis.	
2	Matroids: Introduction to greedy paradigm, algorithm to compute a maximum	8
	weight maximal independent set. Application to MST.	
	Graph Matching: Algorithm to compute maximum matching. Characterization of	
3	maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path.	9
•	Flow-Networks: Maxflow-mincut theorem, Ford-	
	Fulkerson Method to compute	
	maximum flow, Edmond–Karp maximum–flow algorithm.	
	Matrix Computations: Strassen's algorithm and introduction to divide and	
	conquer paradigm, inverse of a triangular matrix, relation between the time	
4	complexities of basic matrix operations, LUP-decomposition.	10
4	Shortest Path in Graphs: Floyd – Warshall algorithm and introduction to dynamic programming paradigm. More	10
	examples of dynamic programming.	
	Modulo Representation of integers/polynomials:	
	Chinese Remainder Theorem,	
	Conversion between base–representation and modulo–representation. Extension to polynomials. Application:	
	Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast	
	Fourier Transform algorithm. Schonhage-Strassen Integer Multiplication algorithm	
5	Linear Programming: Geometry of the feasibility region and Simplex algorithm	10
	NP-completeness: Examples, proof of NP-hardness and NP-completeness.	
	One or more of the following topics based on time and interest	
	Approximation algorithms, Randomized Algorithms, Interior Point Method,	
	Advanced Number Theoretic Algorithm	
6	Recent Trands in problem solving paradigms using	5
	recent searching and sorting techniques by applying recently proposed data structures.	

Course Title: Image Processing	Code: PEC-IT601D	
Type of Course: Theory	Course Designation: Elective	
Semester: 6 th	Contact Hours: 3L/week	
Continuous Assessment: 25 Marks	Final Exam: 70 Marks	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-IT601D.CO1	Understand the fundamental concepts of a digital image processing (DIP) system.	Understand	К2
PEC-IT601D.CO2	Remember different techniques employed for the enhancement of images.	Remember	К1
PEC-IT601D.CO3	Apply the Frequency domain Techniques to real life image Processing.	Apply	КЗ
PEC-IT601D.CO4	Analyse image segmentation and representation techniques.	Analyse	K4
PEC-IT601D.CO5	Analyse image restoration procedures	Analyse	K4
PEC-IT601D.CO6	Understand the rapid advances of (DIP) in Machine vision	Understand	К2

Unit	Content	Hrs/Unit
1	Introduction [3L] Background, Digital Image	9
	Representation, Fundamental steps in Image Processing, Elements of Digital Image Processing – Image Acquisition, Storage, Processing, Communication, Display	
2	Digital Image Formation [4L] A Simple Image Model, Geometric Model – Basic Transformation (Translation, Scaling, Rotation), Perspective Projection, Sampling & Quantization – Uniform & Non uniform.	4
3	Mathematical Preliminaries[9L] Neighbour of pixels, Connectivity, Relations, Equivalence & Transitive Closure; Distance Measures, Arithmetic/Logic Operations, Fourier Transformation, Properties of The Two Dimensional Fourier Transform, Discrete Fourier Transform, Discrete Cosine & SineTransform	9
4	Image Enhancement [8L] Spatial Domain Method, Frequency Domain Method, Contrast Enhancement – Linear & Nonlinear Stretching, Histogram Processing; Smoothing – Image Averaging, Mean Filter, Low-pass Filtering; Image Sharpening. Highpass Filtering, High- boost Filtering, Derivative Filtering, Homomorphic Filtering; Enhancement in the frequency domain – Low pass filtering, High pass filtering.	8
5	Image Restoration [7L] Degradation Model, Discrete Formulation, Algebraic Approach to Restoration – Unconstrained & Constrained; Constrained Least Square Restoration, Restoration by Homomorphic Filtering, Geometric Transformation – Spatial Transformation, Gray Level Interpolation.	7
6	Image Segmentation [7L] Point Detection, Line Detection, Edge detection, Combined detection, Edge Linking & Boundary Detection – Local Processing, Global Processing via The Hough Transform; Thresholding – Foundation, Simple Global Thresholding, Optimal Thresholding; Region Oriented Segmentation – Basic Formulation, Region Growing by Pixel Aggregation, Region Splitting & Merging.	7

Course Title: Cyber Security Code: PEC-CSIT601A

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Type of Course: Theory	Course Designation: Elective
Semester: 6 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-CSIT601A.CO1	Understand the fundamentals of cyber security, key challenges, cyber threats, cyber warfare, and the organizational implications of cyber security.		К2
PEC-CSIT601A.CO2	Identify different types of hackers, cyber-attacks, malware threats, and techniques used in cyber crimes, including sniffing, privilege escalation, and backdoors.	Identify	К3
PEC-CSIT601A.CO3	Analyze ethical hacking concepts, social engineering techniques, enterprise security architecture, and vulnerability assessment methodologies.	Analyze	К4
PEC- CSIT601A,CO4	Apply cyber forensics investigation techniques, evidence collection procedures, auditing frameworks, and ISO 27001:2013 compliance.	Apply	К4
PEC-CSIT601A.CO5	Evaluate cyber laws, intellectual property rights in cyberspace, and legal frameworks governing e-commerce and e-governance.	Evaluate	К5

Unit	Content	Hrs/Unit
1	Introduction to Cyber Security	6
	– Importance and challenges in cyber security.	
	– Understanding cyberspace and its vulnerabilities.	
	- Cyber threats and cyber warfare.	
	– CIA (Confidentiality, Integrity, Availability) Triad.	
	- Cyber terrorism and security of critical infrastructure.	
	Organizational implications of cyber security.	
2	Hackers and Cyber Crimes	7
	– Types of hackers: White hat, Black hat, Grey hat, Script kiddies.	
	– Difference between hackers and crackers.	
	- Cyber-attacks and vulnerabilities in systems.	
	– Malware threats: Worms, Trojans, Viruses, Backdoors.	
	– Sniffing techniques and intrusion methods.	
	- Gaining access, escalating privileges, executing applications, hiding files, and covering tracks.	
3	Ethical Hacking and Social Engineering	8
	Concepts and scope of ethical hacking.	
	- Threats and attack vectors.	
	- Information assurance and threat modeling.	
	- Enterprise information security architecture.	
	– Vulnerability assessment and penetration testing.	
	– Types of social engineering attacks and insider threats.	
	- Defense strategies against social engineering.	
4	Cyber Forensics and Auditing	10
	– Introduction to cyber forensics and its importance.	
	 Understanding computer equipment and storage media. 	
	- Role of a forensics investigator and forensic investigation process.	
	- Collecting network-based evidence and report writing.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

	- Auditing methodologies and frameworks.	
	– Planning an audit against a set of audit criteria.	
	 Information Security Management System (ISMS) and ISO 27001:2013 compliance. 	
5	Cyber Ethics and Laws	5
	 Introduction to cyber laws and their impact on business. 	
	 Legal frameworks for e-commerce and e-governance. 	
	 Certifying authority and controllers in cybersecurity. 	
	 Offenses under the IT Act 2000 and associated penalties. 	
	 Intellectual Property Rights (IPR) in cyberspace. 	
	– Security at the network layer – IPSec.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Pattern Recognition	Code: PEC-IT602D
Type of Course: Theory	Course Designation: Elective
Semester: 6 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-IT602D.CO1	Describe the basic concepts of pattern recognition (measuring objects, features and patterns, representation, per-processing, distance and similarity measures) and analyses bayes classifiers in terms of error probabilities, discriminant functions, decision surfaces, normal density and discriminant functions, discrete features	Describe	К1
PEC-IT602D.CO2	Explainthe parameter estimation methods using the maximum-likelihood estimation, gaussian mixture models, expectation-maximization method and bayesian estimation and the non-parametric techniques such as k-Nearest neighbours, parzen window for density estimation.	Explain	К2
PEC-IT602D.CO3	Analyze the linear discriminant function based classifier design such as perceptron and support vector machines	Analyze	К4
PEC-IT602D.CO4	Illustrate hidden markov models for sequential pattern recognition	Illustrate	К2
PEC-IT602D.CO5	Exemplify the Non-metric methods for pattern classification and formulate the dimension reduction methods such as principal component analysis, fischer's discriminant Analysis	Exemplify	К6
PEC-IT602D.CO6	Explain unsupervised learning and clustering algorithms, and analyses their strengths and weakness	Explain	K2

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Unit	Content	Hrs/Unit
1	Basics of pattern recognition	2
2	Bayesian decision theory 8L Classifiers, Discriminant functions, Decision surfaces Normal density and discriminant functions Discrete features	8
3	Parameter estimation methods 6L Maximum–Likelihood estimation Gaussian mixture models Expectation– maximization method Bayesian estimation	6
4	Hidden Markov models for sequential pattern classification 8L Discrete hidden Markov models Continuous density hidden Markov models	8
5	Dimension reduction methods 5.1. Fisher discriminant analysis 5.2Principal component analysis. Parzen—window method K—Nearest Neighbour method	3
6	Non-parametric techniques for density estimation	2
7	Linear discriminant function based classifier 5L Perceptron Support vector machines	5
8	Non-metric methods for pattern classification 4L Non-numeric data or nominal data Decision trees	4
9	Unsupervised learning and clustering 2L Criterion functions for clustering Algorithms for clustering: K-means, Hierarchical and other methods	2

Course Title: Numerical Methods	Code: OEC-IT601A
Type of Course: Theory	Course Designation: Elective
Semester: 6 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
OEC-IT601A.CO1	Understand the basic elements of numerical methods and error analysis.	Understand	K2
OEC-IT601A.CO2	Understand the theoretical aspects of the use of numerical methods.	Understand	К2
OEC-IT601A.CO3	Apply the concepts of numerical methods to design algorithms for automated processing.	Apply	КЗ
OEC-IT601A.CO4	Evaluate the limitations, advantages, and disadvantages of different numerical methods.	Evaluate	К5
OEC-IT601A.CO5	Evaluate and Apply appropriate numerical method approach for a given problem.	Evaluate	К5
OEC-IT601A.CO6	Implement numerical methods for solving various engineering problems.	Implement	КЗ

Ī	Unit	Content	Hrs/Unit	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

1	Approximation in numerical computation: Truncation and rounding errors, Fixed and floatingpoint arithmetic, Propagation of errors	2
2	Interpolation: Newton forward/backward interpolation, Lagrange's and Newton's divided difference Interpolation.	8
3	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for corresponding error terms.	3
4	Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU Factorization method, Gauss–Seidel iterative method.	8
5	Numerical solution of Algebraic equation: Bisection method, Regula–Falsi method, Newton– Raphson method.	3
6	Numerical solution of ordinary differential equation: Euler's method, Runge–Kutta methods, PredictorCorrector methods and Finite Difference method.	2

Course Title: Human Resource Development and Organizational Behavior	Code: OEC-IT601B
Type of Course: Theory	Course Designation: Elective
Semester: 6 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
OEC-IT601B.CO1	Understand the fundamental concepts of Organizational Behavior (OB), including its importance, challenges, and historical background.	Understand	К2
OEC-IT601B.CO2	Analyze personality traits, attitudes, job satisfaction, and their impact on workplace behavior.	Analyze	К4
OEC-IT601B.CO3	Evaluate the role of perception in decision—making and compare various motivation theories such as Maslow's Hierarchy of Needs, McGregor's Theory X & Y, and Herzberg's Motivation—Hygiene Theory.	Evaluate	К5
OEC-IT601B.CO4	Examine group behavior, communication processes, and leadership styles, along with their impact on organizational effectiveness.	Examine	К4
OEC-IT601B.CO5	Apply conflict management strategies, organizational politics, and negotiation techniques to resolve workplace conflicts effectively.	Apply	КЗ
OEC-IT601B.CO6	Assess the impact of organizational design, climate, and culture on employee behavior and overall business performance.	Assess	К5

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

University Syllabus:

Unit	Content	Hrs/Unit
1	Organizational Behaviour: Definition, Importance, Historical Background, Fundamental Concepts of	4
	OB, Challenges and Opportunities for OB. [2] Personality and Attitudes: Meaning of personality,	
	Personality Determinants and Traits, Development of Personality, Types of Attitudes, Job Satisfaction.	
2	Perception: Definition, Nature and Importance, Factors influencing Perception, Perceptual Selectivity, Link between Perception and Decision Making. [2]	8
	4. Motivation: Definition, Theories of Motivation – Maslow's Hierarchy of Needs Theory, McGregor's	
	Theory X & Y, Herzberg's Motivation-Hygiene Theory, Alderfer's ERG Theory, McClelland's Theory of Needs, Vroom's Expectancy Theory.	
3	Group Behaviour: Characteristics of Group, Types of Groups, Stages of Group Development, Group Decision	4
	Making. [2]	
	Communication: Communication Process, Direction of Communication, Barriers to Effective	
	Communication. [2]	
	Leadership: Definition, Importance, Theories of Leadership styles	
4	Organizational Politics: Definition, Factors contributing to Political Behaviour. [2]	8
	Conflict Management: Traditional vis-a-vis Modern View of Conflict, Functional and Dysfunctional	
	Conflict, Conflict Process, Negotiation — Bargaining Strategies, Negotiation Process. [2] Organizational	
	Design: Various Organizational Structures and their Effects on Human Behaviour, Concepts of	
	Organizational Climate and Organizational Culture.	

Course Title: Research Methodology	Code: PROJ- CS601
Type of Course: Theory	Course Designation: Compulsory
Semester: 6 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PROJ- CS601.CO1	Define and understand the motivation and objectives of research work	Define	К1
PROJ- CS601.CO2	Explain how to define and formulate a research problem	Explain	K2
PROJ- CS601.CO3	Identify the importance of literature review in a research work	Identify	КЗ
PROJ- CS601.CO4	Examine the appropriate statistical methods required for a particular research design and develop the appropriate research hypothesis for a research project	Examine	К4
PROJ- CS601.CO5	Explain the ethical issues involved while undertaking research	Explain	К2

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

PROJ- CS601.CO6	Develop the skill set to correctly present a research work by following the protocols of writing a standard	Develop	К6
	research report.		

Unit	Content	Hrs/Unit
1	RESEARCH FORMULATION AND DESIGN Motivation and objectives — Research methods vs. Methodology.	9
	Types of research — Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative,	
	Conceptual vs. Empirical, concept of applied and basic research process, criteria of good research. Defining	
	and formulating the research problem, selecting the problem, necessity of defining the problem,	
	importance of literature review in defining a problem, literature review-primary and secondary sources,	
	reviews, monograph, patents, research databases, web as a source, searching the web, critical literature	
	review, identifying gap areas from literature and research database, development of working	
	hypothesis.	
2	DATA COLLECTION AND ANALYSIS Accepts of method validation, observation and collection of data, methods	9
	of data collection, sampling methods, data processing and analysis strategies and tools,data analysis with	
	statically package (Sigma STAT,SPSS for student t-test, ANOVA, etc.), hypothesis testing	
3	RESEARCH ETHICS, IPR AND SCHOLARY PUBLISHING Ethics-ethical issues, ethical committees (human &	9
	animal); IPR- intellectual property rights and patent law, commercialization, copy right, royalty, trade	
	related aspects of intellectual property rights (TRIPS); scholarly publishing- IMRAD concept and	
	design of research paper, citation and acknowledgement, plagiarism, reproducibility and accountability	
4	INTERPRETATION AND REPORT WRITING Meaning of Interpretation, Technique of Interpretation,	9
	Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Project Report,	
	Layout of the Project/Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a	
	Project/Research Report, Precautions for Writing Research Reports, Conclusions.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

SEMESTER-VI

LAB

Course Title: Database Management System Lab	Code: PCC-CS691
Type of Course: Practical	Course Designation: Compulsory
Semester: 6 th	Contact Hours: 4P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CS691.CO1	Analyze and transform an Entity Relationship Model into a relational database schema and to use a data definition language to implement the schema using a DBMS	Analyze	К4
PCC-CS691.CO2	Declare and enforce integrity constraints on a database using a DBMS	Declare	K1
PCC-CS691.CO3	Populate and query a database using SQL DML/DDL commands.	Populate	КЗ
PCC-CS691.CO4	Retrieve of data from a database.	Retrieve	К3
PCC-CS691.CO5	Describe and implement relational algebra expression using aggregate functions, joins and sub-queries.	Describe	К1
PCC-CS691.CO6	Compile programs in PL/SQL including stored procedures, stored functions, cursors, packages.	Compile	К6

Unit	Content	
1	Structured Query Language	
	Creating Database Creating a Database	
	Creating a Table	
	Specifying Relational Data Types	
	Specifying Constraints	
	Creating Indexes	
2	Table and Record Handling INSERT statement, Using SELECT and INSERT together, DELETE, UPDATE,	
	TRUNCATE statements, DROP, ALTER statements	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

3	Retrieving Data from a Database	
	1. The SELECT statement	
	2. Using the WHERE clause	
	3. Using Logical Operators in the WHERE clause	
	4. Using IN, BETWEEN, LIKE , ORDER BY, GROUP BY and HAVING	
	Clause	
	5. Using Aggregate Functions	
	6. Combining Tables Using JOINS	
	7. Subqueries	
4	Database Management	
	Creating Views, Creating Column Aliases, Creating Database Users, Using GRANT and REVOKE	
5	Cursors in Oracle PL / SQL	
	Writing Oracle PL / SQL Stored Procedures	

Course Title: Full Stack for Web Technology Lab	Code: PCC-CSIT692
Type of Course: Practical	Course Designation: Compulsory
Semester: 6 th	Contact Hours: 4P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Course Outcomes Details		Knowledge Level
PCC-CS692.CO1	Set up a MERN stack development environment and create basic web applications using Node.js, Express.js, React.js, and MongoDB. Create		К3
PCC-CS692.CO2	Develop RESTful APIs using Express.js and perform CRUD operations with MongoDB.	Develop	К4
PCC-CS692.CO3	Build interactive and dynamic user interfaces using React.js, including state management techniques.	Build K4	
PCC-CS692.CO4 Integrate frontend and backend applications with API calls and authentication mechanisms (JWT, OAuth).		K5	
PCC-CS692.CO5	Deploy and optimize MERN applications using cloud platforms, containerization, and CI/CD pipelines.	Deploy	К6

Unit	Content
1	Setting Up the Development Environment - Installing and configuring Node.js, MongoDB, and React.js. - Setting up a basic Express.js server. - Understanding npm, yarn, and package management. - Version control with Git and GitHub.
2	Backend Development with Node.js & Express.js - Creating a RESTful API using Express.js. - Implementing CRUD operations with MongoDB. - Middleware usage in Express.js (authentication, logging, error handling).

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

	– Connecting the backend to a MongoDB database using Mongoose
3	Frontend Development with React.js
	- Creating React components and using JSX.
	- Managing state with React Hooks (useState, useEffect).
	– Implementing React Router for navigation.
	– Fetching data from the backend using Axios or Fetch API.
4	Integration of Frontend and Backend
	- Connecting React frontend with Node.js backend via API calls.
	- Implementing JWT-based authentication and user authentication flows.
	- Handling authentication with OAuth (Google, Facebook login).
	- Secure API endpoints using middleware in Express.js.
5	Deployment and Optimization
	- Deploying MERN applications on cloud platforms (Heroku, Vercel, AWS).
	- Containerizing MERN applications using Docker.
	– Setting up CI/CD pipelines for automated testing and deployment.
	- Performance optimization techniques (lazy loading, caching, minification).
6	Project Development & Case Study
	- Developing a real-world MERN stack project with authentication and database integration.
	– Implementing best practices for security, scalability, and maintainability.
	- Documentation, testing, and presenting the developed project.

Course Title: Artifical Intelligence and Machine Learning Lab	Code: PCC-CSIT691
Type of Course: Practical	Course Designation: Compulsory
Semester: 6 th	Contact Hours: 4P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Course Outcomes Details		Knowledge Level
PCC-CS691.CO1	PCC-CS691.CO1 Implement AI search techniques and problem-solving strategies using state-space representation. Implement		КЗ
PCC-CS691.CO2	Develop knowledge-based reasoning systems using predicate logic and probabilistic models.	Develop	К4
PCC-CS691.CO3	Apply supervised learning techniques for regression and classification tasks. Apply		К4
PCC-CS691.CO4	Explore unsupervised learning techniques like clustering, dimensionality reduction, and generative models.	Explore K4	
PCC-CS691.CO5 Evaluate machine learning models, ensemble methods, and deep learning techniques for practical applications. Evaluate		К5	
PCC-CS691.CO6	PCC-CS691.CO6 Implement scalable AI and ML solutions using distributed learning and reinforcement learning techniques.		К5

Content
Introduction to AI and Intelligent Agents
– Implementing a Tic–Tac–Toe AI using Minimax algorithm.
- Developing goal-based and utility-based agent programs.
- Simulating an environment for AI agents to learn and interact.

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

2	Knowledge Representation and Reasoning
	- Representing knowledge using logical statements and production rules.
	- Implementing predicate logic to represent and infer knowledge.
	- Developing Bayesian networks for probabilistic reasoning in uncertain environments.
3	Supervised Learning Techniques
	- Implementing distance-based methods (KNN) for classification.
	- Developing decision trees and Naïve Bayes classifiers.
	 Implementing linear regression, logistic regression, and support vector machines (SVM).
	- Exploring kernel-based methods for non-linearity handling.
4	Unsupervised Learning Techniques
	- Implementing K-Means and Kernel K-Means clustering algorithms.
	- Performing dimensionality reduction using PCA and Kernel PCA.
	- Implementing Matrix Factorization techniques for recommendation systems.
	- Developing generative models for latent factor analysis.
5	Evaluating Machine Learning Models and Ensemble Learning
	 Implementing model selection strategies and hyperparameter tuning.
	 Applying ensemble methods like boosting, bagging, and random forests.
	- Understanding statistical learning theory and bias-variance tradeoff.
6	Advanced AI and Scalable ML Techniques
	- Implementing sparse modeling and estimation techniques.
	 Developing time-series forecasting models using deep learning.
	- Exploring reinforcement learning algorithms for decision-making.
	– Implementing scalable ML techniques using distributed and online learning.
	– Introduction to Bayesian learning and probabilistic inference.

SEMESTER-VII

THEORY

Course Title: Mobile Application Development	Code: PCC-CSIT701
Type of Course: Theory	Course Designation: Compulsory
Semester: 7 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	outcomes Details		Knowledge Level
PCC- CSIT701.CO1	Understand the architecture and components of mobile application development using Flutter, PHP, and MySQL.	Understand	K2
PCC- CSIT701.CO2	Develop cross-platform mobile applications for iOS and Android using Flutter and Dart.		кз
PCC- CSIT701.CO3	PCC- CSIT701.CO3 Implement backend services using PHP and integrate MySQL databases for dynamic data handling.		К4
PCC- CSIT701.CO4	Apply state management techniques in Flutter for efficient UI updates and data handling.		К4

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

PCC- CSIT701.CO5	Integrate APIs, authentication mechanisms, and third-party services to enhance mobile app functionality.	Integrate	К5
PCC- CSIT701.CO6	Deploy, test, and optimize mobile applications for performance, scalability, and security.	Deploy	К6

Unit	Content	Hrs/Unit
1	Introduction to Mobile Application Development	6
	- Overview of mobile application development for iOS and Android.	
	- Comparison of cross-platform vs. native development.	
	- Introduction to Flutter framework and Dart programming language. - Setting up the development environment: Android Studio, Xcode, Flutter SDK.	
	- Understanding widgets, stateful and stateless widgets, UI structure.	
2	Flutter Basics and UI Components	9
	- Layouts and navigation in Flutter: Row, Column, Stack, ListView, GridView.	
	- Handling user inputs: TextField, Buttons, Dropdowns.	
	– State management techniques: Provider, Riverpod, Bloc.	
	- Theme management, animations, and styling in Flutter.	
	- Handling device permissions and accessing hardware features (camera, location).	
3	Backend Development with PHP and MySQL	9
	- Introduction to server-side scripting with PHP.	
	– Connecting MySQL database with PHP and performing CRUD operations.	
	– RESTful API creation using PHP for Flutter applications.	
	– JSON data handling and API response parsing in Flutter.	
	- Implementing authentication using JWT and OAuth.	
4	Database Management and API Integration	6
	– Structuring relational databases for mobile applications.	
	- Creating APIs for data retrieval and real-time updates.	
	- Securing APIs and database queries to prevent SQL injection.	
	– Handling API requests and responses in Flutter using HTTP and Dio.	
	- Offline data storage techniques: SharedPreferences, SQLite, Hive.	
5	Advanced Mobile App Features	9
	- Push notifications using Firebase Cloud Messaging (FCM).	
	- Implementing real-time chat functionality with WebSockets.	
	– Payment gateway integration (Razorpay, Stripe, PayPal).	
	– Background services, job scheduling, and data synchronization.	
	– Debugging, logging, and performance optimization.	
6	Deployment and Maintenance	6
	– Preparing applications for production: Code signing, package building.	
	– Publishing apps on Google Play Store and Apple App Store.	
	– CI/CD pipeline setup for automatic builds and deployment.	
	– App security best practices and data encryption techniques.	
	- Post-deployment monitoring, updates, and analytics integration.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Quantum Computing	Code: PEC-IT701B
Type of Course: Theory	Course Designation: Elective
Semester: 7 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-IT701B.CO1	Understand the fundamental principles of quantum physics from a computer science perspective.	Understand	К2
PEC-IT701B.CO2	Analyze how quantum mechanics describes reality and influences computational models.	Analyze	К4
PEC-11701B.CO3	Explore the philosophical implications of quantum computing and its impact on future technologies.	Explore	К4
PEC-IT701B.CO4	Apply quantum principles to computational problems and emerging quantum algorithms.	Apply	КЗ

Unit	Content	Hrs/Unit
1	Qubit & Quantum States: The Qubit, Vector Spaces. Linear Combination Of Vectors, Uniqueness of a	3
	spanning set, basis & dimensions, inner Products, orthonormality, gram–schmidt orthogonalization, bra–	
	ket formalism, the Cauchyschwarez and triangle Inequalities.	
2	Matrices & Operators: Observables, The Pauli Operators, Outer Products, The Closure Relation, Representation	10
	of operators using matrices, outer products & matrix representation, matrix representation of operators in	
	two dimensional spaces, Pauli Matrix, Hermitian unitary and normal operator, Eigen values & Eigen	
	Vectors, Spectral Decomposition, Trace of an operator, important properties of Trace, Expectation Value	
	of Operator, Projection Operator, Positive Operators,	
3	Commutator Algebra, Heisenberg uncertainty principle, polar decomposition & singular values, Postulates of Quantum Mechanics.	5
4	Tensor Products: Representing Composite States in Quantum Mechanics, Computing inner products,	5
	Tensor products of column vectors, operators and tensor products of Matrices. Density Operator: Density Operator	
	of Pure & Mix state, Key Properties, Characterizing Mixed State, Practical Trace & Reduce Density Operator, Density	
	Operator & Bloch Vector.	
5	Quantum Measurement Theory: Distinguishing Quantum states & Measures, Projective Measurements, Measurement	8
	on Composite systems, Generalized Measurements, Positive Operator- Valued Measures.	
6	Recent trends in Quantum Computing Research, Quantum Computing Applications of Genetic	6
	Programming.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Cloud Computing	Code: PEC-IT701C	
Type of Course: Theory	Course Designation: Elective	
Semester: 7 th	Contact Hours: 3L/week	
Continuous Assessment: 25 Marks	Final Exam: 70 Marks	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-IT701C.CO1	Understand the fundamentals of cloud computing, cloud models, and service models (IaaS, PaaS, SaaS, IDaaS, CaaS).	Understand	К2
PEC-IT701C.CO2	Analyze cloud deployment models (Public, Private, Hybrid, and Community) and their advantages.	Analyze	K4
PEC-IT701C.CO3	Apply virtualization techniques, cloud infrastructure components, and load balancing mechanisms in cloud environments.	Apply	КЗ
PEC-IT701C.CO4	Evaluate cloud-based platforms, APIs, and development environments such as Google App Engine and Microsoft Azure.	Evaluate	К5
PEC-IT701C.CO5	Implement cloud security mechanisms, identity management protocols, and compliance strategies for data protection.	Implement	K4
PEC-IT701C.CO6	Explore cloud storage solutions, cloud-based email services, and syndication services for modern computing.	Explore	К4

Content	Hrs/Uni
Definition of Cloud Computing and its Basics (Lectures) . Defining a Cloud,	3
Cloud Types — NIST model, Cloud Cube model, Deployment models (Public, Private, Hybrid and Community Clouds), Service Platform as a Service, Software as a Service with examples of services/ service providers, models — Infrastructure as a Service, Cloud Reference model, Characteristics of Cloud Computing — a shift in paradigm Benefits and advantages of Cloud Computing, A brief introduction on Composability, Infrastructure, Platforms, Virtual Appliances, Communication Protocols, Applications, Connecting to the Cloud by Clients, IaaS — Basic concept, Workload, partitioning of virtual private server instances, Pods, aggregations, silos PaaS — Basic concept, tools and development	
SaaS – Basic concept and characteristics, Open SaaS and SOA, examples of SaaS platform Identity as a Service (IDaaS) Compliance as a Service (CaaS)	
Use of Platforms in Cloud Computing Concepts of Abstraction and Virtualization Virtualization technologies: Types of virtualization (access, application, CPU, storage), Mobility patterns (P2V, V2V, V2P, P2P, D2C, C2C, C2D, D2D) Load Balancing and Virtualization: Basic Concepts, Network resources for load balancing, Advanced load balancing (including Application Delivery Controller and Application Delivery Network), Mention of The Google Cloud as an example of use of load balancing Hypervisors: Virtual machine technology and types, VMware vSphere Machine Imaging (including mention of Open Virtualization Format — OVF) Porting of applications in the Cloud: The simple Cloud API and AppZero Virtual Application appliance, Concepts of Platform as a Service, Definition of services, Distinction between SaaS and PaaS (knowledge of Salesforce.com and Force.com), Application development Use of PaaS Application frameworks, Discussion of Google Applications Portfolio — Indexed search, Dark	10
	Definition of Cloud Computing and its Basics (Lectures). Defining a Cloud, Cloud Types — NIST model, Cloud Cube model, Deployment models (Public, Private, Hybrid and Community Clouds), Service Platform as a Service, Software as a Service with examples of services/ service providers, models — Infrastructure as a Service, Cloud Reference model, Characteristics of Cloud Computing — a shift in paradigm Benefits and advantages of Cloud Computing, A brief introduction on Composability, Infrastructure, Platforms, Virtual Appliances, Communication Protocols, Applications, Connecting to the Cloud by Clients, IaaS — Basic concept, Workload, partitioning of virtual private server instances, Pods, aggregations, silos PaaS — Basic concept, tools and development environment with examples SaaS — Basic concept and characteristics, Open SaaS and SOA, examples of SaaS platform Identity as a Service (IDaaS) Compliance as a Service (CaaS) Use of Platforms in Cloud Computing Concepts of Abstraction and Virtualization Virtualization technologies: Types of virtualization (access, application, CPU, storage), Mobility patterns (P2V, V2V, V2P, P2P, D2C, C2C, C2D, D2D) Load Balancing and Virtualization: Basic Concepts, Network resources for load balancing, Advanced load balancing (including Application Delivery Controller and Application Delivery Network), Mention of The Google Cloud as an example of use of load balancing Hypervisors: Virtual machine technology and types, VMware vSphere Machine Imaging (including mention of Open Virtualization Format — OVF) Porting of applications in the Cloud: The simple Cloud API and AppZero Virtual Application appliance, Concepts of Platform as a Service, Definition of services, Distinction between SaaS and PaaS (knowledge of Salesforce.com and Force.com), Application development

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

	search, Dark Web, Aggregation and disintermediation, Productivity applications and service, Adwords, Google Analytics, Google Translate, a brief discussion on Google Toolkit (including introduction of Google APIs in brief), major features of Google App Engine service, Windows Azure platform: Microsoft's approach, architecture, and main elements, overview of Windows Azure AppFabric, Content Delivery	
	Network, SQL Azure, and Windows Live services,	
3	Cloud Infrastructure:	5
	Cloud Management:	
	An overview of the features of network management systems and a brief introduction of related products	
	from large cloud vendors, Monitoring of an entire cloud computing deployment stack — an overview with	
	mention of some products, Lifecycle management of cloud services (six stages of lifecycle). Concepts of Cloud Security:	
	Cloud security concerns, Security boundary, Security service boundary Overview of security mapping	
	Security of data: Brokered cloud storage access, Storage location and tenancy, encryption, and auditing and	
	compliance Identity management (awareness of Identity protocol standards)	
4	Cloud Infrastructure:	5
	Cloud Management:	
	An overview of the features of network management systems and a brief introduction of related products from	
	large cloud vendors, Monitoring of an entire cloud computing deployment stack — an overview with mention of	
	some products, Lifecycle management of cloud services (six stages of lifecycle).	
	Concepts of Cloud Security:	
	Cloud security concerns, Security boundary, Security service boundary Overview of security mapping Security of	
	data: Brokered cloud storage access, Storage location and tenancy, encryption, and auditing and compliance	
	Identity management (awareness of Identity protocol standards) Application attributes, Cloud service	
	attributes, System abstraction and Cloud Bursting, Applications and Cloud APIs	
	Cloud-based Storage: Cloud storage definition — Manned and Unmanned	
	Webmail Services: Cloud mail services including Google Gmail, Mail2Web, Windows Live Hotmail, Yahoo mail,	
	concepts of Syndication services	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Data Warehousing & Mining	Code: PEC-CSIT701A	
Type of Course: Theory	Course Designation: Elective	
Semester: 7 th Contact Hours: 3L/week		
Continuous Assessment: 25 Marks	Final Exam: 70 Marks	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-CSIT701A.CO1	Understand the fundamental concepts of data warehousing, data mining, and their applications in industry.	Understand	K2
PEC-CSIT701A.CO2	Design and implement data warehouse architectures, including ETL processes and OLAP operations.	Design, Implement	К4
PEC-CSIT701A.CO3	Apply data preprocessing techniques and feature engineering for efficient data mining.	Apply	КЗ
PEC-CSIT701A.CO4	Implement industry-standard data mining techniques, including classification, clustering, and association rule mining.	Implement	K4
PEC-CSIT701A.CO5	Analyze big data using advanced mining techniques, including deep learning, text mining, and graph-based mining.	Analyze	К5
PEC-CSIT701A.CO6	Evaluate the impact of data governance, security, and ethical considerations in data warehousing and mining.	Evaluate	К5

Unit	Content	Hrs/Unit
1	Introduction to Data Warehousing and Data Mining	6
	– Definition, scope, and applications of data warehousing and mining.	
	– Differences between operational databases and data warehouses.	
	– Data warehouse architecture: 2–tier and 3–tier architecture.	
	– Introduction to OLAP, ROLAP, MOLAP, HOLAP.	
	– Industry case studies on data warehousing applications.	
2	Data Warehouse Design and ETL Process	9
	– Data modeling for data warehouses: Star, Snowflake, and Fact Constellation schemas.	
	– Data extraction, transformation, and loading (ETL) processes.	
	- Data warehouse implementation strategies and indexing techniques.	
	– Data lake concepts and cloud-based data warehousing (AWS Redshift, Google BigQuery).	
3	Data Preprocessing and Feature Engineering	6
	- Data cleaning, integration, transformation, and reduction techniques.	
	- Handling missing values, noise removal, and outlier detection.	
	– Feature selection and dimensionality reduction (PCA, LDA).	
	– Data discretization and normalization techniques.	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

4	Data Mining Techniques and Applications	9
	– Classification algorithms: Decision Trees, Naïve Bayes, Random Forest, SVM, Neural Networks.	
	– Clustering algorithms: K–Means, DBSCAN, Hierarchical Clustering.	
	- Association Rule Mining: Apriori and FP-Growth algorithms.	
	- Industry applications: Fraud detection, recommendation systems, and customer segmentation.	
5	Big Data Analytics and Advanced Mining	9
	– Introduction to big data frameworks (Hadoop, Spark, NoSQL).	
	- Text mining and Natural Language Processing (NLP).	
	- Graph-based mining techniques (PageRank, community detection).	
	– Deep learning for data mining: CNNs, RNNs, and Autoencoders.	
6	Data Governance, Security, and Ethical Considerations	6
	– Privacy–preserving data mining and differential privacy.	
	- Ethical considerations in AI-driven decision-making.	
	- Compliance with data protection laws (GDPR, CCPA).	
	– Industry best practices for data security in warehousing and mining.	

Course Title: Computer Vision	Code: PEC-CSIT701B
Type of Course: Theory Course Designation: Elective	
Semester: 7 th Contact Hours: 3L/week	
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-CSIT701B.CO1	Understand the fundamentals of image processing, computer vision techniques, and their real-world applications.	Understand	К2
PEC-CSIT701B.CO2	Implement image acquisition, filtering, and feature extraction techniques for vision-based applications.	Implement	К4
PEC-CSIT701B.CO3	Apply machine learning and deep learning techniques for object detection, recognition, and segmentation.	Apply	К4
PEC-CSIT701B.CO4	Analyze 3D vision concepts, stereo vision, and motion tracking methods for real-time applications.	Analyze	К5
PEC-CSIT701B.CO5	Develop industry–grade computer vision solutions for applications in healthcare, autonomous systems, and surveillance.	Develop	К6
PEC-CSIT701B.CO6	Evaluate the ethical concerns, limitations, and advancements in modern computer vision technologies.	Evaluate	К5

Unit	Content	Hrs/Unit
1	Introduction to Computer Vision and Image Processing	6
	– Fundamentals of computer vision and applications in various industries.	
	– Image formation, color models, and types of images.	
	– Image acquisition techniques using cameras and sensors.	
	– Image processing fundamentals: convolution, blurring, sharpening, and edge detection.	
	– Histogram equalization and image enhancement techniques.	
2	Feature Detection and Extraction	9
	– Corner detection (Harris, FAST), Blob detection (LoG, DoG).	
	– Scale–Invariant Feature Transform (SIFT) and Speeded–Up Robust Features (SURF).	
	– Feature matching and applications in image retrieval.	
	- Hough Transform for shape detection (lines, circles, ellipses).	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

3	Object Recognition and Classification	9
	- Template matching and image segmentation techniques.	
	- Machine learning for object detection: Support Vector Machines (SVM), k-NN, Random Forests.	
	 Deep learning-based object detection (YOLO, SSD, Faster R-CNN). 	
	- Face recognition techniques: Eigenfaces, Fisherfaces, and deep learning models.	
4	Motion and Tracking	6
	– Optical Flow methods: Lucas–Kanade, Horn–Schunck.	
	- Background subtraction techniques for moving object detection.	
	- Kalman Filters and Particle Filters for object tracking.	
	- Human pose estimation and gesture recognition.	
5	3D Vision and Augmented Reality	9
	- Stereo vision and depth estimation.	
	- Structure from Motion (SfM) and Visual SLAM (Simultaneous Localization and Mapping).	
	- Augmented Reality (AR) fundamentals and applications.	
	- LiDAR and point cloud processing for 3D object recognition.	
6	Ethical Considerations and Future Trends	6
	- Privacy and security concerns in AI-based surveillance.	
	– Bias and fairness in computer vision applications.	
	– Trends in vision transformers and multimodal AI.	
	- Industry best practices for deploying computer vision models in production.	
Cour	se Title: Introduction to Philosophical Thoughts Code: OEC-IT701B	

course rule. Incroduction to Philosophical Phoughts	Code. OEC-11701B	
Type of Course: Theory	Course Designation: Elective	
Semester: 7 th	Contact Hours: 3L/week	
Continuous Assessment: 25 Marks	Final Exam: 70 Marks	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
OEC-IT701B.CO1	Understand the plurality and common concerns in Indian philosophy, with emphasis on Vedic and Upanishadic concepts like Atman, Brahman, Karma, and Turiya.	Understand	К2
OEC-IT701B.CO2	Analyze the epistemology, metaphysics, and ethical viewpoints of the Carvaka school, including its concept of Mukti.	Analyze	К4
OEC-11701B.CO3	Examine key Jain philosophical concepts such as anekantavada, syadvada, nayavada, pramanas, ahimsa, bondage, and liberation.	Examine	К4
OEC-IT701B.CO4	Evaluate Buddhist philosophical doctrines, including the theory of pramanas, dependent origination, momentariness, and interpretations by different schools (Vaibhasika, Sautrantika, Yogacara, Madhyamika).	Evaluate	K5
OEC-IT701B.CO5	Interpret Nyaya philosophy, including its theory of pramanas, individual self, concept of liberation, and proofs for the existence of God.	Interpret	К5

Unit	Content	Hrs/Unit
1	Nature of Indian Philosophy : Plurality as well as common concerns. 2. Basic concepts of the Vedic and	17
	Upanisadic views : Atman, Jagrata,	
	Svapna, Susupti, Turiya, Brahman, Karma, Rta,Rna,	
2	Carvaka school: its epistemology, metaphysics and ethics. Mukti	9
3	Jainism : Concepts of sat, dravya, guna, paryaya, jiva, ajiva, anekantavada, syadvada, and	5
	nayavada ; pramanas, ahimsa, bondage and liberation.	
4	5. Buddhism: theory of pramanas, theory of dependent origination, the four noble truths; doctrine of	5

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

	momentaryness; theory of no soul. The interpretation of these theories in schools of	
	Buddhism : Vaibhasika, Sautrantrika, Yogacara, Madhyamika.	
5	6. Nyaya: theory of Pramanas; the individual self and its liberation; the idea of God and	5
	proofs for His existence.	

	Programming Problems: Solution of LPP: Using Simultaneous Equations and Graphical Method; Definitions:	
	Feasible Solution, Basic and nonbasic Variables, Basic Feasible Solution, Degenerate and Non- degenerate	
	Solution, Convex set and explanation with examples Solution of LPP by Simplex Method;	
	Charnes' Big–M Method; Duality Theory. Transportation Problems and Assignment Problems.	
2	Network Analysis:Shortest Path: Floyd Algorithm; Maximal Flow Problem (Ford-Fulkerson); PERTCPM (Cost	9
	Analysis, Crashing, Resource Allocation excluded). Inventory Control:Introduction to EOQ Models of	
	Deterministic and Probabilistic ; Safety Stock; Buffer Stock.	
3	Game Theory: Introduction; 2-Person Zero-sum Game; Saddle Point; Mini-Max and Maxi-Min Theorems	5
	(statement only) and problems; Games without Saddle Point; Graphical Method; Principle of Dominance	
4	Queuing Theory: Introduction; Basic Definitions and Notations; Axiomatic Derivation of the Arrival &	5
	Departure (Poisson Queue). Poisson Queue Models: (M/M/1): (∞ / FIFO) and (M/M/1: N / FIFO) and	
	problems.	

Course Title: Soft Skill & Interpersonal Communication	Code: OEC-IT701C
Type of Course: Theory	Course Designation: Elective
Semester: 7 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
OEC-17701C.CO1	Analyze personal strengths and weaknesses using SWOT analysis to build self-confidence and self-esteem.	Analyze	К4
OEC-1T701C.CO2	Apply creative thinking techniques, including out-of-the-box and lateral thinking, to problem-solving scenarios.	Apply	КЗ
OEC-IT701C.CO3	Understand the factors influencing attitude, motivation, and self-discipline for personal and professional growth.	Understand	К2
OEC-IT701C.CO4	Develop goal–setting strategies using SMART goals and time management techniques for effective productivity.	Develop	К4
OEC-IT701C.CO5	Assess interpersonal skills, teamwork, and leadership qualities to enhance collaboration in social and professional settings.	Assess	К5

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Unit	Content	Hrs/Unit
1	SELF ANALYSIS (2 hours) SWOT Analysis, Who am I, Attributes, Importance of Self Confidence, Self Esteem.	2
2	CREATIVITY (3 hours) Out of box thinking, Lateral Thinking.	3
3	ATTITUDE (3 hours) Factors influencing Attitude, Challenges and lessons from Attitude, Etiquette.	3
4	MOTIVATION (2 hours) Factors of motivation, Self talk, Intrinsic & Extrinsic Motivators.	4
5	GOAL SETTING (4 hours) Wish List, SMART Goals, Blueprint for success, Short Term, Long Term, Lifetime Goals.	4
6	Time management Value of time, Diagnosing Time Management, Weekly Planner, To do list, Prioritizing work.	5
7	INTERPERSONAL SKILLS (6 hours) Understanding the relationship between Leadership, Networking & Teamwork. Assessing Interpersonal Skills, Situation description of Interpersonal Skill. Team Work: Necessity of Team Work Personally, Socially, and Educationally.	6
8	LEADERSHIP (2 hours) Skills for a good Leader, Assessment of Leadership Skills.	2
9	STRESS MANAGEMENT (4 hours) Causes of Stress and its impact, how to manage & distress, Circle of control, Stress Busters. Emotional Intelligence: What is Emotional Intelligence, emotional quotient, why Emotional Intelligence matters, Emotion Scales, Managing Emotions.	4
10	CONFLICT RESOLUTION (2 hours) Conflicts in Human Relations – Reasons, Case Studies, Approaches to conflict resolution.	2
11	DECISION MAKING (4 hours) Importance and necessity of Decision Making, Process and practical way of Decision Making, Weighing Positives & Negatives.	4

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Project Management and Entrepreneurship	Code: HSMC 701	
Type of Course: Theory	Course Designation: Compulsory	
Semester: 7 th	Contact Hours: 2L+1T/week	
Continuous Assessment: 25 Marks Final Exam: 70 Marks		

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
HSMC 701.CO1	Examine role of entrepreneur in economic development	Examine	К3
HSMC 701.CO2	Describe the steps to establish an enterprise	Describe	K1
HSMC 701.CO3	Compare and classify types of entrepreneurs	Compare	K4
HSMC 701.CO4	Evaluate the entrepreneurial support in India	Evaluate	К5
HSMC 701.CO5	Describe Special institutions for entrepreneurial development and assistance in India	Describe	K1
HSMC 701.CO6	Explain project Identification	Explain	K6

Unit	Content	Hrs/Unit
1	ENTREPRENEURSHIP	2
	Introduction: Meaning and Concept of Entrepreneurship, Innovation and entrepreneurship, Contributions of entrepreneurs to the society, risk-opportunities perspective and mitigation of risks [2L]	
2	Entrepreneurship - An Innovation: Challenges of Innovation, Steps of Innovation Management, Idea	2
	Management System, Divergent v/s Convergent Thinking, Qualities of a prospective Entrepreneur [2L]	

Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] 11 Project Scheduling and Costing — Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade—off Analysis, Project Cost Reduction			
4 Entrepreneurial Motivation: Design Thinking – Driven Innovation, TRIZ (Theory of Inventive Problem Solving), Achievement motivation theory of entrepreneurship – Theory of McClelland, Harvesting Strategies [2L] 5 Information: Government incentives for entrepreneurship, Incubation, acceleration. Funding new ventures – bootstrapping, crowd sourcing, angel investors, Government of India's efforts at promoting entrepreneurship and innovation – SISI, KVIC, DGFT, SIDBI, Defense and Railways [4L] 6 Closing the Window: Sustaining Competitiveness, Maintaining Competitive Advantage, the Changing Role of the Entrepreneur. [2L] 7 Applications and Project Reports Preparation [4L] 8 PROJECT MANAGEMENT: Definitions of Project and Project Management, Issues and Problems in Project Management, Project Life Cycle – Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase [4L] 9 Project Feasibility Studies – Pre-Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L] 10 Project Planning – Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] 11 Project Scheduling and Costing – Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade–off Analysis, Project Cost Reduction	3		4
[2L] Information: Government incentives for entrepreneurship, Incubation, acceleration. Funding new ventures - bootstrapping, crowd sourcing, angel investors, Government of India's efforts at promoting entrepreneurship and innovation — SISI, KVIC, DGFT, SIDBI, Defense and Railways [4L] Closing the Window: Sustaining Competitiveness, Maintaining Competitive Advantage, the Changing Role of the Entrepreneur. [2L] Applications and Project Reports Preparation [4L] PROJECT MANAGEMENT: Definitions of Project and Project Management, Issues and Problems in Project Management, Project Life Cycle — Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase [4L] Project Feasibility Studies — Pre—Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L] Project Planning — Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] Project Scheduling and Costing — Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade—off Analysis, Project Cost Reduction	4		2
5 Information: Government incentives for entrepreneurship, Incubation, acceleration. Funding new ventures - bootstrapping, crowd sourcing, angel investors, Government of India's efforts at promoting entrepreneurship and innovation — SISI, KVIC, DGFT, SIDBI, Defense and Railways [4L] 6 Closing the Window: Sustaining Competitiveness, Maintaining Competitive Advantage, the Changing Role of the Entrepreneur. [2L] 7 Applications and Project Reports Preparation [4L] 8 PROJECT MANAGEMENT: Definitions of Project and Project Management, Issues and Problems in Project Management, Project Life Cycle — Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase [4L] 9 Project Feasibility Studies — Pre-Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L] 10 Project Planning — Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] 11 Project Scheduling and Costing — Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade-off Analysis, Project Cost Reduction			
entrepreneurship and innovation — SISI, KVIC, DGFT, SIDBI, Defense and Railways [4L] 6 Closing the Window: Sustaining Competitiveness, Maintaining Competitive Advantage, the Changing Role of the Entrepreneur. [2L] 7 Applications and Project Reports Preparation [4L] 8 PROJECT MANAGEMENT: Definitions of Project and Project Management, Issues and Problems in Project Management, Project Life Cycle — Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase [4L] 9 Project Feasibility Studies — Pre-Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L] 10 Project Planning — Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] 11 Project Scheduling and Costing — Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade-off Analysis, Project Cost Reduction	5		4
Closing the Window: Sustaining Competitiveness, Maintaining Competitive Advantage, the Changing Role of the Entrepreneur. [2L] 7 Applications and Project Reports Preparation [4L] 8 PROJECT MANAGEMENT: Definitions of Project and Project Management, Issues and Problems in Project Management, Project Life Cycle – Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase [4L] 9 Project Feasibility Studies – Pre-Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L] 10 Project Planning – Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] 11 Project Scheduling and Costing – Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade-off Analysis, Project Cost Reduction		 bootstrapping, crowd sourcing, angel investors, Government of India's efforts at promoting 	
the Entrepreneur. [2L] Applications and Project Reports Preparation [4L] PROJECT MANAGEMENT: Definitions of Project and Project Management, Issues and Problems in Project Management, Project Life Cycle – Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase [4L] Project Feasibility Studies — Pre—Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L] Project Planning — Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] Project Scheduling and Costing — Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade—off Analysis, Project Cost Reduction		entrepreneurship and innovation — SISI, KVIC, DGFT, SIDBI, Defense and Railways [4L]	
PROJECT MANAGEMENT: Definitions of Project and Project Management, Issues and Problems in Project Management, Project Life Cycle – Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase [4L] Project Feasibility Studies — Pre–Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L] Project Planning — Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] Project Scheduling and Costing — Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade—off Analysis, Project Cost Reduction	6		2
Management, Project Life Cycle – Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase [4L] 9 Project Feasibility Studies — Pre–Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L] 10 Project Planning — Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] 11 Project Scheduling and Costing — Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade—off Analysis, Project Cost Reduction	7	Applications and Project Reports Preparation [4L]	4
Management, Project Life Cycle – Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase [4L] 9 Project Feasibility Studies — Pre–Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L] 10 Project Planning — Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] 11 Project Scheduling and Costing — Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade—off Analysis, Project Cost Reduction	8	PROJECT MANAGEMENT: Definitions of Project and Project Management, Issues and Problems in Project	4
Project Feasibility Studies — Pre-Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L] Project Planning — Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] Project Scheduling and Costing — Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade—off Analysis, Project Cost Reduction			
Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L] Project Planning – Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] Project Scheduling and Costing – Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade–off Analysis, Project Cost Reduction		Execution Phase, Closure / Termination Phase [4L]	
Cost Benefit Analysis [2L] 10 Project Planning – Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] 11 Project Scheduling and Costing – Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade-off Analysis, Project Cost Reduction	9	Project Feasibility Studies — Pre-Feasibility and Feasibility Studies, Preparation of Detailed Project Report,	2
Cost Benefit Analysis [2L] 10 Project Planning – Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] 11 Project Scheduling and Costing – Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade-off Analysis, Project Cost Reduction		Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social	
Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L] Project Scheduling and Costing — Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade—off Analysis, Project Cost Reduction			
Project Scheduling and Costing — Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade—off Analysis, Project Cost Reduction	10		2
Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade-off Analysis, Project Cost Reduction	11		6
	12		2
13 Case Studies with Hands-on Training on MS-Project [4L] 4	13	Case Studies with Hands-on Training on MS-Project [4L]	4

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Project-II	Code: PROJ-CS781
Type of Course: Sessional	Course Designation: Compulsory
Semester: 7 th	Contact Hours: 12P/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PROJ-CS781.CO1	Identify the Problem & Problem Domain in the broad field of Computer Science & Engineering.	Identify	К3
PROJ-CS781.CO2	Understand the Research Methodologies and Field Study	Understand	K2
PROJ-CS781.CO3	Understand the Tools and Techniques used	Understand	K2
PROJ-CS781.CO4	Identify of the Relevant Resources and Data Set	Identify	К3
PROJ-CS781.CO5	Prepare of s/w and h/w requirement analysis	Prepare	К6
PROJ-CS781.CO6	Develop goal in line with flow of work	Develop	K6

University Syllabus:

Unit	Content	
1	Project work I	
	The object of Project Work I is to enable the student to take up investigative study in the broad field of Electron	
	& Communication Engineering, either fully theoretical/practical or involving both theoretical and practical work to	
	be assigned by the Department on an individual basis or two/three students in a	
	group, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D	
2	work. Project Work II & Dissertation	
	The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken	
	up under EC P1, either fully theoretical/practical or involving both theoretical and practical work, under the	
	guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D	
	laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical	
	leadership. The assignment to normally include: 1. In depth study of the topic assigned in the light of the Report	
	prepared under EC P1; 2. Review and finalization of the Approach to the Problem relating to the assigned topic; 3.	
	Preparing an Action Plan for conducting the investigation, including team work; 4. Detailed	
	Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed; 5. Final development of	
	product/process, testing, results, conclusions and future directions; 6. Preparing a paper for Conference	
	presentation/Publication in Journals, if possible; 7. Preparing a	
	Dissertation in the standard format for being evaluated by the Department. 8. Final Seminar Presentation before a	
	Departmental Committee.	

Programming Problems: Solution of LPP: Using Simultaneous Equations and Graphical Method; Definitions: Feasible Solution, Basic and nonbasic Variables, Basic Feasible Solution, Degenerate and Non- degenerate Solution, Convex set and explanation with examples Solution of LPP by Simplex Method; Charnes' Big-M Method; Duality Theory. Transportation Problems and Assignment Problems.

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

2	Network Analysis:Shortest Path: Floyd Algorithm; Maximal Flow Problem (Ford-Fulkerson); PERTCPM (Cost	9
	Analysis, Crashing, Resource Allocation excluded). Inventory Control:Introduction to EOQ Models of	
	Deterministic and Probabilistic ; Safety Stock; Buffer Stock.	
3	Game Theory: Introduction; 2-Person Zero-sum Game; Saddle Point; Mini-Max and Maxi-Min Theorems	5
	(statement only) and problems; Games without Saddle Point; Graphical Method; Principle of Dominance	
4	Queuing Theory: Introduction; Basic Definitions and Notations; Axiomatic Derivation of the Arrival &	5
	Departure (Poisson Queue). Poisson Queue Models: (M/M/1): (∞ / FIFO) and (M/M/1: N / FIFO) and	
	problems.	

SEMESTER VII

LAB

Course Title: Mobile Application Development Lab	Code: PCC-CSIT791
Type of Course: Practical	Course Designation: Compulsory
Semester: 7 th	Contact Hours: 4P/week
Continuous Assessment: 40 Marks	Final Exam: 60 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PCC-CSIT791.CO1	Set up and configure the Flutter development environment for iOS and Android.	Configure	КЗ
PCC-CSIT791.CO2	Develop interactive mobile applications using Flutter's widget-based UI framework.	Develop	К4
PCC-CSIT791.CO3	Implement backend services using PHP and integrate MySQL for dynamic data storage.	Implement	К4
PCC-CSIT791.CO4	Apply authentication and API integration techniques to enable secure and connected applications.	Apply	К4
PCC-CSIT791.CO5	Deploy and optimize mobile applications for performance, scalability, and security.	Deploy	К5

Unit	Content
1	Setting Up the Development Environment
	- Installing Flutter SDK, Dart, Android Studio, and Xcode.
	- Setting up emulators and physical device debugging.
	- Understanding Flutter project structure and basic widget usage.
2	Frontend Development with Flutter
	– Creating UI using Stateless and Stateful widgets.
	- Implementing layouts: Row, Column, Stack, ListView, GridView.
	- Managing user inputs with Forms and TextFields.
	- Handling navigation and routing between screens.
3	Backend Development with PHP and MySQL
	– Setting up a PHP server and MySQL database.
	- Performing CRUD operations using PHP and MySQL.
	- Creating RESTful APIs for Flutter integration.
	- Testing API responses using Postman.
4	API Integration and Authentication
	– Consuming RESTful APIs in Flutter using HTTP and Dio packages.
	– Implementing user authentication with JWT and OAuth.
	– Secure API communication using HTTPS and token–based authentication.

5	Advanced Mobile App Features
	 Integrating Firebase for push notifications and real-time database.
	- Implementing location services and Google Maps API.
	– Adding payment gateway support (Razorpay, Stripe, PayPal).
	- Handling background tasks and scheduled jobs.
6	Deployment and Performance Optimization
	– Optimizing application performance and reducing app size.
	- Debugging and logging in Flutter.
	– Publishing the app on Google Play Store and Apple App Store.
	 Setting up CI/CD for automated testing and deployment.

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

SEMESTER VIII THEORY

Course Title: Cryptography and Network Security	Code: PEC-IT801A
Type of Course: Theory	Course Designation: Elective
Semester: 8 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-IT801A,CO1	Describe conceptual understanding of network security issues, challenges and mechanisms common network vulnerabilities and attacks and basic concept of cryptography.	Describe	К1
PEC-IT801A.CO2	Evaluate various techniques of cryptography.	Evaluate	K5
PEC- IT801A.CO3	Illustrate the algorithms of different symmetric key cryptography.	Illustrate	К2
PEC- IT801A.CO4	Apply the public key algorithms, digital signature and message digest.	Apply	КЗ
PEC- IT801A.CO5	Analyze the approaches of security protocol and authentication.	Analyze	К4
PEC- IT801A.CO6	Explain the concept of electronic mail security and types of firewall and its configurations.	Explain	К2

Unit	Content	Hrs/Unit
1	Attacks on Computers & Computer Security – Introduction, Need for Security, Security approaches, Principles of Security, Types of attack	5
2	Cryptography: Concepts & Techniques Introduction, Plaintext & Cipher text, Substitution Techniques, Transposition Techniques, Encryption & Decryption, Symmetric & Asymmetric key Cryptography, Key Range & Key Size	7
3	Symmetric Key Algorithm – Introduction, Algorithm types & Modes, Overview of Symmetric Key Cryptography, DES(Data Encryption Standard) algorithm, IDEA(International Data Encryption Algorithm) algorithm, RC5(Rivest Cipher 5) algorithm.	8
4	Asymmetric Key Algorithm, Digital Signature and RSA – Introduction, Overview of Asymmetric key Cryptography, RSA algorithm, Symmetric & Asymmetric key Cryptography together, Digital Signature, Basic concepts of Message Digest and Hash Function (Algorithms on Message Digest and Hash function not required).	5
5	Internet Security Protocols, User Authentication – Basic Concepts, SSL protocol, Authentication Basics, Password, Authentication Token, Certificate based Authentication, Biometric Authentication	6
6	Electronic Mail Security – Basics of mail security, Pretty Good Privacy, S/MIME.	4
7	Firewall – Introduction, Types of firewall, Firewall Configurations, DMZ Network	3

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Speech and Natural Language Processing	Code: PEC-IT801B
Type of Course: Theory	Course Designation: Elective
Semester: 8 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-IT801B.CO1	Understand the fundamentals of Natural Language Processing (NLP), including regular expressions and finite state automata for text processing.	Understand	К2
PEC- IT801B.CO2	Apply tokenization, normalization, named entity recognition, and spell-checking techniques for text preprocessing.	Apply	КЗ
PEC- IT801B.CO3	Implement morphological parsing techniques, including finite state transducers and stemming algorithms.	Implement	К4
PEC- IT801B.CO4	Analyze language modeling techniques using N-grams, smoothing, and evaluation methods.	Analyze	К4
PEC- IT801B.CO5	Develop Part-of-Speech (POS) tagging models using Hidden Markov Models (HMM) and machine learning approaches.	Develop	К4
PEC- IT801B.CO6	Evaluate text classification techniques, sentiment analysis methods, and their applications in opinion mining.	Evaluate	К5
PEC- IT801B.CO7	Examine context-free grammars, dependency parsing, and probabilistic parsing techniques for syntactic analysis.	Examine	К4
PEC- IT801B.CO8	Explore lexical semantics, thesaurus-based similarity models, and distributional word representations.	Explore	КЗ
PEC- IT801B.CO9	Apply information retrieval techniques, ranking algorithms, and search engine optimization strategies for document retrieval.	Apply	К4

Unit	Content	Hrs/Unit
1	Regular Expressions and AutomataRecap) – Introduction to NLP, Regular Expression, Finite State	11
	Automata [2L]	
	Tokenization - Word Tokenization, Normalization, Sentence Segmentation, Named Entity	
	Recognition, Multi Word Extraction, Spell Checking — Bayesian Approach, Minimum Edit Distance [5L]	
	Morphology – Morphology – Inflectional and Derivational Morphology, Finite State Morphological Parsing, The Lexicon and Morphotactics, Morphological Parsing with Finite State Transducers, Orthographic Rules and Finite State Transducers, Porter Stemmer [4L]	
2	Language Modeling Introduction to N-grams, Chain Rule, Smoothing — Add-One Smoothing, Witten-	8
	Bell Discounting; Backoff, Deleted Interpolation, N–grams for Spelling and Word Prediction, Evaluation	
	of language models. [4L]	
	Hidden Markov Models and POS Tagging Markov Chain, Hidden Markov Models, Forward Algorithm, Viterbi Algorithm, Part of Speech Tagging — Rule based and Machine Learning based approaches, Evaluation. [4L]	
3	Text Classification Text Classification, Naïve Bayes' Text Classification, Evaluation, Sentiment Analysis	9
	- Opinion Mining and Emotion Analysis, Resources and Techniques. [4L]	
	Context Free Grammar Context Free Grammar and Constituency, Some common CFG phenomena	
	for English, Top-Down and Bottom-up parsing, Probabilistic Context Free Grammar, Dependency Parsing [4L]	
4	Computational Lexical Semantics Introduction to Lexical Semantics — Homonymy, Polysemy,	9
	Synonymy, Thesaurus — WordNet, Computational Lexical Semantics — Thesaurus based and	
	Distributional Word Similarity [4L]	
	Information Retrieval Boolean Retrieval, Term- document incidence, The Inverted Index, Query	
	Optimization, Phrase Queries, Ranked Retrieval — Term Frequency — Inverse Document Frequency	
	based ranking, Zone Indexing, Query term proximity, Cosine ranking, Combining different features	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

for ranking, Search Engine Evaluation, Relevance Feedback [5L]	

Course Title: Internet of Things	Code: PEC-IT801C
Type of Course: Theory	Course Designation: Elective
Semester: 8 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks
Writer: Course Coordinator	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-IT801C.CO1	Understand the vision of IoT from a global context.	Understand	K2
PEC-IT801C.CO2	Determine the Market perspective of IoT.	Determine	K5
PEC-IT801C.CO3	Use of Devices, Gateways and Data Management in IoT.	Use of	К3
PEC-IT801C.CO4	Analysed the use of IoT in Industrial and Commercial Building Automation and Real World Design Constraints.	Analysed	К4
PEC-IT801C.CO5	Understand the architecture of smart sensor.	Understand	K2
PEC-IT801C.CO6	Build the interfacing among IoT components.	Build	K5

Unit	Content	Hrs/Unit
1	Environmental Parameters Measurement and Monitoring: Why	7
	measurement and monitoring are important, effects of adverse parameters for the living	
	being for IOT	
2	Sensors: Working Principles: Different types; Selection of Sensors for Practical	8
	Applications	
	Introduction of Different Types of Sensors such as Capacitive, Resistive, Surface Acoustic	
	Wave for Temperature, Pressure, Humidity, Toxic Gas etc	
3	Important Characteristics of Sensors: Determination of the Characteristics	11
	Fractional order element: Constant Phase Impedance for sensing applications such as	
	humidity, water quality, milk quality	
	Impedance Spectroscopy: Equivalent circuit of Sensors and Modelling of Sensors	
	Importance and Adoption of Smart Sensors	
4	Architecture of Smart Sensors: Important components, their features Fabrication of	10
	Sensor and Smart Sensor: Electrode fabrication: Screen printing, Photolithography,	
	Electroplating Sensing film deposition: Physical and chemical Vapor, Anodization, Sol-	
	gel	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

5	Interface Electronic Circuit for Smart Sensors and Challenges for	7
	Interfacing the Smart Sensor, Usefulness of Silicon Technology in Smart Sensor And	
	Future scope of research in smart sensor	
6	Recent trends in smart sensor for day to day life, evolving sensors and	5
	their architecture	

Course Title: Remote Sensing and GIS	Code: PEC-IT801D
Type of Course: Theory	Course Designation: Elective
Semester: 8 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
PEC-IT801D.CO1	Understand the fundamentals of Geographic Information Systems (GIS), including its features, functions, and historical development.	Understand	К2
PEC- IT801D.CO2	Analyze map projections, coordinate systems, and cartographic principles in GIS applications.	Analyze	К4
PEC- IT801D.CO3	Apply data sources, data input methods, and database management techniques in GIS, ensuring data quality and accuracy.	Apply	КЗ
PEC- IT801D.CO4	Implement spatial analysis techniques, including vector and raster–based geographic data processing.	Implement	К4
PEC- IT801D.CO5	Design and produce maps using GIS software, considering map elements, visualization techniques, and distribution formats.	Design	К5
PEC- IT801D.CO6	Evaluate the process of GIS implementation, including planning, cost- benefit analysis, data management, and system selection.	Evaluate	К5
PEC- IT801D.CO7	Explore GIS applications in various domains, integrating emerging technologies and software tools.	Explore	КЗ
PEC-IT801D.CO8	Understand remote sensing principles, including electromagnetic spectrum usage, thermal infrared sensing, and environmental applications.	Understand	К2

Unit	Content	
1	Introduction and Overview of Geographic Information Systems Definition of a GIS, features and	3
	functions; why GIS is important; how GIS is applied; GIS as an Information System; GIS and	
	cartography; contributing and allied disciplines; GIS data feeds; historical development of GIS.	
2	GIS and Maps, Map Projections and Coordinate Systems Maps and their characteristics (selection,	
	abstraction, scale, etc.); automated cartography versus GIS; map projections; coordinate systems;	

	precision and error.	
3	Data Sources, Data Input, Data Quality and Database Concepts Major data feeds to GIS and their characteristics: maps, GPS, images, databases, commercial data; locating and evaluating data; data formats; data quality; metadata. Database concepts and components; flat files; relational database systems; data modeling; views of the database; normalization; databases and GIS.	3
4	Spatial Analysis Questions a GIS can answer; GIS analytical functions; vector analysis including topological overlay; raster analysis; statistics; integrated spatial analysis.	3
5	Making Maps Parts of a map; map functions in GIS; map design and map elements; choosing a map type; producing a map formats, plotters and media; online and CD–ROM distribution; interactive maps and the Web.	6
6	Implementing a GIS Planning a GIS; requirements; pilot projects; case studies; data management; personnel and skill sets; costs and benefits; selecting a GIS package; professional GIS packages; desktop GIS; embedded GIS; public domain and lowcost packages.	4
7	Technology & Instruments involved in GIS & Remote Sensing GIS applications; GIS application areas and user segments; creating custom GIS software applications; user interfaces; case studies. Future data; future hardware; future software; Object-oriented concepts and GIS; future issues — data ownership, privacy, education; GIS career options and how to pursue them.	8
8	Remote Sensing Remote sensing of environment, E.M. Principle, Thermal infrared remote sensing, Remote sensing of Vegetation, Remote sensing of water, urban landscape	8

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Cyber Law and Ethics	Code: OEC-IT801B
Type of Course: Theory	Course Designation: Elective
Semester: 8 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
OEC-IT801B.CO1	Understand the fundamentals of cybercrime, including forgery, hacking, software piracy, and network intrusion.	Understand	K2
OEC-IT801B.CO2	Analyze different categories of cybercrime, including passive and active attacks, and the methods used by cybercriminals.	Analyze	K4
OEC-IT801B.CO3	Identify security challenges in mobile and wireless devices, including cryptographic security, mobile hacking, and virus attacks.	Identify	К3
OEC-IT801B.CO4	Apply knowledge of tools and methods used in cybercrime, such as proxy servers, Trojan horses, DoS/DDoS attacks, and SQL injection.	Apply	КЗ
OEC-IT801B.CO5	Examine phishing techniques and identity theft mechanisms used in online fraud.	Examine	К4
OEC-IT801B.CO6	Evaluate legal frameworks, Indian laws, the IT Act, and cybersecurity measures like public key certificates.	Evaluate	К5

Unit	Content	Hrs/Unit
1	Introduction of Cybercrime: What is cybercrime?, Forgery, Hacking, Software Piracy, Computer Network	
	intrusion[4L].	
	Category of Cybercrime: how criminals plan attacks, passive attack, Active attacks, cyberstalking. [4L]	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

2	Cybercrime Mobile & Wireless devices: Security challenges posted by mobile devices, cryptographic	
	security for mobile devices, Attacks on mobile/cellphones, Theft, Virus, Hacking. Bluetooth;	
	Different viruses on laptop [8L]	
3	Tools and Methods used in Cyber crime: Proxy servers, panword checking, Random checking, Trojan	8
	Horses and Backdoors; DOS & DDOS attacks; SQL	
	injection: buffer over flow. [8L]	
4	Phishing & Identity Theft: Phising methods, ID Theft; Online identity method. [4L]	
	Cybercrime & Cybersecurity: Legal aspects, indian laws, IT act, Public key certificate. [4L]	

Course Title: Bioinformatics	Code: OEC-IT801D
Type of Course: Theory	Course Designation: Elective
Semester: 8 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
OEC-IT801D.CO1	Understand the fundamental concepts of molecular biology, including cell structure, organelles, DNA, RNA, and proteins.	Understand	K2
OEC-IT801D.CO2	Explain the Central Dogma of molecular biology, including transcription, translation, and metabolic pathways.	Explain	K2
OEC-IT801D.CO3	Explore bioinformatics concepts, challenges, and sequence databases like BLAST, FASTA, GenBank, OMIM, and PubMed.	Explore	КЗ
OEC-IT801D.CO4	Analyze DNA sequencing techniques, mapping methods, and alignment algorithms such as Needleman–Wunsch and Smith–Waterman.	Analyze	К4
OEC-IT801D.CO5	Apply probabilistic models like Hidden Markov Models (HMM) and Bayesian networks in computational biology.	Apply	К4
OEC-IT801D.CO6	Implement classification and clustering techniques for protein function prediction and splice site identification.	Implement	К4

Un	it	Content	Hrs/Un	nit	
----	----	---------	--------	-----	--

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

1	INTRODUCTION TO MOLECULAR BIOLOGY	5
	Concepts of Cell, tissue, types of cell, components of cell, organelle. Functions of different organelles.	
	Concepts of DNA: Basic Structure of DNA; Double Helix structure; Watson and crick model. Exons and	
	Introns and Gene Concept. Concepts of RNA: Basic structure, Difference between RNA and DNA.	
	Types of RNA. Concept of Protein: Basic components and structure. Introduction to Central Dogma:	
	Transcription and Tranlation Introduction to Metabolic Pathways.	
2	Sequence Databases Introduction to Bioinformatics. Recent challenges in Bioinformatics. Protein	2
	Sequence Databases, DNA sequence databases. sequence database search programs like BLAST and	
	FASTA.	
	NCBI different modules: GenBank; OMIM, Taxonomy browser, PubMed;	
3	DNA SEQUENCE ANALYSIS	14
	DNA Mapping and Assembly : Size of Human DNA	
	,Copying DNA: Polymerase Chain Reaction (PCR), Hybridization and Microarrays, Cutting DNA into	
	Fragments, Sequencing Short DNA Molecules, Mapping Long DNA Molecules. DeBruijn Graph.	
	Sequence Alignment: Introduction, local and global alignment, pair wise and multiple alignment,	
	Dynamic Programming Concept. Alignment algorithms: Needleman and Wunsch algorithm, Smith-	
	Waterman.	
4	Introduction Probabilistic models used in Computational Biology	8
	Probabilistic Models; Hidden Markov Model: Concepts, Architecture, Transition matrix, estimation	
	matrix. Application of HMM in Bioinformatics: Genefinding, profile searches, multiple sequence	
	alignment and regulatory site identification. Bayesian networks Model: Architecture,	
	Principle ,Application	
	in Bioinformatics.	
5	Biological Data Classification and Clustering	6
	Assigning protein function and predicting splice sites: Decision Tree	

Course Title: Economic Policies in India	Code: OEC-IT802C	
Type of Course: Theory	Course Designation: Elective	
Semester: 8 th	Contact Hours: 3L/week	
Continuous Assessment: 25 Marks	Final Exam: 70 Marks	

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
OEC-IT802C.CO1	Understand the key determinants of economic development, sustainable growth, and various development indicators such as HDI and PQLI.	Understand	К2
OEC- IT802C.CO2	Analyze India's planning strategies, achievements, failures, and the role of grassroots organizations like Panchayats and NGOs in development.	Analyze	К4
OEC- IT802C.CO3	Evaluate demographic trends, urbanization patterns, and the challenges of poverty and inequality in India.	Evaluate	K5

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

OEC- IT802C.CO4	Examine the role of infrastructure, energy, education, health, and environmental policies in regional development and economic growth.	Examine	К4
OEC- IT802C.CO5	Assess the impact of land reforms, agricultural policies, and food security measures on sustainable agricultural development.	Assess	К5
OEC- IT802C.CO6	Analyze India's industrial policies, privatization trends, and employment generation strategies, including labor market reforms.	Analyze	К4
OEC- IT802C.CO7	Evaluate fiscal policies, financial sector reforms, and monetary policies in India, including RBI's role and SEBI's regulations.	Evaluate	К5
OEC- IT802C.CO8	Examine India's foreign trade policies, exchange rate mechanisms, and the impact of globalization and WTO agreements on different sectors.	Examine	К4
OEC- IT802C.CO9	Explore economic reforms, governance issues, and competition policies, assessing their impact on India's economic landscape.	Explore	КЗ

Unit	Content	Hrs/Unit
1	Economic Development and its Determinants	5
	Approaches to economic development and its measurement — sustainable development; Role of State,	
	market and other institutions; Indicators of development – PQLI, Human Development Index (HDI),	
	gender development indices.	
2	Planning in India	3
	Objectives and strategy of planning; Failures and achievements of Plans; Developing grass-root organizations for development — Panchayats, NGOs and pressure groups.	
3	Demographic Features, Poverty and Inequality	10
	Broad demographic features of Indian population; rural–urban migration; Urbanization and civic	
	amenities; Poverty and	
	Inequality.	
	Resource Base and Infrastructure	
	Energy; social infrastructure — education and health; Environment; Regional imbalance; Issues and	
	policies in financing	
	infrastructure development.	
	The Agricultural Sector	
	Institutional Structure — land reforms in India; Technological change in agriculture — pricing of	
	agricultural inputs and output;	
	industry; Agricultural finance policy; Agricultural Marketing and Warehousing; Issues Terms of trade	
	between agriculture	
	and in food security — policies for sustainable agriculture.	
4	Section — II	15
	Industrial policy; Public Sector enterprises and their performance; Problem of sick units in India;	
	Privatization and disinvestment debate; Growth and pattern of industrialization; Small–scale sector; Productivity in	
	industrial sector; Exit	
	policy — issues in labour market reforms; approaches for employment generation.	
	Public Finances	
	Fiscal federalism — Centre–State financial relations; Finances of central government; Finances of	
	state governments; Parallel economy; Problems relating to fiscal policy; Fiscal sector reforms in India.	
	Money, Banking and Prices	

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Analysis of price behaviour in India; Financial sector reforms; Interest rate policy; Review of monetary policy of RBI; Money

and capital markets; Working of SEBI in India.

External Sector

Structure and direction of foreign trade; Balance of payments; Issues in export–import policy and FEMA; Exchange rate

policy; Foreign capital and MNCs in India; The progress of trade reforms in India.

Economic Reforms

Rationale of internal and external reforms; Globalization of Indian economy; WTO and its impact on the different sectors of

the economy; Need for and issues in good governance; Issues in competition and safety nets in Indian economy.

Course Title: Robotics	Code: OEC-IT801E
Type of Course: Theory	Course Designation: Elective
Semester: 8 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
OEC-IT801E.CO1	Understand the fundamentals of robotics, including classification, applications, and core elements such as links, joints, actuators, and sensors.	Understand	К2
OEC- IT801E.CO2	Apply homogeneous transformations, Denavit-Hartenberg (D-H) parameters, and kinematic modeling to represent robot linkages.	Apply	К3
OEC- IT801E.CO3	Analyze the kinematics of serial and parallel manipulators, including inverse kinematics and workspace calculations.	Analyze	К4
OEC- IT801E.CO4	Evaluate velocity and static analysis of robotic manipulators using Jacobians, singularity analysis, and force transformation matrices.	Evaluate	К5
OEC- IT801E.CO5	Implement dynamic modeling techniques using Lagrangian mechanics and simulation tools for serial and parallel manipulators.	Implement	К4

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

OEC- IT801E.CO6	Design and simulate motion planning and control strategies, including PID control, nonlinear control, and force control of manipulators.	Design	К5
OEC- IT801E.CO7	Examine flexible robotic systems, including modeling and control of flexible links and joints in multi-link robots.	Examine	К4
OEC- IT801E.CO8	Explore wheeled mobile robots (WMR), their kinematics, dynamics, and motion planning on uneven terrain.	Explore	К3
OEC- IT801E.CO9	Investigate advanced topics such as chaos in robotic systems, Gough–Stewart platforms, over–constrained mechanisms, and	Investigate	К5
	deployable structures.		

Unit	Content	Hrs/Unit
1	Introduction: Introduction — brief history, types, classification and usage, Science and Technology of	1
	robots, Some useful websites, textbooks and research journals.	
2	Elements of robots — links, joints, actuators, and sensors	5
	Position and orientation of a rigid body, Homogeneous transformations, Representation of joints, link representation using D-H parameters, Examples of D-H parameters and link transforms, different kinds of actuators — stepper, DC servo and brushless motors, model of a DC servo motor, Types of transmissions, Purpose of sensors, internal and external sensors, common sensors — encoders, tachometers, strain gauge based force—torque sensors, proximity and distance measuring sensors, and vision.	
3	Kinematics of serial robots Introduction, Direct and inverse kinematics problems, Examples of	4
	kinematics of common serial manipulators, workspace of a serial robot, Inverse kinematics of	
	constrained and redundant robots, Tractrix based approach for fixed and free robots and multi-body	
	systems, simulations and experiments, Solution procedures using theory of elimination, Inverse	
4	kinematics solution for the general 6R serial manipulator. Kinematics of parallel robots Degrees—of—freedom of parallel mechanisms and manipulators, Active and passive joints, Constraint and loop—closure equations, Direct kinematics problem, Mobility of parallel manipulators, Closed—from and numerical solution, Inverse kinematics of parallel manipulators and mechanisms, Direct kinematics of Gough—Stewart platform.	5
	Velocity and static analysis of robot manipulators Linear and angular velocity of links, Velocity	5
	propagation, Manipulator Jacobians for serial and parallel manipulators, Velocity ellipse and	
	ellipsoids, Singularity analysis for serial and parallel manipulators, Loss and gain of degree of	
	freedom, Statics of serial and parallel manipulators, Statics and force transformation matrix of a	
	Gough-Stewart platform, Singularity analysis and statics.	
	Dynamics of serial and parallel manipulators Mass and inertia of links, Lagrangian formulation for equations of motion for serial and parallel manipulators, Generation of symbolic equations of motion using a computer, Simulation (direct and inverse) of dynamic equations of motion, Examples of a planar 2R and four-bar mechanism, Recursive dynamics, Commercially available multi-body simulation software	4
	(ADAMS) and Computer algebra software Maple.	
	Motion planning and control Joint and Cartesian space trajectory planning and generation, Classical control concepts using the example of control of a single link, Independent joint PID control, Control of a multi-link manipulator, Non-linear model based control schemes, Simulation and experimental case studies on serial and parallel manipulators, Control of constrained manipulators, Cartesian control, Force control and hybrid position/force control, Advanced topics in non-linear control of manipulators. 8 Module 8: Modeling And	6
	Modeling and control of flexible robots Models of flexible links and joints, Kinematic modeling of multi– link flexible robots, Dynamics and control of flexible link manipulators, Numerical simulations results, Experiments with a planar two-link flexible manipulator.	4

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Modeling and analysis of wheeled mobile robots 3Introduction and some well known wheeled mobile	3
robots (WMR), two and three-wheeled WMR on flat surfaces, Slip and its modeling, WMR on	
uneven terrain, Design of slip–free motion on uneven terrain, Kinematics, dynamics and static stability	
of a three– wheeled WMR's on uneven terrain, Simulations using Matlab and ADAMS.	
Selected advanced topics in robotics Introduction to chaos, Non-linear dynamics and chaos in robot equations, Simulations of planar 2 DOF manipulators, Analytical criterion for unforced motion. Gough- Stewart platform and its singularities, use of near singularity for fine motion for sensing,	3
design of Gough–Stewart platform based sensors. Over– constrained mechanisms and deployable structures, Algorithm to obtain redundant links and joints, Kinematics and statics of deployable	
	robots (WMR), two and three-wheeled WMR on flat surfaces, Slip and its modeling, WMR on uneventerrain, Design of slip-free motion on uneven terrain, Kinematics, dynamics and static stability of a three- wheeled WMR's on uneven terrain, Simulations using Matlab and ADAMS. Selected advanced topics in robotics Introduction to chaos, Non-linear dynamics and chaos in robot equations, Simulations of planar 2 DOF manipulators, Analytical criterion for unforced motion. Gough- Stewart platform and its singularities, use of near singularity for fine motion for sensing, design of Gough-Stewart platform based sensors. Over- constrained mechanisms and deployable

Course Title: E-Commerce & ERP	Code: OEC-IT802A
Type of Course: Theory	Course Designation: Elective
Semester: 8 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Outcomes	Details	Action Verb	Knowledge Level
OEC-IT802A,CO1	Describe the fundamental concept and scope of E- Commerce, relation between E-Commerce and Networking and their concerned hardware.	Describe	К1
OEC-IT802A.CO2	Explain various business models and E-strategies for developing E-Commerce	Explain	K2
OEC-IT802A.CO3	Understand the role of Conve1rgence, Collaborative Computing, Content Management & Call Center in E-Commerce and Supply Chain Management	Understand	К2
OEC-IT802A.CO4	Analyze the mechanism & security issues related to E– Payment and E–Marketing.	Analyze	К4
OEC-IT802A.CO5	Apply the knowledge of EDI Models and Security Standards in E-Commerce applications.	Apply	КЗ
OEC-IT802A.CO6	Elaborate the concept of Enterprise Resource Planning using different ERP Packages	Elaborate	К6

Unit	Content	Hrs/Unit
1	Overview, Definitions, Advantages & Disadvantages of E — Commerce, Threats of E — Commerce,	3
	Managerial Prospective, Rules & Regulations For Controlling E — Commerce,	
	Cyber Laws. [3 L]	
2	Technologies: Relationship Between E — Commerce & Networking, Different Types of Networking	5
	Commerce, Internet, Intranet & Extranet, EDI Systems Wireless Application	
	Protocol: Definition, Hand Held Devices, Mobility & Commerce, Mobile Computing, Wireless	
	Web, Web Security, Infrastructure Requirement For E — Commerce . [5 L]	
3	Business Models of e – commerce : Model Based On Transaction Type, Model Based On Transaction	2
	Party – B2B, B2C, C2B, C2C, E – Governance. [2 L]	
4	E — strategy : Overview, Strategic Methods for developing E — commerce. [2 L]	2
5	Four C's : (Convergence, Collaborative Computing, Content Management & Call Center).	6
	Convergence: Technological Advances in Convergence — Types, Convergence and its implications,	
	Convergence & Electronic Commerce. Collaborative Computing: Collaborative product development,	
	contract as per CAD, Simultaneous Collaboration, Security. Content Management: Definition of	
	content, Authoring Tools & Content Management, Content — partnership, repositories, convergence,	
	providers, Web Traffic & Traffic Management ; Content Marketing. Call Center : Definition, Need,	
	Tasks Handled, Mode of Operation, Equipment , Strength & Weaknesses of Call Center,	
	Customer	
	Premises Equipment (CPE). [6 L]	
6	Supply Chain Management : E — logistics, Supply Chain Portal, Supply Chain Planning Tools (SCP	3
	Tools), Supply Chain Execution (SCE), SCE – Framework, Internet's effect on	
	Supply Chain Power. [3 L]	
7	E — Payment Mechanism: Payment through card system, E — Cheque, E — Cash, E — Payment	1
	Threats & Protections. [1 L]	
8	E — Marketing :. Home — shopping, E—Marketing, Tele—marketing [1 L]	1
9	Electronic Data Interchange (EDI): Meaning, Benefits, Concepts, Application, EDI Model, Protocols (UN EDI FACT / GTDI, ANSI X — 12), Data Encryption (DES / RSA). [2 L]	2

10	Electronic Data Interchange (EDI): Meaning, Benefits, Concepts, Application, EDI Model, Protocols (UN EDI FACT / GTDI, ANSI X — 12), Data Encryption (DES / RSA). [2 L]	2
11	Risk of E — Commerce: Overview, Security for E — Commerce, Security Standards, Firewall, Cryptography, Key Management, Password Systems, Digital certificates, Digital signatures.[4L]	4
12	Enterprise Resource Planning (ERP): Features, capabilities and Overview of Commercial Software, re-engineering work processes for IT applications, Business Process Redesign, Knowledge engineering and data warehouse. Business Modules: Finance, Manufacturing (Production), Human Resources, Plant Maintenance, Materials Management, QualityManagement, Sales&Distribution ERPPackage, ERP Market: ERP Market Place, SAP AG, PeopleSoft, BAAN, JD Edwards, Oracle Corporation ERP-Present and Future: Enterprise Application Integration (EAI), ERP and E-Commerce, ERP and Internet, Future Directions in ERP [10]	10

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Micro-electronics and VLSI Design	Code: OEC-IT802B
Type of Course: Theory	Course Designation: Elective
Semester: 8 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
OEC-IT802B.CO1	Understand the fundamentals of CMOS circuits, including MOS transistors, logic gates, and memory components.	Understand	К2
OEC-IT802B.CO2	Analyze CMOS fabrication techniques, including wafer processing, oxidation, ion–implantation, and different CMOS processes.	Analyze	К4
OEC-IT802B.CO3	Apply layout design rules for CMOS circuits, including n-well rules, layer assignments, and Silicon-On-Insulator (SOI) design considerations.	Apply	К3
OEC-IT802B.CO4	Evaluate power dissipation mechanisms in CMOS circuits, including static, dynamic, and short-circuit dissipation.	Evaluate	К5
OEC-IT802B.CO5	Implement programmable logic structures, reconfigurable gate arrays, and FPGA-based digital designs using RTL synthesis.	Implement	К4
OEC-IT802B.CO6	Design and optimize VLSI circuit placement using min-cut algorithms, iterative improvement, and simulated annealing techniques.	Design, Optimize	К5
OEC-IT802B.CO7	Examine routing techniques such as segmented channel routing, maze routing, and net delay analysis for VLSI circuit layouts.	Examine	К4
OEC-IT802B.CO8	Explore verification and testing methodologies, including logic simulation, timing verification, ATPG, and design for testability in FPGAs.	Explore	К3
OEC-IT802B.CO9	Develop digital designs using VHDL for behavioral synthesis and RTL-based hardware description.	Develop	К4

Unit	Content	Hrs/Unit
1	Introduction to CMOS circuits: MOS Transistors, MOS transistor switches, CMOS Logic, The inverter, Combinational Logic, NAND gate, NOT Gate, Compound Gates, Multiplexers, Memory–Latches and Registers. [6L]	
2	Processing Technology: Silicon Semiconductor Technology– An Overview, wafer processing, oxidation, epitaxy deposition, Ion–implantation and diffusion, The Silicon Gate Process– Basic CMOS Technology, basic n–well CMOS process, p–well CMOS process, Twin tub process, Silicon on insulator, CMOS process enhancement–Interconnect, circuit elements, 3–D CMOS. Layout Design Rule: Layer Representations, CMOS n–well Rules, Design Rule of background scribe line, Layer Assignment, SOI Rule [10L].	10
3	Power Dissipation: Static dissipation, Dynamic dissipation, short–circuit dissipation, total power dissipation.	8
	Programmable Logic, Programmable Logic structure, Programmable interconnect, and Reprogramable	

	Gate Array: Xilinx Programmable Gate Array, Design Methods: Behavioural Synthesis, RTL synthesis [8L]	
4	Placement: placement: Mincut based placement — Iterative improvement placement simulated annealing. Routing: Segmented channel routing — maze routing — routability and routing resources — net delays. [5L]	
5	Verification and Testing: Verification Versus Testing, Verification: logic simulation design validation — timing verification — Testing concepts: failures — mechanisms and faults — fault coverage — ATPG methods — types of tests — FPGAs — programmability failures — design for testability. [5L]	5
6	Overview of VHDL [5L]	5

Syllabus and Curricular Mapping for B. Tech. in Computer Science and Information Technology

Course Title: Data Analytics	Code: OEC-CSIT802A
Type of Course: Theory	Course Designation: Elective
Semester: 8 th	Contact Hours: 3L/week
Continuous Assessment: 25 Marks	Final Exam: 70 Marks

COURSE OUTCOMES (COs)

On completion of the course students will be able to

Course Outcomes	Details	Action Verb	Knowledge Level
CO1	Understand the fundamental concepts of data analytics, types of data, and its significance in modern industries.	Understand	К2
CO2	Apply statistical methods and data preprocessing techniques to clean and analyze raw data.	Apply	КЗ
СОЗ	Develop skills in data visualization using libraries such as Matplotlib and Seaborn for effective data representation.	Develop	К4
CO4	Implement machine learning algorithms for predictive analytics and data-driven decision-making.	Implement	К4
CO5	Evaluate big data technologies, frameworks (Hadoop, Spark), and their application in large-scale data processing.	Evaluate	К5
CO6	Design and implement real—world data analytics projects for business intelligence and scientific research.	Design	К6

Unit	Content	Hours/Unit
1	Introduction to Data Analytics	6
	– Overview of Data Analytics and its Applications in Industry	
	- Types of Data: Structured, Unstructured, Semi-structured	
	– Data Analytics Process: Data Collection, Cleaning, Processing, and Analysis	

	– Data Lifecycle and Role of Data Analysts	
2	Data Preprocessing and Statistical Analysis	6
	- Handling Missing Data, Outliers, and Data Normalization	
	– Descriptive and Inferential Statistics: Mean, Median, Mode, Variance, Standard	
	Deviation	
	– Probability Distributions and Hypothesis Testing	
	- Correlation and Regression Analysis	
3	Data Visualization Techniques	8
	– Introduction to Data Visualization and Importance	
	– Tools and Libraries: Matplotlib, Seaborn, Tableau, Power BI	
	- Creating Line Charts, Bar Charts, Histograms, and Scatter Plots	
	– Interactive Dashboards and Storytelling with Data	
4	Machine Learning for Data Analytics	8
	- Introduction to Supervised and Unsupervised Learning	
	- Regression Models (Linear, Logistic), Decision Trees, and Random Forests	
	- Clustering (K-Means, Hierarchical Clustering)	
	– Performance Evaluation Metrics (Precision, Recall, F1–Score)	
5	Big Data Analytics and Technologies	8
	– Introduction to Big Data: Characteristics and Challenges	
	– Hadoop Ecosystem: HDFS, MapReduce, YARN	
	- Apache Spark: Architecture, RDDs, and DataFrames	
	- NoSQL Databases for Data Analytics (MongoDB, Cassandra)	
6	Real–World Applications and Case Studies	4
	– Business Intelligence and Decision ^M aking	
	– Sentiment Analysis and Social Media Analytics	
	I .	