(Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) ### **Semester-V** ## Subject Name-Digital Imaging & Image processing methods **Mode-Offline** Code-5301 Credit-3 ### Aim of the Course: To impart knowledge on the principles and practical aspects of digital imaging and image processing in radiology, covering image acquisition, enhancement, restoration, and reconstruction techniques used in diagnostic and therapeutic imaging. # **Course Objectives:** - To introduce the fundamentals of digital radiographic imaging. - To explain digital image formation, characteristics, and enhancement. - To train students in artifact correction and 3D reconstruction techniques. | SI | Graduate attributes | Mapped modules | |-----|--|----------------| | CO1 | Understand fundamentals of digital radiography and PACS/DICOM standards. | M1 | | CO2 | Explain the characteristics of medical images and acquisition methods. | M2 | | CO3 | Apply noise reduction and contrast enhancement techniques. | M3 | | CO4 | Identify and correct artifacts in digital imaging. | M4 | | CO5 | Analyze and interpret 3D reconstruction and volume rendering techniques. | M5 | ## **Learning Outcome/Skills:** - Understand digital image formats, PACS, and DICOM usage. - Evaluate medical image parameters: noise, contrast, resolution. - Enhance diagnostic image quality using digital processing tools. - Correct common artifacts in digital imaging systems. - Apply 3D reconstruction methods in clinical and surgical planning. (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) | Module
Number | Content | Total
Hour | % of Question | Bloom
Level
(applicable) | Remarks, if any | |------------------|---|---------------|---------------|--------------------------------|-----------------| | M1 | Introduction to Digital Imaging in Radiology • History: Film to Digital • Basics of Digital Radiography • PACS (Picture Archiving and Communication System) • DICOM (Digital Imaging and Communication in Medicine) Standards | 6 | 15 | 1,2 | NA | | M2 | Fundamentals of Medical Image Processing Image Acquisition (X-ray, CT, MRI, USG) Image Characteristics Sampling, Quantization, Resolution Image Quality: Contrast, Noise, Resolution, Artifacts | 8 | 20 | 1,2,3 | NA | | M3 | Image Enhancement in Radiology • Noise Reduction (CT, MRI) • Contrast & Edge Enhancement | 8 | 20 | 2,3 | NA | | M4 | Image Restoration and Artifact Correction • Types of Artifacts (X-ray, CT, MRI) • Artifact Removal | 10 | 20 | 2,3 | NA | (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) | | Motion Correction | | | | | |----|---------------------------------------|----|-----|-------|----| | | Noise Suppression | | | | | | M5 | 3D Image Processing | 8 | 25 | 2,3,4 | NA | | | and Reconstruction | | | | | | | • 3D Acquisition (CT, | | | | | | | MRI) | | | | | | | • MPR, MIP, Volume | | | | | | | Rendering | | | | | | | Oncology Applications | | | | | | | TOTAL | 40 | 100 | | | # **Module 1: Introduction to Digital Imaging in Radiology** History of Imaging: From Film to Digital Basics of Digital Radiography PACS (Picture Archiving and Communication Systems) DICOM (Digital Imaging and Communications in Medicine) Standards # **Module 2: Fundamentals of Medical Image Processing** Image Acquisition in Radiology Modalities (X-ray, CT, MRI, US,) Characteristics of Medical Images Sampling, Quantization, and Resolution in Medical Imaging Image Quality Parameters: Contrast, Noise, Spatial Resolution, Artifacts ## Module 3: Image Enhancement in Radiology Noise Reduction Techniques (Filtering in CT, MRI) Contrast Enhancement in Radiographic Images Edge Enhancement and Sharpening (Bone vs. Soft Tissue Visualization) ## **Module 4: Image Restoration and Artifact Correction** Types of Artifacts in X-ray, CT, and MRI Techniques for Artifact Removal Motion Correction in MRI and CT De-blurring and Noise Suppression ## **Module 5: 3D Image Processing and Reconstruction** Basics of 3D Image Acquisition (CT, MRI,) (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) 3D Reconstruction Techniques: MPR (Multi-Planar Reconstruction), MIP (Maximum Intensity Projection) Volume Rendering in CT and MRI Applications in Surgical Planning and Oncology. ### **Recommended Books:** - 1. Dougherty, G. Digital Image Processing for Medical Applications - 2. Jan, Jiri Medical Image Processing, Reconstruction and Analysis - 3. Shung, K.K. *Principles of Medical Imaging* - 4. Online Standards: PACS and DICOM Tutorials **Subject Name: Lab on Digital Imaging & Image Processing Methods** Subject code- 5391 ## Credit-02 - 1. Demonstration of PACS and DICOM workflow in digital imaging systems. - 2. Handling digital radiographs: Identifying parameters (contrast, resolution, noise) using sample datasets. - 3. Applying noise reduction filters on sample CT/MRI images. - 4. Identification and simulation of common artifacts in CT/MRI/X-ray images. - 5. Demonstration of 3D reconstruction using MPR and MIP techniques from DICOM datasets. - 6. Clinical interpretation demo: Surgical planning using 3D reconstructed images. (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) ## **Subject Name-Dark Room Techniques** **Mode-Offline** Code-5302 Credit-3 ### Aim of the Course: To impart comprehensive knowledge of darkroom setup, processing techniques, image formation, intensifying screens, and film handling in conventional radiography. # **Course Objectives:** - Understand the construction and functional requirements of a darkroom in medical imaging. - Learn the principles of photographic film, image formation, and spectral response. - Gain knowledge about intensifying screens, cassettes, and film-screen contact. - Acquire hands-on understanding of manual and automatic film processing. - Understand modern methods like daylight film handling, xeroradiography, and stereoscopy. | SI | Graduate attributes | Mapped modules | |-----|--|----------------| | CO1 | Understand darkroom construction and essential safety features | M1 | | CO2 | Explain photographic principles and film characteristics | M2 | | CO3 | Evaluate intensifying screen and cassette technologies | M3 | | C04 | Demonstrate film processing using manual and automatic methods | M4 | | C05 | Discuss daylight film handling and related advanced methods | M5 | ## **Learning Outcome/Skills:** - Understand darkroom design, safety, and layout in radiology departments. - Explain radiographic film structure, types, and image formation. - Identify film faults and image artifacts. - Handle and maintain cassettes and intensifying screens. - Perform manual and automatic film processing techniques. - Operate daylight film systems and understand xeroradiography and stereoscopy basics. (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) | Module
Number | Content | Total
Hour | % of question | Bloom
Level(if
applicable) | Remarks, | |------------------|---|---------------|---------------|-----------------------------------|----------| | M1 | Dark Room Planning & Construction - Small vs. large hospital setup - Construction, ventilation, wall protection - Entrance types: single, double, labyrinth - Accessories: dry/wet bench, hangers, sinks, safelights, viewing room. | 8 | 20 | 1,2 | NA | | M2 | Photographic Principles - Radiographic film: construction, types - Latent image, density, exposure, characteristic curve - Spectral response, film faults, artifacts - Luminescence, fluorescence, phosphorescence | 8 | 20 | 1,2,3 | NA | | M3 | Cassettes & Intensifying Screens - Types and construction - Intensification factor, screen speed, film-screen matching - Screen-film contact tests - Advantages and maintenance | 8 | 20 | 2,3 | NA | | M4 | Film Processing Techniques - Developer, fixer, washing, drying - Manual vs. automatic processing - Thermal regulation, solution preparation | 8 | 25 | 2,3,4 | NA | | M5 | Daylight Film Handling & Advanced Techniques - Daylight film system - Xeroradiography - Stereoscopy | 8 | 15 | 2,3 | NA | ## Module -1 ## **Dark Room – Planning & Construction:** Planning for a small & large Hospital; Location of Dark Room; Construction of Dark Room; Ventilation; Wall Protection; Entrance to Dark Room - Single Door, Double Door, Labyrinth Dark Room Accessories: Dry bench; Hopper, Drawer, Cupboard; Loading and unloading cassettes; Hangers, types (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) of hangers and storage of hangers; Wet bench; Cleanliness, control of dust, dark room sinks; Hatches; Drier; Safe Lights-types and uses, factors affecting safelight performance, safelight Tests; Viewing room, Film dispensing. ### Module-2 ## **Photographic Principles:** Radiographic film- construction and types; Photographic effect and latent image formation; Film density and log relative exposure; Characteristic curve – its formation and features Spectral response; Film faults and Artifacts Intensifying Screens: Luminescence-fluorescence and phosphorescence. ### **Module-3** ## Cassettes and intensifying screen Construction and types of Intensifying Screens; Intensification Factor Film screen matching; Resolving power of Intensifying Screens; Speed of intensifying screen Screen film contact tests Advantages and limitations of Intensifying Screens X-ray Cassette: Construction of X-ray cassettes; Types of cassettes; Mounting Intensifying Screens on cassettes; Care and maintenance of cassettes ### Module-4 ## Film Processing: Photochemistry Developer; Rinsing; Fixer; Washing and drying; Preparation of processing solutions; Manual processing apparatus; Effect of temperature in processing; Rapid processing Automatic processor: Principle of working and features, thermal regulation and replenishment system; maintenance of automatic processor; Advantages and limitations of automatic processor (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) ## Module-5 ## Day Light Film handling Xeroradiography, Stereoscopy ## **Recommended Books** - 1. **Bushong, Stewart C.** Radiologic Science for Technologists: Physics, Biology, and Protection - 2. **Ballinger, Philip W.** Manual of Radiographic Positioning and Procedures - 3. Christensen's Physics of Diagnostic Radiology Thomas S. Curry, James E. Dowdey - 4. **S. M. Bhargava** *Basic Radiological Physics* (for Indian context and manual processing focus) ## **Practical** ## **Subject Name-Dark Room Techniques** ### **Subject Code-5392** ### Credit -02 - 1. Demonstration of dark room setup and layout planning for small & large hospitals - 2. Identification and use of dark room accessories: dry/wet bench, safelights, sinks, hatches - 3. Safelight testing and performance evaluation - 4. Study of radiographic film types and construction - 5. Handling and maintenance of cassettes - 6. Identification of different types of intensifying screens - 7. Screen-film contact testing - 8. Manual film processing steps: developer, rinsing, fixer, washing, drying - 9. Demonstration of automatic processor operation and maintenance - 10. Observation of temperature effect on film quality (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) ### **Semester-VI** # **Subject Name-Orthopaedics in Radiology** **Subject Code- BMMIT-6301** Credit-03 # **Course Aim:** To provide students with in-depth knowledge and skill in identifying, evaluating, and assisting in the radiologic diagnosis of orthopedic conditions using various imaging modalities. # **Course Objectives:** - Understand the anatomy and pathology of the musculoskeletal system. - Learn imaging protocols specific to orthopaedic cases. - Identify common and uncommon orthopaedic conditions in radiological images. - Correlate clinical symptoms with radiological findings. - Assist in trauma and post-operative imaging evaluations. | SI | Graduate attributes | Mapped modules | |-----|--|----------------| | CO1 | | M1 | | | Core understanding of musculoskeletal imaging, including anatomy, pathology, and trauma imaging. | | | CO2 | Ability to analyse and differentiate between fractures, joint disorders, tumors, and infections. | M2 | | CO3 | Identify and differentiate joint diseases through imaging, including arthritis and spondylosis, and understand the role of MRI in evaluating degenerative and inflammatory conditions. | M3 | | CO4 | Ability to identify and differentiate bone infections and tumors using radiological features, | M4 | | CO5 | Students learn to evaluate orthopaedic implants, detect post-surgical complications, and use CT/MRI for accurate assessment. | M5 | (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) # Learning Outcome/Skills: Understand the role of radiology in orthopaedic diagnosis and treatment. - Identify and interpret normal and abnormal bone and joint anatomy. - Classify and analyze fractures, joint diseases, infections, and tumors. - Evaluate post-operative and implant imaging for complications. | Module
Number | Content | Total
Hour
s | % of Question | Bloom
Level
(applicable) | Remarks, if any | |------------------|--|--------------------|---------------|--------------------------------|-----------------| | M1 | Introduction to Orthopedic Imaging Role of radiology in orthopedics Imaging modalities: X-ray, CT, MRI, | 8 | 15 | 1,2 | NA | | M2 | fractures and Trauma Imaging • Types and classification: simple, compound, etc. • Common fractures: upper limb, lower limb, spine • Emergency trauma imaging: protocols and patient positioning. | 7 | 25 | 2,3,4 | NA | | M3 | Joint Disorders and Degeneration Radiological signs of osteoarthritis, rheumatoid arthritis, gout Spondylosis and ankylosing spondylitis Differences in degenerative vs inflammatory arthritis MRI role in joint imaging Soft tissue changes in arthritis | 8 | 20 | 2,4 | NA | | M4 | Infections and Tumors Osteomyelitis and septic arthritis — radiological appearance Benign tumors: osteochondroma, bone cysts Malignant tumors: osteosarcoma, Ewing's sarcoma Tumor-like lesions and mimickers CT and MRI in tumor staging and evaluation | 8 | 20 | 4,5 | NA | | M5 | Post-operative and Implant Imaging Imaging after orthopaedic surgery Fracture fixation: plates, screws, nails Joint replacements: hip and knee prosthesis Types of orthopaedic implants and their materials Complications: loosening, infection, implant failure | 9 | 20 | 3,5 | NA | (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) | • Role of CT/MRI in post-operative | | | | |------------------------------------|----|-----|--| | assessment. | | | | | Total | 40 | 100 | | ## Module 1 – Introduction to Orthopedic Imaging - Role of radiology in orthopedics - Imaging techniques used in orthopedics: X-ray, CT, MRI, Ultrasound, Bone Scan - Normal radiographic anatomy of bones and joints - Importance of selecting proper modality for diagnosis - Indications for musculoskeletal imaging ## Module 2 – Fractures and Trauma Imaging - Types and classification of fractures (simple, compound, greenstick, comminuted, etc.) - Common fractures: Upper limb (humerus, radius, ulna), Lower limb (femur, tibia, fibula), Spine fractures - Radiological signs of fracture healing and non-union - Complications of fractures: delayed union, avascular necrosis - Emergency trauma imaging: protocols and positioning ## Module 3 – Joint Disorders and Degeneration - Radiological appearance of joint diseases: - Osteoarthritis - Rheumatoid arthritis - Gout - Spondylosis and ankylosing spondylitis - Differences in imaging features between degenerative and inflammatory arthritis - Use of MRI in joint disorders - Soft tissue involvement in arthritis ### Module 4 – Infections and Tumors - Radiological signs of Osteomyelitis and Septic Arthritis - Imaging of Benign bone tumors: osteochondroma, bone cysts - Imaging of Malignant bone tumors: osteosarcoma, Ewing's sarcoma - Tumor mimicking lesions - CT and MRI roles in tumor staging and evaluation (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) ## Module 5 – Post-operative and Implant Imaging - Radiological evaluation after orthopaedic surgeries - Imaging of fracture fixation (nails, plates, screws) - Joint replacement imaging (hip, knee prosthesis) - Types of orthopaedic implants and materials - Detection of complications: loosening, infection, implant failure - Role of CT/MRI in implant assessment # **Practical** ### Subject name- Orthopaedics in Radiology ### **Subject code-BMMIT-6391** ### Credit-02 - 1. Identification of normal bones and joints on X-ray - 2. Interpretation of common fractures (upper/lower limb, spine) - 3. Classification of fracture types on radiographs - 4. Radiographic positioning for trauma imaging - 5. Radiographic analysis of osteoarthritis, rheumatoid arthritis, gout - 6. Imaging of spondylosis and ankylosing spondylitis - 7. Identification of osteomyelitis and septic arthritis - 8. Detection of benign and malignant bone tumors - 9. Differentiation between tumors and tumor-like lesions - 10. Evaluation of post-operative images (implants, joint replacement) - 11. Identification of implant complications (loosening, infection) - 12. Viewing CT and MRI images for orthopaedic applications ### Recommended Books: - Grainger & Allison's Diagnostic Radiology (Musculoskeletal Section) - Orthopaedic Imaging: A Practical Approach by Adam Greenspan - Essentials of Musculoskeletal Imaging by M.A. Reinus - Bone and Joint Imaging by Donald Resnick (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) # Subject name- Dental Radiography Subject code-6302 ## Credit-03 ## **Course Aim:** To provide foundational knowledge and skills in dental imaging techniques, radiographic anatomy, patient positioning, and safety in dental radiography. # **Course Objectives:** - Understand the principles and techniques of dental radiography - Learn intraoral and extraoral imaging procedures - Identify normal and pathological findings in dental X-rays - Ensure radiation protection for dental imaging - Assist dental professionals with high-quality radiographs | SI | Graduate attributes | Mapped modules | |-----|--|----------------| | CO1 | Understands the principles, techniques, equipment, and | M1 | | | anatomy involved in dental radiographic imaging. | | | CO2 | Develop skills in performing intraoral radiographs and | M2 | | | identifying dental structures accurately. | | | CO3 | Learn to conduct and interpret panoramic and cephalometric | M3 | | | radiographs for dental assessment. | | | C04 | Apply safety principles to protect patients and operators from | M4 | | | unnecessary radiation exposure. | | | CO5 | Ability to interpret dental pathologies and ensure image quality | M5 | | | through proper evaluation and documentation. | | (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) | Module | Content | Total | % of | Bloom | Remarks, | |--------|--|-------|----------|--------------|----------| | Number | | Hour | Question | Level | if any | | | | S | | (applicable) | | | M1 | Introduction to Dental Radiography: | 7 | 15 | 1,2 | NA | | | History and importance | | | | | | | • Types (intraoral, extraoral) | | | | | | | • X-ray generation principles | | | | | | | Equipment | | | | | | M2 | Intraoral Techniques: | 8 | 25 | 2,3 | NA | | | • Periapical, bitewing, occlusal radiographs | | | | | | | • Film placement | | | | | | | • Exposure & errors | | | | | | | Dental anatomy | | | | | | M3 | Extraoral Techniques: | 9 | 20 | 2,3 | NA | | | Panoramic and cephalometric imaging | | | | | | | • Indications, positioning, interpretation | | | | | | | basics | | | | | | M4 | Radiation Protection: | 8 | 15 | 2,3 | NA | | | • ALARA | | | | | | | • Safety tools (apron, collimator) | | | | | | | • Legal & operator safety guidelines | | | | | | M5 | Image Interpretation & Quality Control: | 8 | 25 | 3,4,5 | NA | | | • Diagnosis of caries, periodontal disease | | | | | | | • Artifacts | | | | | | | • QA | | | | | | | Legal record-keeping | | | | | | | Total | 40 | 100 | | | # **Module 1: Introduction to Dental Radiography** - History and importance of dental radiology - Types of dental radiographs: intraoral, extraoral - Principles of X-ray generation in dentistry - Structure and function of dental X-ray equipment # **Module 2: Intraoral Radiographic Techniques** - Periapical, bitewing, and occlusal radiography - Film placement and patient positioning - Exposure parameters and technique errors - Radiographic anatomy of teeth and supporting structures (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) ## **Module 3: Extraoral Radiographic Techniques** - Panoramic (OPG) and lateral cephalometric imaging - Indications and patient preparation - Technique, positioning, and interpretation basics ## **Module 4: Radiation Protection in Dental Imaging** - ALARA principle - Use of lead apron, thyroid collar, and collimators - Operator safety measures and legal guidelines # **Module 5: Image Interpretation and Quality Control** - Identification of dental caries, periodontal disease, periapical lesions - Quality assurance in dental radiography - Common artifacts and corrective actions - Record keeping and legal documentation (Formerly West Bengal University of Technology) Syllabus of B. Sc Medical Imaging Technology (Effective from 2023-24 Academic Sessions) # **Practical** ## **Subject name- Dental Radiography** ## **Subject code-BMMIT6392** ## Credit-02 - 1. Identification of dental radiographic equipment - 2. Performing periapical, bitewing, and occlusal radiographs - 3. Film placement and patient positioning for intraoral imaging - 4. Demonstration of panoramic (OPG) imaging technique - 5. Positioning for lateral cephalometric radiography - 6. Interpretation of normal dental radiographic anatomy - 7. Identification of common dental pathologies (caries, periodontal disease, periapical lesions) - 8. Detection and correction of common radiographic errors and artifacts - 9. Radiation protection practices during dental imaging - 10. Quality assurance procedures in dental radiography ### **Recommended Books** - 1. **Essentials of Dental Radiography** Evelyn M. Thomson - 2. **Dental Radiography: Principles and Techniques** Joen Iannucci, Laura Howerton - 3. Textbook of Dental Radiology Ghom A - 4. White & Pharoah's Oral Radiology Stuart C. White, Michael J. Pharoah