

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

(Formerly West Bengal University of Technology)

Syllabus of BCA

(Effective from 2023-24 Academic Sessions)

SEMESTER: III

DEFINITION OF CREDIT

1 HR LECTURE PER WEEK 1 CREDIT

1 HR TUTORIAL PER WEEK 1CREDIT

2 HR PRACTICAL PER WEEK 1 CREDIT

SUBJECT NUMBERING SCHEME:

CODE FOR THE DEPT.

OFFERING SUBJECT

SUBJECT TYPE SEM SUBJECT CODE

C CORE MAJOR

SUBJECT NAME: Python Programming Credit: 3L + 2P

SUBJECT CODE: BCAC301

COURSE OBJECTIVE:

The course objectives of a Python programming course typically aim to equip students with the

fundamental knowledge and skills needed to understand and utilize Python as a programming

language effectively. students should have a solid foundation in Python programming, enabling

them to write Python code independently, understand and contribute to Python-based projects,

and pursue further specialization in specific areas of Python development.

COURSE OUTCOME

CO1 Will gain a solid understanding of Python programming fundamentals, including

syntax, data types, control structures, and functions.

CO2 Will learn techniques for acquiring, cleaning, and analyzing data

CO3 Will be able to design and implement modular programs using functions and modules

to improve code reusability and maintainability.

CO4 Will be capable of reading from and writing to files, as well as handling different file

formats for data input and output operations.

CO5 Will understand the principles of object-oriented programming and be able to create

classes, objects, and inheritance hierarchies to model real-world entities and solve

problems.

DETAILED SYLLABUS:

Module No: NAME OF THE TOPIC HOURS MARKS

M1 INTRODUCTION:
Features of Python, Execution of

Python Program, Viewing the byte

code, Python Virtual machine,

Frozen binaries, Memory

management of Python, Compare

between C and Python, Comapre

between Java and Python

3 5

M2 Python Fundaments:

python character set, Tokens

(Keywords, Identifiers, Literals,

Operators, Punctuations), Comments

in Python (Single line and Multi

line), Variables and assignments

(Creating a variables, Multiple

assignments)

3 4

M3 Data Handling and Flow Control:
Data Types, Mutable and Immutable

types, Operators, Negative Number

artithmetic in Python, Evaluation of

Expression, Type casting

Flow Control: if statement, if..else,

if..elif..else statement, range

function,while loop, for loop, nested

loop, break statement, Continue

statement, return statement

6 6

M4 String and Character:
Introduction, Traversing the

string,String concatenation and

replication, Membership operator,

comparision operator, determine

unicode value of single character,

slicing, built in functions (len(),

capitalize(), count(), find(),

index(),isalpha(), isalnum(), isdigit(),

isspace(), islower(),lower(), upper(),

strip(0, lstrip(), rstrip(), join(), title(),

split(), partition(), endswith(),

startswith(), replace()

5 5

M5 Functions: Differenece Function and

method,define a function, Calling a

function, Return results from

function, Return multiple values

from function, Formal and Actual

arguments, Positional arguments,

Default arguments, Keyword

arguments, Variable length

arguments Local and Global

variable, Recursive function, using

Lambdas with filter(), lambdas with

map()

4 5

M6 Lists: Creation of list,empty list,

nested list, use of list(), Accessing

list, length of list, indexing and

slicing of list, Traverse the list,

Compare the list, Joining the list,

Replication of list, Making the true

copy of list, index(0, append() and

extend(), insert(), pop(), popitem(),

del and clear(), count(), reverse(),

sort and sorted, two dimensional list

6 10

M7 Tuples: Creation of tuple (empty

tuple, single element, create tuple

from existing sequence, nested

tuple), Accessing tuples, Traverse

tuple, join , len(), max(), min()

3 5

M8 Dictionary: Creating dictionary

empty dictionary, add key:value pair

in dictionary, use of dict(), specify

value pair separately in sequence,

Add ewlements to dictionary, Check

existence of a key in dictionary,

get(), items(), keys(), values(), len(),

fromkeys(), extens/ update dictionary

with new value, making shallow

copy of dictionary, delete elemnts

from dictionary(clera(), pop(),

poitem(), del) , max(), min(), sum()

6 10

M9 Text file: opening a text file, text file

open modes (r, r+, w, w+, a, a+),

closing a text file, opening a file

using with clause, writing/appending

data to a text file using write() and

writelines(), reading

from a text file using read(),

readline() and readlines(), seek and

tell methods, manipulation of data in

a file

3 5

M10 Class and Object:

Features of OOPs Programming,

Creation of class, self cvariable,

Constructor, types of variable,

namespace, types of

methods(Instance method, class

methos, static method)

Inheritance: Constructor in

inheritance, super(), Types of

inheritance, Method of resolution

order, Ploymorphism, operator and

method overloading, abstract class

and interface

6 15

 INTERNAL EXAMINATION 3 30

 TOTAL 48 100

Practical:

SUBJECT NAME: Python Programming Lab Credit: 2

SUBJECT CODE: BCAC391

List of Practical:

1. Fizz Buzz: Write a program that prints the numbers from 1 to 100. But for multiples of

three, print "Fizz" instead of the number, and for the multiples of five, print "Buzz".

For numbers that are multiples of both three and five, print "Fizz Buzz".

2. Palindrome Checker: Write a function to determine if a given string is a palindrome

(reads the same forwards and backwards). Ignore spaces, punctuation, and

capitalization.

3. Factorial Calculation: Write a function to calculate the factorial of a given number

recursively.

4. Prime Number Generator: Write a function to generate a list of prime numbers up to a

given number using the Sieve of Eratosthenes algorithm.

5. Word Count: Write a program that takes a string as input and counts the frequency of

each word in the string. Ignore case and punctuation.

6. Reverse a Linked List: Implement a function to reverse a singly linked list in-place.

7. Binary Search: Implement the binary search algorithm to find the index of a given

element in a sorted list.

8. Anagram Checker: Write a function to determine if two strings are anagrams of each

other (contain the same characters in a different order).

9. Matrix Transpose: Write a function to transpose a given matrix (convert rows to

columns and vice versa).

10. Tower of Hanoi: Implement the Tower of Hanoi puzzle using recursion.

List:

1. Sum of List Elements: Write a program that calculates the sum of all elements in a list

of numbers.

2. Maximum and Minimum Element in List: Write a program to find the maximum

and minimum elements in a list.

3. List Reversal: Write a program to reverse a given list.

4. List Sorting: Write a program to sort a list of numbers in ascending or descending

order.

5. List Filtering: Write a program to filter out even or odd numbers from a list.

6. List Concatenation: Write a program to concatenate two lists into one.

7. List Intersection: Write a program to find the intersection of two lists (i.e., elements

that appear in both lists).

8. List Union: Write a program to find the union of two lists (i.e., all unique elements

from both lists).

9. List Flattening: Write a program to flatten a nested list (i.e., convert a list of lists into

a single list).

10. List Element Removal: Write a program to remove all occurrences of a specific

element from a list.

11. List Rotation: Write a program to rotate a list by a given number of positions.

12. List Comprehensions: Write a program to generate a new list based on a given list

using list comprehensions (e.g., square each element of a list).

Dictionary:

Word Frequency Counter:

Write a program that takes a string as input and counts the frequency of each word using a

dictionary. Ignore case and punctuation.

Merge Two Dictionaries:

Write a function to merge two dictionaries into one, where the values of duplicate keys are

added together.

Dictionary Key Sort:

Write a function to sort the keys of a dictionary in alphabetical order and return a new

dictionary with the sorted keys.

Nested Dictionary Access:

Write a function to access a value in a nested dictionary given a list of keys. For example,

given the dictionary {'a': {'b': {'c': 1}}} and the keys ['a', 'b', 'c'], the function should return 1.

Dictionary Inversion:

Write a function to invert a dictionary, where the keys become values and the values become

keys. Assume that the values are unique.

Dictionary Intersection:

Write a function to find the intersection of two dictionaries (i.e., keys that appear in both

dictionaries) and return a new dictionary with the common keys and their values.

SUGGESTED READING:

1. Python Programming: A Modular Approach" by Sheetal Taneja and Naveen

Kumar (Publisher: Oxford University Press India)

2. Python for Beginners: A Step-by-Step Guide to Learn Python from Zero with

Hands-on Exercises" by Ajit Kumar (Publisher: BPB Publications)

3. “Python: A Practical Introduction to Programming" by Subin Siby (Publisher: BPB

Publications)

4. “Python Programming: Problems and Solutions" by S.S. Srivastava and M.H. Khan

(Publisher: Khanna Publishers)

5. “Python Programming: A Beginner's Guide to Learn Python in 7 Days" by Darshan

Patel (Publisher: BPB Publications)

SUBJECT NAME: Data Structure through C Credit: 3L + 2P

SUBJECT CODE: BCAC302

COURSE OBJECTIVE:

The course aims to provide students with a solid foundation in fundamental data structures and

algorithms, as well as proficiency in implementing them using C. This will empower students

with the knowledge, skills, and problem-solving abilities necessary to tackle complex

computational problems and excel in their academic and professional pursuits in the field of

computer application.

COURSE OUTCOME

CO1 Students will comprehend the fundamental concepts of data structures, including

arrays, linked lists, stacks, queues, and trees, and how they are implemented in the C

programming language.

CO2 Gain proficiency in implementing various data structures using C programming

language, including dynamic memory allocation, pointers, and structures.

CO3 Develop the ability to analyze problems and choose appropriate data structures and

algorithms to solve them efficiently.

CO4 Enhance problem-solving skills by applying data structures and algorithms to solve

real-world problems and algorithmic challenges.

CO5 Collaborate effectively in team projects involving the design and implementation of

complex data structures and algorithms, fostering communication and teamwork

skills.

DETAILED SYLLABUS:

Module

No:

NAME OF THE TOPIC HOURS MARKS

M1 Structure and Union, typedef definition,

Implementation of structure and Union, Accessing

members of the structure, Pointer to

structure,passing structure in function, Passing

structure through pointer, Self-referential pointer,

Nested Structure

4 5

M2 Arrays: 1D, 2D and Multi-Dimensional Arrays,

Sparse Matrices. Polynomial representation,

Implementation of Stack and Queue, Example of

Infix, Postfix, and prefix, Priority Queue

7 10

M3 Linked Lists : Singly, Doubly and Circular Lists,

Normal and Circular representation of Self

Organizing Lists, Skip Lists, Polynomial

representation, Implementation of Stack and Queue,

Circular List, Stack as Circular list, Queue as

Circular list

8 15

M4 Recursion: Definition, Internal Stack representation,

Factorial function, Fibonacci Sequence, Binary

Search, The tower of Hanoi Problem

5 8

M5 Trees : Introduction to Tree as a data structure,

Binary Trees (Insertion, Deletion, Recursive and

Iterative Traversals of Binary Search Trees),

Threaded Binary Trees (Insertion, Deletion,

Traversals), Height-Balanced Trees (Various

operations on AVL Trees).

8 15

M6 Searching and Sorting: Linear Search, Binary

Search, Comparison of Linear and Binary Search,

Selection Sort, Insertion Sort, Merge Sort, Quick

sort, Shell Sort, Comparison of Sorting Techniques

8 12

M7 Hashing : Introduction to Hashing, Deleting from

Hash Table, Efficiency of Rehash Methods, Hash

Table Reordering, Resolving collision by Open

Addressing, Coalesced Hashing, Separate Chaining,

Dynamic and Extendible Hashing, Choosing a Hash

Function, Perfect Hashing

5 5

 INTERNAL EXAMINATION 3 30

 TOTAL 48 100

Practical:

SUBJECT NAME: Data Structure Lab Credit:2

SUBJECT CODE: BCAC392

List of Practical:

1. Implementation of array operations.

2. Stacks and Queues: adding, deleting elements.

3. Circular Queue: Adding & deleting elements

4. Merging Problem: Evaluation of expressions operations on Multiple stacks & queues

5. Implementation of linked lists: inserting, deleting, and inverting a linked list.

6. Implementation of stacks & queues using linked lists:

7. Polynomial addition, Polynomial multiplication

8. Sparse Matrices: Multiplication, addition.

9. Recursive and Non Recursive traversal of Trees Threaded binary tree traversal. AVL

tree implementation Application of Trees.

10. Application of sorting and searching algorithms Hash tables’ implementation:

searching, inserting and deleting, searching & sorting techniques.

Assignments:

Based on the curriculum as covered by the subject teacher

SUGGESTED READING:

1. Data Structures Through C in Depth by S. K. Srivastava and Deepali Srivastava - BPB

Publications

2. Data Structures Through C by Yashavant Kanetkar - BPB Publications

3. Data Structures: A Pseudocode Approach with C by Richard F. Gilberg and Behrouz

A. Forouzan (Adapted by Dinesh P. Mehta) - Cengage Learning India

4. Data Structures and Algorithm Analysis in C by Mark Allen Weiss (Adapted by

Dinesh Mehta) - Pearson Education India

5. Data Structures Using C and C++ by Tanenbaum - Pearson Education India

6. Data Structures and Algorithms Made Easy by M. S. Kutti Swamy - Pearson

Education India

